首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The muscarinic (M) receptors involved in the vasodilation elicited by acetylcholine (ACh) and in the carbachol inhibition in electrically induced [3H]noradrenaline (NA) release in cat cerebral arteries was investigated. For this, atropine, pirenzepine, AF-DX 116, 4-DAMP, non-specific, M1, M2 and M3 receptor antagonists, respectively, were used. ACh elicited concentration-dependent relaxations up to 10(-6) M which were attenuated by these antagonists; the order of potency (pA2 values) to inhibit the ACh-induced relaxation was: atropine (10.1) 4-DAMP (8.9) greater than pirenzepine (7.6) greater than AF-DX 116 (5.9). The electrical stimulation (200 mA, 0.3 ms, 2 Hz, during 1 min) of these arteries preincubated with [3H]NA caused tritium release which was inhibited by carbachol (10(-6) M). The 4 antagonists attenuated the action of the M agonist; the order of potency (pIC50 values) was: atropine (8.7) greater than 4-DAMP (8.1) greater than AF-DX 116 (7.9) greater than pirenzepine (5.8). The action of McN-A-343, a putative M1 agonist, was also investigated. This agent produced small vasodilator responses and elevated concentrations (5 x 10(-5) M) inhibited the stimulated NA release, which was partially antagonized by atropine (10(-7) M) and pirenzepine (10(-8) and 10(-7) M). These results suggest the existence of M3 and M2 receptors mediating the relaxation induced by ACh and the NA release inhibition evoked by carbachol, respectively.  相似文献   

2.
Subtypes of muscarinic receptors were characterized in the frontal cortices of control and Alzheimer brains, with labelled quinuclidinyl benzilate [3H]QNB and the unlabelled muscarinic antagonists pirenzepine, AF-DX 116, hexahydro-sila-diphenidol (HHSiD), para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and himbacine. High and low affinity sites were observed for both pirenzepine and AF-DX 116 in human control frontal cortices. The majority (76%) of the pirenzepine binding sites showed high affinity to the muscarinic receptors (M1), while the rest of the binding sites had an affinity that was 40 times less. AF-DX 116 displayed two sets of binding sites where the high affinity AF-DX 116 (M2) sites constituted 27%, while the low affinity AF-DX 116 (non-M2 site) was 73%. A single class of binding sites was observed for HHSiD, p-F-HHSiD and himbacine in human frontal cortices. HHSiD showed an affinity in the frontal cortices that was comparable to that of the pirenzepine high affinity binding (M1) sites. The affinity of p-F-HHSiD was three times lower than that of HHSiD but similar to himbacine. A significant increase in the affinity (+ 40%) as well as in the Bmax (+ 99%) value was observed for the pirenzepine high affinity binding sites (M1) in the frontal cortices of Alzheimer brains compared to controls. Similarly, a significant increase was observed in the Bmax value (+ 60%) for the AF-DX 116 low affinity binding sites (non-M2), while no change was found for the high affinity binding sites (M2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Muscarinic agonists evoke a voltage-dependent inward current in motoneurons of the lobster cardiac ganglion. In this study, a number of drugs, known to show muscarinic receptor subtype selectivity in mammals, were used to determine the pharmacological profile of the muscarinic receptor on lobster motoneurons. The neurons were held under voltage-clamp, and various concentrations of the antagonists were applied in the presence of 1 mM methacholine. From competition curves plotting agonist-induced current against antagonist concentration, the inhibitor affinity constant and the slope factor were determined. The rank order of potencies of antagonists having an effect was: atropine greater than pirenzepine greater than 4-DAMP greater than methoctramine greater than HHSiD = (R)-HHD greater than (S)-HHD. Neither AF-DX 116 nor gallamine were effective at concentrations as high as 10 mM. The M1-selective agonist McN-A-343 had no effect. Although this crustacean muscarinic receptor resembles the mammalian M1 muscarinic receptor because of its relatively high affinity for pirenzepine, the rank order of other subtype-specific antagonists does not otherwise resemble that of any of the pharmacologically defined muscarinic receptors in mammals. It may be preferable, therefore, to use a term such as 'pirenzepine-sensitive' muscarinic receptor rather than M1 or 'M1-like' for invertebrate muscarinic receptors with pharmacological characteristics like those reported here.  相似文献   

4.
The muscarinic cholinergic receptor of rat eccrine sweat gland was characterized using quantitative autoradiography and [3H]QNB as radioligand. The distribution of radioligand was maximal in the secretory coil. Autoradiographic competition binding studies were performed using selective antagonists to M1 (pirenzepine), M2 (AF-DX 116), and M3 (4-DAMP) and the classical nonselective antagonist atropine. pKi for pirenzepine, AF-DX 116, 4-DAMP, and atropine was 6.58, 5.47, 8.50, and 8.66 respectively indicating that the eccrine sweat gland muscarinic receptor was predominantly M3.  相似文献   

5.
The present study shows that the putative M2 ligand, [3H]AF-DX 116, binds to two classes of muscarinic sites in homogenates of rat hippocampus, striatum and cerebral cortex: one with a high affinity (Kd less than 5 nM)/low capacity (Bmax = 30-63 fmol/mg protein), and a second of lower affinity (Kd greater than 65 nM) and higher capacity (Bmax greater than 190 fmol/mg protein). In experiments which tested the effects of the muscarinic antagonists on acetylcholine (ACh) release from brain slices, the non-selective antagonist (-)-quinuclidinyl benzylate and atropine significantly enhanced the potassium (25 mM)-evoked release of ACh. This effect was mimicked by the M2 ligand AF-DX 116, but neither the M1-selective antagonist pirenzepine, nor the putative M3-muscarinic antagonist, 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), altered ACh release. Also, the muscarinic agonist, oxotremorine, significantly depressed evoked ACh release from brain slices, an effect that was completely antagonized by atropine or by AF-DX 116, but not by pirenzepine or 4-DAMP. Thus, it appears that presynaptic muscarinic autoreceptors in the rat hippocampus, striatum and cerebral cortex belong to the M2 subtype of muscarinic receptors.  相似文献   

6.
Muscarinic agonists can act through the hypothalamic ventromedial nucleus (VMN) to facilitate lordosis. To elucidate the neuronal mechanism(s) underlying this muscarinic facilitation, effects of muscarinic agents on the single-unit activity of VMN neurons recorded in brain tissue slices of estrogen-primed female rats were analyzed. All the agonists tested, including acetylcholine (ACh), oxotremorine-M (OM), carbachol (CCh) and McN-A-343 (McN), evoked primarily excitation (80–100%), some inhibition (0–20%) and occasional biphasic responses (0–8%). By comparing the response magnitude and the effectiveness in evoking a response, the rank order for evoking excitation, the primary response, was found to be: OM > CCh > ACh McN, which is consistent with that (OM > CCh McN) for facilitating lordosis reported by others. This consistency and the frequency of its occurrence suggest that the excitatory electric action of the muscarinic agonists is related to their facilitatory behavioral effect. Experiments with antagonists selective for M1 (pirenzepine), M2 (AF-DX 116) and M3 (4-DAMP and p-F-HHSiD) indicate that muscarinic excitations are mediated by M1 and/or M3, but not M2. Since M1 receptors have been shown to be neither sufficient nor necessary to mediate the muscarinic facilitation, M3 receptor may be crucially involved in this behavioral effect. Autoradiographic assays of binding to [3H]4-DAMP with or without pirenzepine and AF-DX 116, also indicate the presence of M3 receptors in the VMN. Quantitative analyses show that the M3 binding was not affected by the in vivo estrogen priming required to permit muscarinic agonists to facilitate lordosis. Thus, while the excitation mediated by M3 is likely to be involved in muscarinic facilitation of lordosis, the regulation of M3 receptor density does not seem to be involved in the permissive action of estrogen.  相似文献   

7.
Participation of muscarinic M1 and M2 receptors in the modulation of long-term potentiation (LTP) was studied in the mossy fiber-CA3 synapse of guinea pig hippocampal slices. The magnitude of tetanus-induced LTP was attenuated in the presence of 0.01–0.1 μM carbachol, at which concentration the pre-tetanus amplitude of field excitatory postsynaptic potential (fEPSP) was not affected. The attenuation of LTP by the low concentration of carbachol was reversed by an M2 muscarinic antagonist, AF-DX 116, but not by an M1 antagonist, pirenzepine. On the contrary, a high concentration (10 μM) of carbachol decreased the pre-tetanic amplitude of fEPSP, however, the magnitude of LTP was significantly larger than that in control slices in which pre-tetanic amplitude of fEPSP was reduced to the level of carbachol-treated slices by reducing the intensity of stimulation or extracellular Ca2+ concentration. The augmentation of LTP by 10 μM carbachol was blocked by pirenzepine but not by AF-DX 116. These results suggest that the synaptic plasticity in the guinea pig hippocampal mossy fiber-CA3 synapse is inhibited and facilitated by muscarinic agonist through muscarinic M2 and M1 receptors to inhibit and facilitate the LTP, respectively.  相似文献   

8.
The cardioselective muscarinic antagonist, AF-DX 116 [11[2-[(diethyl-amino)-methyl]-O-1-piperidinyl]-5,11-dihydro-6H-pyrido- [2,3-b][1,4]-benzodiazepine-6-one), was weak at blocking the M2 muscarinic receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) formation in mouse neuroblastoma cells (clone N1E-115). In contrast, the glandular-selective antagonists, hexahydro-sila-difenidol (HHSiD) and 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), were quite potent at inhibiting this response, being 14- and 318-fold more potent than AF-DX 116 in this regard, respectively. According to the rank order of potency of these two classes of antagonists, these data provide the first pharmacological evidence that inhibition of cAMP formation in a neuronal tissue is mediated by a non-cardiac M2 muscarinic receptor subtype.  相似文献   

9.
The muscarinic acetylcholine receptors were identified in membrane preparations from human tissues by the specific binding of 1-[benzilic-4,4'-3H] quinuclidinyl benzilate. Saturation binding isotherms of this radioligand yielded a total amount of receptors of 435 +/- 208, 159 +/- 65 and 913 +/- 89 fmol/mg protein, respectively, in the hippocampus, pons and submandibular gland. Non linear least squares analysis of competition binding studies with the antagonists pirenzepine and AF-DX 116 indicates that the majority of receptors are of the M1-type in the hippocampus (83%, high affinity for pirenzepine, intermediate affinity for AF-DX 116), the M2-type in the pons (low affinity for pirenzepine and high affinity for AF-DX 116), and the M3-type in the submandibular gland (low affinity for pirenzepine and AF-DX 116). Competition binding parameters of the agonists carbachol, arecoline, oxotremorine, pilocarpine and MCN-A-343 were compared for M1, M2 and M3 receptors in the human hippocampus, pons and submandibular gland. GTP caused a shift to the right and a steepening of the shallow agonist competition curves in the 3 tissues but did not affect the initially steep ones. This effect is explained by a GTP-mediated conversion of high- to low-agonist affinity sites. The extent of the nucleotide shift was much greater for M2 receptors as compared with M1 and M3 receptors. The GTP effect was impaired by the sulphydryl reagent N-ethylmaleimide, probably due to alkylation of GTP-binding proteins. Moreover, the reagent provoked also an increase of the agonist affinity for the uncoupled muscarinic receptors. For all agonists, this increase was more pronounced for the M2 receptors than for the M1 and M3 receptors. These findings suggest structural differences between the agonist binding sites of M1 and M3 receptors versus the M2 receptors.  相似文献   

10.
In the in vitro study, it was investigated whether the expression of muscarinic receptors and cholinergic responses were altered in the situation of experimental cystitis. Rats were treated with cyclophosphamide intraperitoneally and the bladders were excised 36-100 h later. Immunohistochemistry and immunoblotting showed all subtypes of the muscarinic receptor (M1-M5) to be present in the specimens from inflamed urinary bladders and controls. In the cyclophosphamide-treated rats, the expression of muscarinic M5 receptors was increased by more than 40 times (p<0.01; n=8) both in the smooth muscle and the urothelium. Both the maximal contractile response to carbachol and to a high potassium concentration was approximately halved in cyclophosphamide-treated tissues, whereas the reduction was substantially greater in response to low carbachol concentrations (相似文献   

11.
The coupling of muscarinic receptors to second messenger responses was investigated in primary cultures of neurons from the fetal mouse brain. Neurons were maintained in monolayer culture, in serum-free medium; immunocytochemical studies found these cultures to be nearly exclusively neuronal. In striatal cultures, [3H]N-methylscopolamine (NMS) bound specifically and with high affinity (Kd = 70 pM) to a homogeneous population of receptors on intact neurons (320 fmol/mg cellular protein). Displacement of the binding of [3H]NMS by pirenzepine indicated the presence of heterogeneous sites (81% high affinity sites, Kh = 51 nM, K1 = 1.5 microM); AF-DX 116 showed the opposite selectivity (15% high affinity sites, Kh = 56 nM, K1 = 1.3 microM). The dopamine agonist SKF-38393 (1 microM) enhanced the accumulation of cyclic adenosine monophosphate (AMP) in these cultures 2.5-fold; addition of carbachol reduced cyclic AMP levels by 30% (EC50, 1.7 microM). In the presence of 1 mM lithium, carbachol stimulated the accumulation of inositol monophosphate 5-fold (EC50, 61 microM). Both responses were antagonized by pirenzepine (apparent Ki of 23 nM for the phosphoinositide response and 200 nM for the cyclic AMP response) and AF-DX 116 (apparent Ki 540 nM and 160 nM, respectively). In binding studies on brainstem cultures, AF-DX 116 indicated the presence of two sites of approximately equal abundance (Kh = 170 nM, K1 = 2.9 microM); data for pirenzepine were adequately fit by a one-site model (Kd = 630 nM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.  相似文献   

13.
The purpose of this study was to examine the pharmacologic plasticity of cholinergic, non-adrenergic non-cholinergic (NANC), and purinergic contractions in neurogenic bladder strips from spinal cord injured (SCI) rats. Bladder strips were harvested from female rats three to four weeks after T(9)-T(10) spinal cord transection. The strips were electrically stimulated using two experimental protocols to compare the contribution of muscarinic and NANC/purinergic contractions in the presence and the absence of carbachol or muscarine. The endpoints of the study were: (1) percent NANC contraction that was unmasked by the muscarinic antagonist 4-DAMP, and (2) P2X purinergic contraction that was evoked by α,β-methylene ATP. NANC contraction accounted for 78.5% of the neurally evoked contraction in SCI bladders. When SCI bladder strips were treated with carbachol (10 μM) prior to 4-DAMP (500 nM), the percent NANC contraction decreased dramatically to only 13.1% of the neurally evoked contraction (P=0.041). This was accompanied by a substantial decrease in α,β-methylene ATP evoked P2X contraction, and desensitization of purinergic receptors (the ratio of subsequent over initial P2X contraction decreased from 97.2% to 42.1%, P=0.0017). Sequential activation of the cholinergic receptors with carbachol (or with muscarine in neurally intact bladders) and unmasking of the NANC response with 4-DAMP switched the neurally evoked bladder contraction from predominantly NANC to predominantly cholinergic. We conclude that activation of muscarinic receptors (with carbachol or muscarine) blocks NANC and purinergic contractions in neurally intact or in SCI rat bladders. The carbachol-induced inhibition of the NANC contraction is expressed more in SCI bladders compared to neurally intact bladders. Along with receptor plasticity, this change in bladder function may involve P2X-independent mechanisms.  相似文献   

14.
Physiological and biochemical evidence indicates the existence of functional muscarinic cholinergic receptors in the anterior pituitary. The selectivity of these receptors has been characterised by studying the binding of [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]diphenyl-acetoxy-N-methyl-piperidine ([3H]4-DAMP) in membrane preparation of male rat anterior pituitary at 25 degrees C. Competition experiments with receptor selective muscarinic antagonists were used to characterise specific selective muscarinic receptor binding. Both [3H]QNB and [3H]4-DAMP bound to anterior pituitary membranes at low concentrations, binding was saturable and was potently displaced by 4-DAMP (M1, M3 subtypes selective antagonist) > atropine (general) > pirenzepine (M1). Methoctramine (M2) didn't antagonise the [3H]QNB binding efficiently. Acetylcholine and carbachol increased the intracellular Ca2+ level in 62% and 65% of cultured rat anterior pituitary cells in a dose-dependent manner, and this effect was prevented by pirenzepine. Based on these results we suggest that both M1 and M3 muscarinic receptors are present and active in the majority of cells in the rat anterior pituitary gland, but their physiological role in the adult rat remains to be examined.  相似文献   

15.
The present study shows that [3H]4-DAMP binds specifically, saturably, and with high affinity to muscarinic receptor sites in the rat brain. In homogenates of hippocampus, cerebral cortex, striatum, and thalamus, [3H]4-DAMP appears to bind two sub-populations of muscarinic sites: one class of high-affinity, low capacity sites (Kd less than 1 nM; Bmax = 45-152 fmol/mg protein) and a second class of lower-affinity, high capacity sites (Kd greater than 50 nM; Bmax = 263-929 fmol/mg protein). In cerebellar homogenates, the Bmax of [3H]4-DAMP binding sites was 20 +/- 2 and 141 +/- 21 fmol/mg protein for the high- and the lower-affinity site, respectively. The ligand selectivity profile for [3H]4-DAMP binding to its sites was similar for both the high- and lower-affinity sites; atropine = (-)QNB = 4-DAMP much greater than pirenzepine greater than AF-DX 116, although pirenzepine was more potent (16-fold) at the lower- than at the high-affinity sites. The autoradiographic distribution of [3H]4-DAMP sites revealed a discrete pattern of labeling in the rat brain, with the highest densities of [3H]4-DAMP sites present in the CA1 sub-field of Ammon's horn of the hippocampus, the dentate gyrus, the olfactory tubercle, the external plexiform layer of the olfactory bulb and layers I-II of the frontoparietal cortex. Although the distribution of [3H]pirenzepine sites was similar to that of [3H]4-DAMP sites in many brain regions, significant distinctions were apparent. Thus, both the ligand selectivity pattern of [3H]4-DAMP binding and the autoradiographic distribution of sites suggest that although the high-affinity [3H]4-DAMP sites may consist primarily of muscarinic-M3 receptors, the lower-affinity [3H]4-DAMP sites may be composed of a large proportion of muscarinic-M1 receptors.  相似文献   

16.
T A Pitler  B E Alger 《Brain research》1990,534(1-2):257-262
Acetylcholine has a variety of actions on hippocampal neurons, possibly through the activation of different muscarinic receptor subtypes. We have used several competitive muscarinic antagonists and the hippocampal slice preparation to test the hypothesis that a particular muscarinic response can be ascribed to a specific subtype. Initially we performed experiments to determine the relative ability of 3 antagonists to inhibit the cholinergic slow EPSP. Dose-response curves were constructed, and the IC50s determined for 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), pirenzepine (PRZ) and 11-2[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11,-dihydro- 6H-pyrido[2,3-b] [1,4]benzodiazepin-6-one (AF-DX 116) were 72 nM, 385 nM, and 24 microM, respectively. While this pattern of antagonism argues against the contribution of the M2 receptor subtype, which would be expected to be relatively more sensitive to antagonism by AF-DX 116, this evidence does not adequately discriminate between other muscarinic receptor subtypes. We therefore performed studies designed to determine the antagonist binding affinities that can be diagnostic for determining different pharmacologically defined receptor subtypes. Using Schild plot analysis we examined the carbachol-induced block of the potassium (K)-dependent leak current, which is the muscarinic response thought to underlie the generation of the synaptically evoked slow excitatory postsynaptic potential (EPSP) in hippocampal neurons. Estimated affinity constants (KBs) for 4-DAMP, PRZ and AF-DX 116 were 7.9, 278 and 1364 nM, respectively. These values are in good quantitative agreement with data from binding studies and strongly suggest a physiological role for the pharmacologically defined 'M3' receptor in the block of the leak conductance and, hence, in the slow EPSP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We tested the effect of cholinergic drugs on the concentration of intracellular free calcium in rat melanotropes. Acetylcholine, muscarine, carbachol, and nicotine resulted in a significant rise in this parameter. Effect of acetylcholine was reduced by atropine (non-selective muscarinic antagonist), pirenzepine (M1 muscarinic antagonist), and 4-DAMP (M3 > M1 muscarinic antagonist), but exposure to the M1 muscarinic agonist McN-A 343 resulted in a significantly smaller calcium-response than that seen in response to acetylcholine or to muscarine. This suggests the involvement of both M1 and M3 muscarinic receptors in the acetylcholine-induced calcium-rise. On the other hand, in the presence of atropine the acetylcholine-induced calcium-rise was not eliminated: this fact indicates that nicotinic receptors are also involved in the acetylcholine-induced intracellular calcium-rise. The acetylcholine-, and nicotine-induced calcium-rise was significantly reduced in presence of the neuronal-type nicotinic antagonist, mecamylamine. This suggests the involvement of a neuronal-type nicotinic receptor in the acetylcholine-induced intracellular calcium-response. Moreover, because in a further experiment almost 80% of the cells investigated responded to muscarine as well as nicotine, we conclude that both functionally active muscarinic and nicotinic receptors are present on the same cell.  相似文献   

18.
Carbachol (CCh)-stimulated hydrolysis of inositol lipids in human neuroblastoma SH-SY5Y cells was systematically characterized in parallel with the carbachol effects on cAMP formation. Carbachol concentration-dependently induced the hydrolysis of inositol lipids and formation of [3H]IP3, [3H]IP2 and [3H]IP1 in these cells labeled with [3H]inositol. The maximal amount of [3H]IP1 accumulated in the presence of 10 mM LiCl was about 50-fold above the basal level. The EC50 value of CCh was 14 microM. The muscarinic antagonists atropine, pirenzepine and 11-[[2-(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido [2,3-b] (1,4)-benzodiazepine-6-one (AF-DX 116) competitively inhibited CCh-induced [3H]IP1 accumulation. The functional inhibition constants (converted from the pA2 values) were 0.24, 8.1 and 470 nM, respectively. These values are in good agreement with the inhibition constants of these drugs from antagonist/[3H]pirenzepine studies using intact cells. Forskolin, adenosine and PGE1 stimulated cAMP formation in this cell line. Morphine decreased PGE1-induced cAMP formation as well as the basal cAMP formation. However, CCh did not stimulate or inhibit the basal cAMP formation. Also, CCh did not have any effects on the adenosine and PGE1-induced cAMP formation in these cells. These data suggest that muscarinic M1 receptors are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells.  相似文献   

19.
The aim of the present study was to investigate, using in vivo dialysis, the existence of muscarinic and nicotinic receptors controlling acetylcholine release in the cortex of freely behaving rats. Various muscarinic receptor antagonists, including the nonselective blocker atropine, and a variety of M2 drugs (AF-DX 116, AF-DX 384, AQ-RA 741) potently stimulated, in a concentration-dependent manner, the in vivo release of acetylcholine in the rat cortex. The effects of all these antagonists were long lasting. The nature of these putative muscarinic autoreceptors is likely of the pharmacologically defined M2subtype on the basis of the high potency of the antagonists of the AF-DX series and the variability and shorter duration of action of the effects of the prototypic M1 blocker, pirenzepine. 4-DAMP, a purported M3 blocker, also potently stimulated in vivo cortical acetylcholine release, but this likely relates to its now established, rather limited selectivity for any given muscarinic receptor subtypes. Peripheral and central injections of nicotine also induced the in vivo release of acetylcholine in the rat cortex, albeit with a lower potency and shorter duration of action than muscarinic antagonists. Interestingly, the combination of a muscarinic antagonist, such as atropine, AF-DX 116, or AF-DX 384, in the presence of nicotine, induced tremendous releases of cortical acetylcholine up to 8-to 10-fold over basal values. This is clearly more than a simply additive effect, and it reveals the great capacity of cortical cholinergic nerve terminals to synthesize and release acetylcholine. Optimal pharmacological manipulations of these putative muscarinic and nicotinic autoreceptors could thus be useful in disorders in which the activity of cholinergic inputs is decreased, such as in Alzheimer's disease. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The effect of carbachol on the spontaneous release of 3H-GABA was investigated on rat globus pallidus (GP) slices. Carbachol dose-dependently enhanced the release of 3H-GABA. The carbachol (5 × 10−4 M) induced 3H-GABA release is mediated by muscarinic receptors since atropine (10−6 M), pirenzepine (10−6 M) and AF-DX384MS (10−6 M) abolished the effect. An indirect carbachol effect mediated by dopaminergic and glutamatergic afferents was ruled out since the effect was not blocked by either D1 (SCH23390 10−6) and D2 (sulpiride 10−5 M) receptor antagonists or by ionotropic glutamate receptor antagonists (CNQX 10−6 M and 10−5 M, MK801 10−6 M). A direct effect is further evidenced by the persistence of the carbachol effect in the presence of tetrodotoxin (5 × 10−7 M). Surprisingly the carbachol effect was not abolished by lowering the Ca2+ concentration of the superfusion medium or by increasing concomitantly the Mg2+ concentration. The involvement of a GABA transporter can partially explain this latter result, as nipecotic acid (10−3 M) blocked the effect by only 50%. Carbachol stimulated the accumulation of 3H-phosphoinositides in pallidal slices, an effect that was antagonized by atropine (10−6 M), pirenzepine (10−6 M), and AF-DX384MS (10−6 M). These results suggest that the activation of muscarinic receptors localized on striatopallidal terminals stimulates the release of GABA in the globus pallidus through inositol phosphate hydrolysis. Synapse 26:131–139, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号