首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between wrist kinematics, dynamics and the pattern of muscle activation were examined during a two-joint planar movement in which the two joints moved in opposite directions, i.e. elbow flexion/wrist extension and elbow extension/wrist flexion. Elbow movements (ranging from 10 to 70 deg) and wrist movements (ranging from 10 to 50 deg) were performed during a visual, step-tracking task in which subjects were required to attend to the initial and final angles at each joint. As the elbow amplitude increased, wrist movement duration increased and the wrist movement trajectories became quite variable. Analysis of the torques acting at the wrist joint showed that elbow movements produced reaction torques acting in the same direction as the intended wrist movement. Distinct patterns of muscle activation were observed at the wrist joint that were dependent on the relative magnitude of the elbow reaction torque in relation to the net wrist torque. When the magnitude of the elbow reaction torque was quite small, the wrist agonist was activated first. As the magnitude of the elbow reaction torque increased, activity in the wrist agonist decreased significantly. In conditions where the elbow reaction torque was much larger than the net wrist torque, the wrist muscle torque reversed direction to oppose the intended movement. This reversal of wrist muscle torque was directly associated with a change in the pattern of muscle activation where the wrist antagonist was activated prior to the wrist agonist. Our findings indicate that motion of the elbow joint is an important consideration in planning wrist movement. Specifically, the selection of muscle activation patterns at the wrist is dependent on the relative magnitude and direction of the elbow reaction torque in relation to the direction of wrist motion.  相似文献   

2.
In a reaching movement, the wrist joint is subject to inertial effects from proximal joint motion. However, precise control of the wrist is important for reaching accuracy. Studies of three-joint arm movements report that the wrist joint moves little during point-to-point reaches, but muscle activities and kinetics have not yet been described across a range of movement directions. We hypothesized that to minimize wrist motion, muscle torques at the wrist must perfectly counteract inertial effects arising from proximal joint motion. Subjects were given no instructions regarding joint movement and were observed to keep the wrist nearly motionless during center-out reaches to directions throughout the horizontal plane. Consistent with this, wrist muscle torques exactly mirrored interaction torques, in contrast to muscle torques at proximal joints. These findings suggest that in this reaching task the nervous system chooses to minimize wrist motion by anticipating dynamic inertial effects. The wrist muscle torques were associated with a direction-dependent choice of muscles, also characterized by initial reciprocal activation rather than initial coactivation to stiffen the wrist joint. In a second experiment, the same pattern of muscle activities persisted even after many trials reaching with the wrist joint immobilized. These results, combined with similar features at the three joints, such as cosine-like tuning of muscle torques and of muscle onsets across direction, suggest that the nervous system uses similar rules for muscles at each joint, as part of one plan for the arm during a point-to-point reach.  相似文献   

3.
Summary Subjects made simultaneously movements from a common rest position and attempted to align corresponding joints (elbow joints, or distal joints of thumb), on opposite sides of the body. When misalignments were expressed in angular terms, variability of performance within and between subjects was greater for thumb than for elbow joints. When the misalignments were expressed in terms of linear misalignment at the end of the moved lever arms, variability of performance within and between subjects was less for thumb than elbow joints. However, when the misalignments were expressed in terms of mean proportional changes in the lengths of fascicles in muscles operating at the joints, variabilities of performances at both joints were similar. In another test, subjects made small unloaded movements at either the elbow joint or the distal thumb joint to guide a cursor along a narrow path. When the movement task was made similar for the elbow and thumb joints in terms of either the angular excursion required, or the required linear excursion of the moved lever tip, accuracy of performances at the two joints varied greatly. Only when the tasks were similar in terms of the mean proportional changes of length in fascicles of muscles operating at the joints, were performances at the two joints of similar accuracy. The results suggest that proportional change in muscle fascicle length is a significant variable for the CNS in proprioception and the control of voluntary movement.  相似文献   

4.
The present paper focused on the role of mechanical factors arising from the multijoint structure of the musculoskeletal system and their use in the control of different patterns of cyclical elbow-wrist movements. Across five levels of cycling frequency (from 0.45 Hz up to 3.05 Hz), three movement patterns were analyzed: (1) unidirectional, including rotations at the elbow and wrist in the same direction; (2) bidirectional, with rotation at the joints in opposite directions, and (3) free-wrist pattern, which is characterized by alternating flexions and extensions at the elbow with the wrist relaxed. Angular position of both joints and electromyographic activity of biceps, triceps, the wrist flexor, and the wrist extensor were recorded. It was demonstrated that control at the elbow was principally different from control at the wrist. Elbow control in all three patterns was similar to that typically observed during single-joint movements: elbow accelerations-decelerations resulted from alternating activity of the elbow flexor and extensor and were largely independent of wrist motion at all frequency plateaus. The elbow muscles were responsible not only for the elbow movement, but also for the generation of interactive torques that played an important role in wrist control. There were two types of interactive torques exerted at the wrist: inertial torque arising from elbow motion and restraining torque arising from physical limits imposed on wrist rotation. These interactive torques were the primary source of wrist motion, whereas the main function of wrist-muscle activity was to intervene with the interactive effects and to adjust the wrist movement to comply with the required coordination pattern. The unidirectional pattern was more in agreement with interactive effects than the bidirectional pattern, thus causing their differential difficulty at moderate cycle frequencies. When cycling frequency was further increased, both the unidirectional and bidirectional movements lost their individual features and acquired features of the free-wrist pattern. The deterioration of the controlled patterns at high cycling frequencies suggests a crucial role for proprioceptive information in wrist control. These results are suppportive of a hierachical organization of control with respect to elbow-wrist coordination, during which the functions of control at the elbow and wrist are principally different: the elbow muscles generate movement of the whole linkage and the wrist muscles produce corrections of the movement necessary to fulfill the task. Received: 5 August 1997 / Accepted: 29 January 1998  相似文献   

5.
Stiffness properties of the musculo-skeletal system can be controlled by regulating muscle activation and neural feedback gain. To understand the regulation of multijoint stiffness, we examined the relationship between human arm joint stiffness and muscle activation during static force control in the horizontal plane by means of surface electromyographic (EMG) studies. Subjects were asked to produce a specified force in a specified direction without cocontraction or they were asked to keep different cocontractions while producing or not producing an external force. The stiffness components of shoulder, elbow, and their cross-term and the EMG of six related muscles were measured during the tasks. Assuming that the EMG reflects the corresponding muscle stiffness, the joint stiffness was predicted from the EMG by using a two-link six-muscle arm model and a constrained least-square-error regression method. Using the parameters estimated in this regression, single-joint stiffness (diagonal terms of the joint-stiffness matrix) was decomposed successfully into biarticular and monoarticular muscle components. Although biarticular muscles act on both shoulder and elbow, they were found to covary strongly with elbow monoarticular muscles. The preferred force directions of biarticular muscles were biased to the directions of elbow monoarticular muscles. Namely, the elbow joint is regulated by the simultaneous activation of monoarticular and biarticular muscles, whereas the shoulder joint is regulated dominantly by monoarticular muscles. These results suggest that biarticular muscles are innervated mainly to control the elbow joint during static force-regulation tasks. In addition, muscle regulation mechanisms for static force control tasks were found to be quite different from those during movements previously reported. The elbow single-joint stiffness was always higher than cross-joint stiffness (off-diagonal terms of the matrix) in static tasks while elbow single-joint stiffness is reported to be sometimes as small as cross-joint stiffness during movement. That is, during movements, the elbow monoarticular muscles were occasionally not activated when biarticular muscles were activated. In static tasks, however, monoarticular muscle components in single-joint stiffness were increased considerably whenever biarticular muscle components in single- and cross-joint stiffness increased. These observations suggest that biarticular muscles are not simply coupled with the innervation of elbow monoarticular muscles but also are regulated independently according to the required task. During static force-regulation tasks, covariation between biarticular and elbow monoarticular muscles may be required to increase stability and/or controllability or to distribute effort among the appropriate muscles.  相似文献   

6.
We have examined EMG-movement relations in two-joint planar arm movements to determine the influence of interactional torques on movement coordination. Explicitly defined combinations of elbow movements (ranging from 20 to 70°) and wrist movements (ranging from 20 to 40°) were performed during a visual, step-tracking task in which subjects were specifically required to attend to the initial and final angles at each joint. In all conditions the wrist and elbow rotated in the same direction, that is, flexion-flexion or extension-extension. Elbow movement kinematics were only slightly influenced by motion about the wrist. In contrast, the trajectory of the wrist movement was significantly influenced by uncompensated reaction torques resulting from movement about the elbow joint. At any given wrist amplitude, wrist movement duration increased and peak velocity decreased as elbow amplitude increased. In addition, as elbow amplitude increased, wrist movement on-set was progressively delayed relative to this elbow movement. Surprisingly, the changes between joint movement onsets were not accompanied by corresponding changes between agonist EMG onsets at the elbow and wrist joints. The mean difference in onset times between elbow and wrist agonists (22–30 ms) remained unchanged across conditions. In addition, a basic pattern of muscle activation that scaled with movement amplitude was observed at each joint. Phasic agonist activity at the wrist and elbow joints remained remarkably similar across conditions and thus the changes in joint movement onset could not be attributed to changes in the motor commands. Rather, the calculated torques from the averaged data showed that the difference in timing of joint movement onsets was influenced by joint interactional torques. These findings suggest that during simple two-joint planar movements of the elbow and the wrist joint, the central nervous system does not alter the basic motor commands at each joint and as a result the actual trajectory of each joint is determined by interactional torques.  相似文献   

7.
Motor improvements in chronic stroke recovery accrue from coupled protocols of bilateral movements and active neuromuscular stimulation. This experiment investigated coupled protocols and within-limb transfer between distal and proximal joint combinations. The leading question focused on within-limb transfer of coupled protocols on distal joints to a bimanual aiming task that involved proximal joints. Twenty-six volunteers completed one of three motor recovery protocols according to group assignments: (1) coupled bilateral involved concurrent wrist/finger movements on the unimpaired limb coupled with active stimulation on the impaired limb; (2) unilateral/active stimulation involved neuromuscular electromyogram-triggered stimulation on the impaired wrist/fingers; and (3) no protocol (control group). During the pretest and posttest, subjects performed transverse plane target aiming movements (29 cm) with vision available. The coupled bilateral group showed positive intralimb transfer post-treatment when both arms moved simultaneously. During the posttest, the coupled bilateral group displayed improved movement time, higher peak limb velocity, less variability in peak velocity, and less percentage of total movement time in the deceleration phase than during the pretest. The evidence confirms that within-limb transfer from distal joint training to proximal joint combinations is viable and generalizable in chronic stroke rehabilitation. Moreover, these intralimb transfer findings extend the evidence favoring motor improvements for coupled bilateral protocols during chronic stroke.  相似文献   

8.
We used proportional myoelectric control of a one-dimensional virtual object to investigate differences in efferent control between the proximal and distal muscles of the upper limbs. Eleven subjects placed one of their upper limbs in a brace that restricted movement while we recorded electromyography (EMG) signals from elbow flexors/extensors or wrist flexors/extensors during isometric contractions. By activating their muscles, subjects applied virtual forces to a virtual object using a real-time computer interface. The magnitudes of these forces were proportional to EMG amplitudes. Subjects used this proportional EMG control to move the virtual object through two tracking tasks, one with a static target and one with a moving target (i.e., a sine wave). We hypothesized that subjects would have better control over the virtual object using their distal muscles rather than using their proximal muscles because humans typically use more distal joints to perform fine motor tasks. The results indicated that there was no difference in subjects ability to control virtual object movements when using either upper arm muscles or forearm muscles. These results suggest that differences in control accuracy between elbow joint movements and wrist joint movements are more likely to be a result of motor practice, proprioceptive feedback or joint mechanics rather than inherent differences in efferent control.  相似文献   

9.
Recent evidence suggests that alterations in ionic conductances in spinal motoneurones, specifically the manifestation of persistent inward currents, may be partly responsible for the appearance of hyperexcitable reflexes following spinal cord injury (SCI). We hypothesized that such alterations would manifest as temporal facilitation of stretch reflexes in human SCI. Controlled, triangular wave, ankle joint rotations applied at variable velocities (30–120 deg s−1) and intervals between stretches (0.25–5.0 s) were performed on 14 SCI subjects with velocity-dependent, hyperexcitable plantarflexors. Repeated stretch elicited significant increases in plantarflexion torques and electromyographic (EMG) activity from the soleus (SOL) and medial gastrocnemius (MG). At higher velocities (≥ 90 deg s−1), reflex torques declined initially, but subsequently increased to levels exceeding the initial response, while mean EMG responses increased throughout the joint perturbations. At lower velocities (≤ 60 deg s−1), both joint torques and EMGs increased gradually. Throughout a range of angular velocities, reflex responses increased significantly only at intervals ≤ 1 s between stretches and following at least four rotations. Ramp-and-hold perturbations used to elicit tonic stretch reflexes revealed significantly prolonged EMG responses following one or two triangular stretches, as compared to single ramp-and-hold excursions. Post hoc analyses revealed reduced reflex facilitation in subjects using baclofen to control spastic behaviours. Evidence of stretch reflex facilitation post-SCI may reflect changes in underlying neuronal properties and provide insight into the mechanisms underlying spastic reflexes.  相似文献   

10.
Reflexively evoked and eye-related eyelid responses were recorded using the search coil in a magnetic field technique in alert cats. The downward phase of a blink was a large (up to 21 deg), fast (up to 2000 deg s−1) eyelid displacement in the closing direction, with an almost fixed rise time duration (15-20 ms); its maximum velocity was achieved in ≈10 ms. Upward eyelid motion was separated into two phases. The first phase consisted of a fast eyelid displacement, with a short duration (≈30 ms) and a maximum velocity up to 900 deg s−1. The second phase had an exponential-like form, lasting for 200–400 ms, and a maximum velocity ranging between 30 and 250 deg s−1. Maximum blink velocity in the downward direction was linearly related to maximum velocity of the first upward phase. The first phase in the upward direction was never observed if the eyelid stayed closed for a long period (> 50 ms) or moved slowly in the closing direction before it started to open. In these two cases, the upswing motion of the blink reflex contained only the exponential-like movement characteristic of the second upward phase, and maximum velocity in the downward direction was not related to that of the eyelid upward displacement. Mean duration of eyelid downward saccades was ≈130 ms, and their peak velocities ranged between 50 and 440 ms. A physiological model is presented explaining the active and passive forces involved in both reflex and saccadic eyelid responses. A second-order system seems to be appropriate to describe the postulated biomechanical model.  相似文献   

11.
For electrically stimulated muscles, it has been observed that maximal muscle force during and after stretch is substantially greater than the corresponding isometric force. However, this observation has not been made for human voluntary contractions. We investigated the effects of active muscle stretch on muscle force production for in vivo human adductor pollicis ( n = 12) during maximal voluntary contractions and electrically induced contractions. Peak forces during stretch, steady-state isometric forces following stretch, and passive forces following muscle deactivation were compared to the corresponding isometric forces obtained at optimal muscle length. Contractions with different stretch magnitudes (10, 20, and 30 deg at a constant speed of 10 deg s−1) and different speeds (10, 20, and 60 deg s−1 over a range of 30 deg) were performed in triplicate in a random order, balanced design. We found three novel results: (i) there was steady-state force enhancement following stretch in voluntarily contracted muscles; (ii) some force enhancement persisted following relaxation of the muscle and (iii) force enhancement, for some stretch conditions, exceeded the maximum isometric force at optimal muscle length. We conclude from these results that voluntary muscle contraction produces similar force enhancement to that observed in the past with electrically stimulated preparations. Therefore, steady-state force enhancement may play a role in everyday movements. Furthermore, these results suggest that non-uniformities in sarcomere length do not, at least not exclusively, account for the force enhancement following active muscle stretch, and that the stretch magnitude-dependent passive force enhancement observed here may be responsible for the enhancement of force above the isometric reference force at optimal muscle length.  相似文献   

12.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

13.
Muscle activities and joint rotations were examined at the shoulder, elbow, and wrist joints for pointing movements to targets in the horizontal plane. In such movements, multiple arm configurations are possible for a given target location. Thus, starting from the same initial configuration and for the same target location in space, the joint excursions could be varied. When no constraints were placed on the final orientation of the hand, the choice of muscles initially activated at the wrist joint was consistent with a function to resist inertial effects of proximal segment motion on the wrist joint. When subjects were asked to produce different final orientations of the hand for the same target location, the initial choice of muscles at the three joints was preserved in most trials, whether wrist flexion or extension was required to reach the final hand orientation. The relative onset times of muscle activity at the different joints were also not correlated with wrist excursion. This suggests a predetermined initial selection of muscles that is related to target location, not to joint angular excursion. The fact that the required final hand orientation was nevertheless achieved suggests that the planning of these pointing movements is not a unitary process, but is comprised of two components: a fixed initial muscle selection for a given target location in space, and a selection appropriate for the required joint excursions.  相似文献   

14.
Anticipatory activity of hand and eye has been examined during oculo-manual tracking of a constant velocity visual target with a hand cursor. Both target and cursor were presented briefly (< 480 ms), but repeatedly, at regular inter-stimulus intervals (ISI). In Expt 1, the build-up of hand and eye responses was examined for target velocities varying from 10–40 deg s−1 with an ISI of 2.4 s. The velocity 100 ms after target onset (i.e. prior to visual feedback) for both hand and eye ( V 100) progressively increased over the first four presentations but then attained a steady state (SS). SS V 100 values for eye and hand increased in proportion to target velocity and were thus predictive of forthcoming movement. Hand velocity exceeded eye velocity but both exhibited similar anticipatory trajectories. In Expt 2, target velocity was constant (40 deg s−1) but ISI varied from 0.48–3.74 s. Subjects made anticipatory eye movements for all ISIs but hand movements were often reactive at the longest ISI. If the target failed to appear as expected, subjects initiated predictive hand and eye responses with timing appropriate for the prevailing ISI. In Expt 3, predictive responses were compared with responses to randomised presentation. Peak hand velocity was greater in the randomised mode than in the predictive condition, whereas the converse was true for peak eye velocity. This difference is discussed in terms of the mechanisms of positional error correction in hand and eye. Results provide evidence of similar anticipatory mechanisms in hand and eye, using storage of velocity and timing to achieve rapid prediction of target motion.  相似文献   

15.
The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 ± 0.7 μg h−1, mean ± s.e.m. , n = 90) correlated with the variable endogenous HA mass (mean 367 ± 8 μg), with a normalized value of 3.4 ± 0.2 μg h−1 (100 μg)−1     . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 ± 1.2 μg h−1 ( n = 77) and raised the normalized percentage     to 5.9 ± 0.3 μg h−1 (100 μg)−1. Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17–30 h (static) to 8–15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement–secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis.  相似文献   

16.
Aim: This study on healthy subjects explores history‐dependent changes in the resting tension of relaxed wrist muscles after moderate joint excursions and the motor control consequences of these changes during voluntary wrist joint position maintenance. Methods: Integrated surface electromyogram (IEMG) was recorded from wrist extensor/flexor muscles. Angular position and torque were recorded from the wrist joint. Changes in wrist flexor muscle resting tension were sensed by a force transducer pressed against the tendons. Results: Consecutive stepwise changes (7.5°) in wrist joint position (within the dorsiflexed range) were either imposed on relaxed subjects or actively performed while the subjects under visual guidance tried to mimic the passive movements. In relaxed subjects, passive joint torque resistance at a given steady dorsiflexed position either gradually declined or rose depending on the direction of the previous transition movements. In corresponding voluntary contraction experiments, the IEMG amplitude from position holding wrist extensors was found to vary in a similar way as the passive torque resistance. Further, there was a strong correlation between history‐dependent changes in extensor IEMG amplitude and stress alterations exhibited by the relaxed antagonist flexors. The above described, slowly subsiding post‐movement mechanical and motor adaptations were accelerated by brief forceful cocontractions of the forearm muscles. Conclusion: Moderate stepwise changes in joint position are sufficient to induce history‐dependent after‐effects in passive muscular resting tension, after‐effects which during voluntary position holding are effectively compensated for by the motor control system.  相似文献   

17.
In this study the systematic modulation of wrist flexor muscle activity by imposed joint movement was examined. Ten subjects maintained a constant contraction level (25% of the maximum; trial duration: 20 s) in flexor carpi radialis while their wrists were perturbed with 50 different quasi-sinusoidal signals (frequency range: 0.5–9.5 Hz; amplitude: 0.3–4.2°). The frequency spectra of wrist position and the rectified and filtered electromyogram (EMG) were determined. The muscle activity was only weakly entrained to imposed movements of small amplitude and low frequency, as shown by a small peak in the EMG spectrum at the frequency of movement, while the most prominent peak in the spectrum was between 9 and 15 Hz, corresponding to the frequency range of physiological tremor. The entrainment of muscle activity increased markedly as the amplitude and frequency of the imposed movement increased, to the point of saturation of modulation and harmonic peaks in the spectrum. In parallel with this increase in entrainment, the 9–15 Hz tremor peak was progressively extinguished. The results are consistent with a coupled oscillator model in which the central oscillatory source(s) of tremor became fully entrained to the imposed movement at the highest amplitudes and frequencies. Such coupling depends on communication between the external forcing oscillator and the central oscillator(s), the I a afferent signal from the imposed movement being the most likely candidate to provide the entraining signal for the central oscillator(s).  相似文献   

18.
Studies of rapid, single degree-of-freedom movements have shown different changes in electromyographic patterns for movement tasks that appear very similar (e.g., movements over different ranges of distance). However, it is not clear whether these differences are a result of joint-specific control schemes or whether they are instead due to the limited range of task parameters studied relative to the mechanical constraints of each joint (e.g., short compared with long movements relative to the range of motion of a particular joint). In this study, we measured and compared the kinematic trajectories and electromyograms recorded during various movement tasks at the wrist, elbow, and ankle. Subjects performed movements over a wide range of distances “as fast as possible,”“at a comfortable speed,” and against two inertial loads (at the elbow only), and they performed movements over a fixed distance at three different speeds at the wrist and ankle. For fast movements we show that, in spite of some joint-specific differences, the basic pattern of electromyographic (EMG) modulation is similar at all three joints; for example, the agonist EMG burst transitions from a fixed duration to an increasing duration with increasing movement distance at all three joints. Moreover, the distance at which this transition occurs in one joint relative to the distance at which this transition occurs in the other two joints is consistent across subjects. The transition occurs at the shortest distance at the ankle and the longest distance at the wrist. In general we suggest that the data are consistent with a single set of control rules applied at all three joints, with the biomechanical constraints at each joint accounting for the differences in the EMG and kinematic patterns observed across joints. Received: 3 September 1996 / Accepted: 10 June 1997  相似文献   

19.
The angiotensin-converting enzyme (ACE) I/D and α-actinin 3 (ACTN3) R/X polymorphisms have been suggested to influence variations in skeletal muscle function. This study investigated the association between ACE I/D and ACTN3 R/X polymorphisms and muscle strength and contractile properties in young UK Caucasian men. Measurements of the knee extensor muscles were taken from 79 recreationally active but non-strength-trained males on two occasions. Isometric knee extensor strength was measured using a conventional strength-testing chair. Maximal twitches were electrically evoked by percutaneous stimulation to assess time-to-peak tension, half-relaxation time and peak rate of force development. The torque–velocity relationship was measured at four angular velocities (0, 30, 90 and 240 deg s−1) using isokinetic dynamometry, and the relative torque at high velocity was calculated (torque at 240 deg s−1 as a percentage of that at 30 deg s−1). The ACE I/D and ACTN3 R/X polymorphisms were genotyped from whole blood by polymerase chain reaction. Serum ACE activity was assayed from serum using automated spectrophotometry. Physical characteristics were independent of either genotype. Absolute and relative high-velocity torque were not influenced by ACE or ACTN3 genotypes. Isometric strength and the time course of a maximal twitch were independent of ACE and ACTN3 genotypes. Serum ACE activity was significantly dependent on ACE genotype ( P < 0.001), but was not associated with any measure of functional or contractile properties. Knee extensor functional and contractile properties, including high-velocity strength, were not influenced by ACE and ACTN3 polymorphisms in a cohort of UK Caucasian males. Any influence of these individual polymorphisms on human skeletal muscle does not appear to be of sufficient magnitude to influence function in free-living UK Caucasian men.  相似文献   

20.
AIM: This study on healthy subjects explores history-dependent changes in the resting tension of relaxed wrist muscles after moderate joint excursions and the motor control consequences of these changes during voluntary wrist joint position maintenance. METHODS: Integrated surface electromyogram (IEMG) was recorded from wrist extensor/flexor muscles. Angular position and torque were recorded from the wrist joint. Changes in wrist flexor muscle resting tension were sensed by a force transducer pressed against the tendons. RESULTS: Consecutive stepwise changes (7.5 degrees ) in wrist joint position (within the dorsiflexed range) were either imposed on relaxed subjects or actively performed while the subjects under visual guidance tried to mimic the passive movements. In relaxed subjects, passive joint torque resistance at a given steady dorsiflexed position either gradually declined or rose depending on the direction of the previous transition movements. In corresponding voluntary contraction experiments, the IEMG amplitude from position holding wrist extensors was found to vary in a similar way as the passive torque resistance. Further, there was a strong correlation between history-dependent changes in extensor IEMG amplitude and stress alterations exhibited by the relaxed antagonist flexors. The above described, slowly subsiding post-movement mechanical and motor adaptations were accelerated by brief forceful cocontractions of the forearm muscles. CONCLUSION: Moderate stepwise changes in joint position are sufficient to induce history-dependent after-effects in passive muscular resting tension, after-effects which during voluntary position holding are effectively compensated for by the motor control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号