首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal lobe epilepsy is often associated with pathological changes in the dentate gyrus, and such changes may be more common in humans than in some nonprimate species. To examine species-specific characteristics that might predispose the dentate gyrus to epileptogenic damage, we evaluated recurrent excitation of granule cells with and without basal dendrites in macaque monkeys, measured miniature inhibitory postsynaptic currents (mIPSCs) of granule cells in macaque monkeys and compared them to rats, and estimated the granule cell-to-interneuron ratio in macaque monkeys and rats. In hippocampal slices from monkeys, whole-cell patch recording revealed antidromically evoked excitatory PSCs that were four times larger and inhibitory PSCs that were over two times larger in granule cells with basal dendrites than without. These findings suggest that granule cells with basal dendrites receive more recurrent excitation and, to a lesser degree, more recurrent inhibition. Miniature IPSC amplitude was slightly larger in monkey granule cells with basal dendrites than in those without, but mIPSC frequency was similar and only 26% of that reported for rats. In situ hybridization for glutamic acid decarboxylase and immunocytochemistry for somatostatin, parvalbumin, and neuronal nuclei revealed interneuron proportions and distributions in monkeys that were similar to those reported for rats. However, the interneuron-to-granule cell ratio was lower in monkeys (1:28) than in rats (1:11). These findings suggest that in the primate dentate gyrus, recurrent excitation is enhanced and inhibition is reduced compared with rodents. These primate characteristics may contribute to the susceptibility of the human dentate gyrus to epileptogenic injuries.  相似文献   

2.
This study analyzes the structural variability of granule cells in the monkey fascia dentata. The hippocampi of three adult rhesus monkeys (Macaca mulatta) and two 1-year-old female baboons (Papio anubis) were used for a combined Golgi/electron microscope (EM) study. The results were compared with other Golgi/EM studies on dentate granule cells in small laboratory animals. Whereas the granule cells in small rodents form a relatively uniform population of neurons, we observed a much greater variability of granule cell morphology in monkeys. This variability concerned the size of the cell body, the length and thickness of apical dendrites, the spine density, and the occasional occurrence of basal dendrites. The dendritic length of individual granule cells largely depended on their position in the highly convoluted granular layer. These convolutions caused significant variations in the thickness of the molecular layer and consequently in the length of individual granule cell dendrites. Granule cells with thick dendrites densely covered with spines could be differentiated from those exhibiting much thinner dendritic processes and moderate spine numbers. About 10% of granule cells in the monkey fascia dentata exhibited basal dendrites. Occasionally in the hilus ectopic granule cells were observed that gave rise to long apical dendrites traversing the granular layer. The axons of granule cells, the mossy fibers, entered the hilus, where they gave off several collaterals. In contrast to the light microscopic variability, subtypes of granule cells revealed similar fine structural characteristics, i. e., a round nucleus lacking indentations, a thin rim of cytoplasm, and characteristic spine formations. Large complex spines and smaller, “stubby” spines were observed on apical as well as basal dendrites. This suggests that characteristic spine formations were not induced by specific afferent fibers. All synaptic contacts on spines were of the asymmetric type, whereas both symmetric and asymmetric synapses occured on cell bodies and dendritic shafts. Unlike in rodents, we found a large variability of granule cells in the primate fascia dentata. This variability has to be considered in neropathological studies of this cell type.  相似文献   

3.
In adult female rats, estrogen receptor (ER) activation, particularly of ERbeta, promotes hippocampal neurogenesis. We previously reported that extranuclear ERbeta immunoreactivity (ir) in adult rats is on cellular profiles in or near the granule cell layer, which is the location of newly generated cells. During development, cells in or near the granule cell layer transiently express high levels of estrogen binding and nuclear ERs. Thus, we sought to determine if extranuclear ERbeta is in newly generated cells in adult and neonatal rat dentate gyrus. Sections from the dentate gyrus of adult proestrus or postnatal day 7 and 14 female rats were dual-labeled for ERbeta and the new-cell marker doublecortin (DCX) and examined by electron microscopy. DCX-containing neurons were found in the subgranular hilus in adult rats and were more widespread throughout the granule cell layer and hilus of neonatal rats. In both adults and neonatal rats, ERbeta immunoreactivity was found in a subset of DCX-labeled neurons. Electron microscopic examination of the adult dentate gyrus revealed that most perikarya with DCX-ir had the morphological characteristics of granule cells, although a few resembled interneurons. Dendrites with DCX-ir also were observed. In both adults and neonates, DCX-labeled neuronal perikarya and dendrites contained ERbeta-ir; ERbeta-ir usually was aggregated near the plasma membrane, mitochondria or endoplasmic reticula. ERbeta-ir was in glial profiles that apposed DCX-labeled perikarya and dendrites. These findings are consistent with data showing that estrogens can exert non-genomic effects directly and indirectly on newly generated cells in neonatal and adult rat dentate gyrus.  相似文献   

4.
The granule cells of the dentate gyrus are a population of neurons continously generated throughout life. In the rat, the morphological development of newly born granule cells generated in the adult share many similarities with granule cells generated during development. These include a specific migration pattern, orientation and progression of neurite outgrowth. It appears as though varied dendritic morphology occurs depending on the position of the granule cells within the granule cell layer. A hypothesis for granule cell migration and differentiation of their dendritic processes is proposed based on normal and epileptic rats. In this hypothesis, the granule cells are generated in the subgranular zone, and then they migrate into the granule cell layer. During this migration, the sequence of neurite outgrowth is described, where the newly born granule cell first sprouts rudimentary processes. One of these processes, the basal dendrite, is transiently present on developing rodent granule cells in rats. However, in seizure-induced rats the basal dendrite often fails to retract, which leads to the formation of hilar basal dendrites, and also perhaps, ectopic granule cells in the hilus. In this review, granule cell development is discussed with relevance to the creation of the recurrent excitatory circuitry in rodent models of temporal lobe epilepsy.  相似文献   

5.
Neurogenesis in the subgranular zone of the dentate gyrus persists throughout the lifespan of mammals, and the resulting newly born neurons are incorporated into existing hippocampal circuitry. Seizures increase the rate of neurogenesis in the adult rodent brain and result in granule cells in the dentate gyrus with basal dendrites. Using doublecortin (DCX) immunocytochemistry to label newly generated neurons the current study focuses on the electron microscopic features of DCX-labeled cell bodies and dendritic processes in the dentate gyrus of rats with pilocarpine-induced epilepsy. At the base of the granule cell layer clusters of cells that include up to six DCX-labeled cell bodies were observed. The cell bodies in these clusters lacked a one-to-one association with an astrocyte cell body and its processes, a relationship that is typical for newly born granule cells in control rats. Also, DCX-labeled basal dendrites in the hilus had immature synapses while those in control rats lacked synapses. These results indicate that increased neurogenesis after seizures alters the one-to-one relationship between astrocytes and DCX-labeled newly generated neurons at the base of the granule cell layer. The data also suggest that the synapses on DCX-labeled hilar basal dendrites contribute to the persistence of hilar basal dendrites on neurons born after pilocarpine-induced seizures.  相似文献   

6.
Mossy fiber sprouting into the inner molecular layer of the dentate gyrus is an important neuroplastic change found in animal models of temporal lobe epilepsy and in humans with this type of epilepsy. Recently, we reported in the perforant path stimulation model another neuroplastic change for dentate granule cells following seizures: hilar basal dendrites (HBDs). The present study determined whether status epilepticus-induced HBDs on dentate granule cells occur in the pilocarpine model of temporal lobe epilepsy and whether these dendrites are targeted by mossy fibers. Retrograde transport of biocytin following its ejection into stratum lucidum of CA3 was used to label granule cells for both light and electron microscopy. Granule cells with a heterogeneous morphology, including recurrent basal dendrites, and locations outside the granule cell layer were observed in control preparations. Preparations from both pilocarpine and kainate models of temporal lobe epilepsy also showed granule cells with HBDs. These dendrites branched and extended into the hilus of the dentate gyrus and were shown to be present on 5% of the granule cells in pilocarpine-treated rats with status epilepticus, whereas control rats had virtually none. Electron microscopy was used to determine whether HBDs were postsynaptic to axon terminals in the hilus, a site where mossy fiber collaterals are prevalent. Labeled granule cell axon terminals were found to form asymmetric synapses with labeled HBDs. Also, unlabeled, large mossy fiber boutons were presynaptic to HBDs of granule cells. These results indicate that HBDs are present in the pilocarpine model of temporal lobe epilepsy, confirm the presence of HBDs in the kainate model, and show that HBDs are postsynaptic to mossy fibers. These new mossy fiber synapses with HBDs may contribute to additional recurrent excitatory circuitry for granule cells.  相似文献   

7.
We report on structural variability of granule cells in the human dentate gyrus. Granule cells with basal and recurrent dendrites are a normal finding in the human brain. We detect 28.3% granule cells with basal dendrites in non-psychiatrically ill humans compared to rats (2%) and primates (10%). This can be seen as an indication for the higher phylogeny of the human brain. In addition we find a significantly higher incidence of granule cells with basal dendrites (45.7%) in brains of schizophrenic patients. Whereas drug influences during lifetime cannot fully be excluded, we tend to interpret this finding as a plastic reaction to prenatal developmental malformations of the impinging rostral entorhinal region.  相似文献   

8.
Light and electron microscopic immunocytochemical techniques were used to study the interneuron population staining for somatostain (SRIF) in cultured slices of rat hippocampus. The SRIF immunoreactive somata were most dense in stratum oriens of areas CA1 and CA3, and in the dentate hilus. Somatostain immunoreactive cells in areas CA1 and CA3 were characteristically fusiform in shape, with dendrites that extended both parallel to and into the alveus. The axonal plexus in areas CA1 and CA3 was most dense in stratum lacunosum-moleculare and in stratum pyramidale. Electron microscopic analysis of this area revealed that the largest number of symmetric synaptic contacts from SRIF immunoreactive axons were onto pyramidal cell somata and onto dendrites in stratum lacunosum-moleculare. In the dentate gyrus, SRIF somata and dendrites were localized in the hilus. Hilar SRIF immunoreactive neurons were fusiform in shape and similar in size to those seen in CA1 and CA3. Axon collaterals coursed throughout the hilus, projected between the granule cells and into the outer molecular layer. The highest number of SRIF synaptic contacts in the dentate gyrus were seen on granule cell dendrites in the outer molecular layer. Synaptic contacts were also observed on hilar neurons and granule cell somata. SRIF synaptic profiles were seen on somata and dendrites of interneurons in all regions. The morphology and synaptic connectivity of SRIF neurons in hippocampal slice cultures appeared generally similar to intact hippocampus. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Long-term neuroplastic changes to dentate granule cells have been reported after seizures and were shown to contribute to recurrent excitatory circuitry. These changes include increased numbers of newborn granule cells, sprouted mossy fibers, granule cell layer dispersion, increased hilar ectopic granule cells and formation of hilar basal dendrites on granule cells. The goal of the current study was to determine the acute progression of neuroplastic changes involving newly generated granule cells after pilocarpine-induced seizures. Doublecortin (DCX) immunocytochemical preparations were used to examine the newly generated granule cells 1-5 days after seizures were induced. The results showed that there are rapid neuroplastic changes to the DCX-labeled cells. At 1 day after seizures were induced, there were significant increases in the percentage of DCX-labeled cells with hilar basal dendrites and in the progenitor cell population. At 2 days after seizures were induced, an increase in the thickness of the layer of DCX-labeled cells occurred. At 3 days after seizures were induced, the number of DCX-labeled cells was significantly increased. At 4 days after seizures were induced, developing synapses were observed on DCX-labeled hilar basal dendrites. Thus, newly generated granule cells in the adult dentate gyrus display neuroplastic changes by 1 day after pilocarpine-induced seizures and further changes occur to this population of cells in the subsequent 4 days. The presence of synapses, albeit developing ones, on hilar basal dendrites during this period indicates that newly generated granule cells become rapidly incorporated into dentate gyrus circuitry following seizures.  相似文献   

10.
Status epilepticus (SE) not only results in an increased number of newly generated neurons in the dentate gyrus but also leads to structural alterations of many of these newborn granule cells. One of the structural changes involving newly generated dentate granule cells is the formation of hilar basal dendrites that persist on mature granule cells and integrate into synaptic circuitry. SE also causes other newborn granule cells to migrate ectopically into the hilus, and these cells also integrate into synaptic circuitry. This article will describe these structural alterations of granule cells found in the dentate gyrus after SE and will also discuss the time course of these events and possible underlying causes.  相似文献   

11.
Purpose: Aberrant plastic changes among adult‐generated hippocampal dentate granule cells are hypothesized to contribute to the development of temporal lobe epilepsy. Changes include formation of basal dendrites projecting into the dentate hilus. Innervation of these processes by granule cell mossy fiber axons leads to the creation of recurrent excitatory circuits within the dentate. The destabilizing effect of these recurrent circuits may contribute to hyperexcitability and seizures. Although basal dendrites have been identified in status epilepticus models of epilepsy associated with increased neurogenesis, we do not know whether similar changes are present in the intrahippocampal kainic acid model of epilepsy, which is associated with reduced neurogenesis. Methods: In the present study, we used Thy1‐YFP–expressing transgenic mice to determine whether hippocampal dentate granule cells develop hilar‐projecting basal dendrites in the intrahippocampal kainic acid model. Brain sections were examined 2 weeks after treatment. Tissue was also examined using ZnT‐3 immunostaining for granule cell mossy fiber terminals to assess recurrent connectivity. Adult neurogenesis was assessed using the proliferative marker Ki‐67 and the immature granule cell marker calretinin. Key Findings: Significant numbers of cells with basal dendrites were found in this model, but their structure was distinct from basal dendrites seen in other epilepsy models, often ending in complex tufts of short branches and spines. Even more unusual, a subset of cells with basal dendrites had an inverted appearance; they completely lacked apical dendrites. Spines on basal dendrites were found to be apposed to ZnT‐3 immunoreactive puncta, suggestive of recurrent mossy fiber input. Finally, YFP‐expressing abnormal granule cells did not colocalize Ki‐67 or calretinin, indicating that these cells were more than a few weeks old, but were found almost exclusively in proximity to the neurogenic subgranular zone, where the youngest granule cells are located. Significance: Recent studies have demonstrated in other models of epilepsy that dentate pathology develops following the aberrant integration of immature, adult‐generated granule cells. Given these findings, one might predict that the intrahippocampal kainic acid model of epilepsy, which is associated with a dramatic reduction in adult neurogenesis, would not exhibit these changes. Herein we demonstrate that hilar basal dendrites are a common feature of this model, with the abnormal cells likely resulting from the disruption of juvenile granule cell born in the weeks before the insult. These studies demonstrate that postinjury neurogenesis is not required for the accumulation of large numbers of abnormal granule cells.  相似文献   

12.
Calcium binding proteins calbindin D28k (CaBP) and parvalbumin (PV) are known to form distinct subpopulations of gamma-aminobutyric acid (GABA)ergic neurons in the rodent hippocampal formation. Light and electron microscopic morphology and connections of these protein-containing neurons are only partly known in the primate hippocampus. In this study, CaBP and PV were localized in neurons of the human hippocampal formation including the subicular complex (prosubiculum, subiculum, and presubiculum) in order to explore to what extent these subpopulations of hippocampal neurons differ in phylogenetically distant species. CaBP immunoreactivity was present in virtually all granule cells of the dentate gyrus and in a proportion of pyramidal neurons in the CA1 and CA2 regions. A distinct population of CaBP-positive local circuit neurons was found in all layers of the dentate gyrus and Ammon's horn. Most frequently they were located in the molecular layer of the dentate gyrus and the pyramidal layer of Ammon's horn. In the subicular complex pyramidal neurons were not immunoreactive for CaBP. In the prosubiculum and subiculum immunoreactive nonpyramidal neurons were equally distributed in all layers, whereas in the presubiculum they occurred mainly in the superficial layers. Electron microscopy showed typical somatic and dendritic features of the granule, pyramidal, and local circuit neurons. CaBP-positive mossy fiber terminals in the hilus of the dentate gyrus and terminals of presumed pyramidal neurons of Ammon's horn formed asymmetric synapses with dendrites and spines. CaBP-positive terminals of nonprincipal neurons formed symmetric synapses with dendrites and dendritic spines, but never with somata or axon initial segments. PV was exclusively present in local circuit neurons in both the hippocampal formation and subicular complex. Most of the PV-positive cell bodies were located among or close to the principal cell layers. However, large numbers of immunoreactive neurons were also found in the molecular layer of the dentate gyrus and in strata oriens of Ammon's horn. PV-positive cells were equally distributed in all layers of the subicular complex. Electron microscopy showed the characteristic somatic and dendritic features of local circuit neurons. PV-positive axon terminals formed exclusively symmetric synapses with somata, axon initial segments and dendritic shafts, and in a few cases with dendritic spines. The CaBP- and PV-containing neurons formed similar subpopulations in rodents, monkeys, and humans, although the human hippocampus displayed the largest variability of these immunoreactive neurons in their morphology and location. Calcium binding protein-containing neurons frequently occurred in the molecular layer of the human dentate gyrus and in the stratum lacunosum-moleculare of Ammon's horn. The corresponding areas of the rat or monkey hippocampus were devoid of such neurons. In both rodents and primates similar populations of principal neurons contained CaBP. In addition, CaBP and PV were localized in distinct and nonoverlapping populations of nonprincipal cells. Their target selectivity did not change during phylogeny (e.g., PV-positive cells mainly innervate the perisomatic region and CaBP-positive cells the distal dendritic region of principal cells). © 1993 Wiley-Liss,Inc.  相似文献   

13.
Little is known about the morphological characteristics and intracellular electrophysiological properties of neurons in the primate hippocampus and dentate gyrus. We have therefore begun a program of studies using intracellular recording and biocytin labeling in hippocampal slices from macaque monkeys. In the current study, we investigated mossy cells and proximal CA3 pyramidal cells. As in rats, macaque mossy cells display fundamentally different traits than proximal CA3 pyramidal cells. Interestingly, macaque mossy cells and CA3 pyramidal neurons display some morphological differences from those in rats. Macaque monkey mossy cells extend more dendrites into the molecular layer of the dentate gyrus, have more elaborate thorny excrescences on their proximal dendrites, and project more axon collaterals into the CA3 region. In macaques, three types of proximal CA3 pyramidal cells are found: classical pyramidal cells, neurons with their dendrites confined to the CA3 pyramidal cell layer, and a previously undescribed cell type, the "dentate" CA3 pyramidal cell, whose apical dendrites extend into and ramify within the hilus, granule cell layer, and molecular layer of the dentate gyrus. The basic electrophysiological properties of mossy cells and proximal CA3 cells are similar to those reported for the rodent. Mossy cells have a higher frequency of large amplitude spontaneous depolarizing postsynaptic potentials, and proximal CA3 pyramidal cells are more likely to discharge bursts of action potentials. Although mossy cells and CA3 pyramidal cells in macaque monkeys display many morphological and electrophysiological features described in rodents, these findings highlight significant species differences, with more heterogeneity and the potential for richer interconnections in the primate hippocampus.  相似文献   

14.
Throughout the adult life of most mammals, new neurons are continuously generated in the dentate gyrus of the hippocampal formation. Recent work has documented specific cognitive deficits after elimination of adult hippocampal neurogenesis in rodents, suggesting that these neurons may contribute to information processing in hippocampal circuits. Young adult-born neurons exhibit enhanced excitability and have altered capacity for synaptic plasticity in hippocampal slice preparations in vitro. Still, little is known about the effect of adult-born granule cells on hippocampal activity in vivo. To assess the impact of these new neurons on neural circuits in the dentate, we recorded perforant-path evoked responses and spontaneous network activity from the dentate gyrus of urethane-anesthetized mice whose hippocampus had been focally X-irradiated to eliminate the population of young adult-born granule cells. After X-irradiation, perforant-path responses were reduced in magnitude. In contrast, there was a marked increase in the amplitude of spontaneous γ-frequency bursts in the dentate gyrus and hilus, as well as increased synchronization of dentate neuron firing to these bursts. A similar increase in gamma burst amplitude was also found in animals in which adult neurogenesis was eliminated using the GFAP:TK pharmacogenetic ablation technique. These data suggest that young neurons may inhibit or destabilize recurrent network activity in the dentate and hilus. This unexpected result yields a new perspective on how a modest number of young adult-generated granule cells may modulate activity in the larger population of mature granule cells, rather than acting solely as independent encoding units.  相似文献   

15.
Scharfman HE  Pierce JP 《Epilepsia》2012,53(Z1):109-115
The dentate gyrus is one of two main areas of the mammalian brain where neurons are born throughout adulthood, a phenomenon called postnatal neurogenesis. Most of the neurons that are generated are granule cells (GCs), the major principal cell type in the dentate gyrus. Some adult-born granule cells develop in ectopic locations, such as the dentate hilus. The generation of hilar ectopic granule cells (HEGCs) is greatly increased in several animal models of epilepsy and has also been demonstrated in surgical specimens from patients with intractable temporal lobe epilepsy (TLE). Herein we review the results of our quantitative neuroanatomic analysis of HEGCs that were filled with Neurobiotin following electrophysiologic characterization in hippocampal slices. The data suggest that two types of HEGCs exist, based on a proximal or distal location of the cell body relative to the granule cell layer, and based on the location of most of the dendrites, in the molecular layer or hilus. Three-dimensional reconstruction revealed that the dendrites of distal HEGCs can extend along the transverse and longitudinal axis of the hippocampus. Analysis of axons demonstrated that HEGCs have projections that contribute to the normal mossy fiber innervation of CA3 as well as the abnormal sprouted fibers in the inner molecular layer of epileptic rodents (mossy fiber sprouting). These data support the idea that HEGCs could function as a "hub" cell in the dentate gyrus and play a critical role in network excitability.  相似文献   

16.
L Seress  L Mrzljak 《Hippocampus》1992,2(2):127-141
Mossy cells in the human dentate gyrus of adults and children of different ages were impregnated using the rapid-Golgi method. In every case the cause of death was verified by autopsy and the brains were used when neither the history of the patient nor autopsy revealed brain-related disease. Mossy cells in the human share common light microscopic features with the same cell type in rats and monkeys. Their most characteristic feature is the extremely large and complex excrescences on their proximal dendrites. Distal dendrites display pedunculate spines. Mossy cells have a few somal spines. The axon of mossy cells originates from the cell body and gives rise to several collaterals in the hilar region. The axons could be followed for several hundred microns, but in only one case did an axon collateral enter the granule cell layer of the adult dentate gyrus. In the newborn child, mossy cells display immature somal and dendritic features. The soma frequently bear spines. The dendrites are varicose and terminate in presumed growth cones. Both proximal and distal portions of the dendrites bear a few pedunculate spines and long-irregular filopodia. A few small excrescences are present on the proximal dendrites. The first large, complex excrescences on the proximal dendrites of mossy cells appeared in the 7-month-old child. Both somata and dendrites display adult-like characteristics in mossy cells from a 5-year-old child. However, not all mossy cells are alike and some dendrites still display long filopodia. The axons of immature mossy cells were similar to adults. The present results indicate that connections between granule cells and hilar mossy cells of the human dentate gyrus develop through an extended postnatal period of time that may last until the fifth year.  相似文献   

17.
The generation of new neurons in the hippocampal dentate gyrus of adult mammals has been characterized in rodents, but the details of this process have not been described in the primate. Eleven young adult rhesus monkeys were given an injection of the DNA synthesis phase marker bromodeoxyuridine (BrdU) and killed at varying survival intervals (2 hours to 98 days). The immature neuronal marker TUC-4 (TOAD/Ulip/CRMP-4) was used to define three stages of morphological maturation. Stage I neurons had small somata and lacked dendrites. Stage II neurons had larger somata and short dendrites. Stage III neurons were similar in size to mature granule cells and had branching dendrites that extended into the molecular layer. Examination of TUC-4-positive immature neurons colabeled with BrdU indicated that stage I neurons first appeared 2 days after BrdU injection, stage II neurons at 14 days, and stage III neurons at 35 days. Electron microscopy of TUC-4-labeled cells showed that stage I cells had ultrastructural features of immature neurons, whereas stage III neurons were similar to mature granule cells and formed synapses in the molecular layer. This suggests that stage III neurons could potentially integrate into the circuitry of the dentate gyrus. This study shows that the maturational sequence for new neurons in the adult monkey is similar to that of the adult rodent; however, maturation takes a minimum of 5 weeks in the monkey, which is substantially longer than what has been reported in rodents.  相似文献   

18.
Recent evidence showed that epileptic seizures increase hippocampal neurogenesis in the adult rat, but prolonged seizures result in the aberrant hippocampal neurogenesis that often leads to a recurrent excitatory circuitry and thus contributes to epileptogenesis. However, the mechanism underlying the aberrant neurogenesis after prolonged seizures remains largely unclear. In this study, we examined the role of activated astrocytes and microglia in the aberrant hippocampal neurogenesis induced by status epilepticus. Using a lithium‐pilocarpine model to mimic human temporal lobe epilepsy, we found that status epilepticus induced a prominent activation of astrocytes and microglia in the dentate gyrus 3, 7, 14, and 20 days after the initial seizures. Then, we injected fluorocitrate stereotaxicly into the dentate hilus to inhibit astrocytic metabolism and found that fluorocitrate failed to prevent the seizure‐induced formation of ectopic hilar basal dendrites but instead promoted the degeneration of dentate granule cells after seizures. In contrast, a selective inhibitor of microglia activation, minocycline, inhibited the aberrant migration of newborn neurons at 14 days after status epilepticus. Furthermore, with stereotaxic injection of lipopolysaccharide into the intact dentate hilus to activate local microglia, we found that lipopolysaccharide promoted the development of ectopic hilar basal dendrites in the hippocampus. These results indicate that the activated microglia in the epileptic hilus may guide the aberrant migration of newborn neurons and that minocycline could be a potential drug to impede seizure‐induced aberrant migration of newborn neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
Previous studies have described the polymorph neurons in the hilus of the dentate gyrus at the light microscopic level and have indicated that many of those neurons are the cells of origin for both ipsilateral associational and commissural projections to the dentate gyrus. Because previous studies have not described the ultrastructural characteristics of the hilar neurons, we identified these features of the commissural neurons in the hilus. The method of retrograde transport of horseradish peroxidase (HRP) was utilized with a silver staining technique for HRP intensification. Two populations of labeled commissural neurons were observed in electron microscopic preparations of the contralateral hilus. One type consisted of cells with somata that exhibited round or oval nuclei with no intranuclear inclusions and formed symmetric axosomatic synapses. The main dendrites of those neurons were thick and tapering. In contrast, the other type of labeled neuronal soma had infolded nuclei containing intranuclear rods or sheets, displayed both symmetric and asymmetric axosomatic synapses, and had dendrites that were less thick and generally aspinous. In those same preparations, labeled commissural axon terminals formed synapses with dendrites and dendritic spines in the hilus and molecular layer and iwth somata in the granule cell layer. From the results of this study it appears that there are two distinct populations of commissural hilar neurons: one type resembles the morphology of the spiny CA3 pyramidal neuron, a type of excitatory projection cell, and the other type is similar to the dentate gyrus basket cell, a local circuit neuron associated with GABAergic inhibition. This latter cell type provides further support for the notion that some commissural neurons are inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号