首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imaging techniques in body imaging   总被引:6,自引:0,他引:6  
Molecular imaging of the body involves new techniques to image cellular biochemical processes, which results in studies with high sensitivity, specificity, and signal-to-background. The most prevalently used molecular imaging technique in body imaging is currently fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET). FDG PET has become the method of choice for the staging and restaging of many of the most common cancers, including lymphoma, lung cancer, breast cancer, and colorectal cancer. FDG PET has also become extremely valuable in monitoring the response to therapeutic drugs in many cancers. New PET agents, such as fluorothymidine and acetate, have also shown promise in the evaluation of response to therapy and in the staging of prostate cancer. Magnetic resonance (MR) spectroscopy has shown promise in the evaluation of prostate cancer. Breast cancer evaluation benefits from advances in spectroscopic imaging and contrast-enhanced kinetic evaluation of vascular permeability, which is altered in neoplastic processes because of release of angiogenic factors. Superparamagnetic iron oxide (SPIO) particles represent the first of an expanding line of MR contrast agents that target specific cellular processes. SPIO particles have also been used in the evaluation of the cirrhotic liver and at MR lymphangiography.  相似文献   

2.
Chronic musculoskeletal diseases such as arthritis, malignancy, and chronic injury and/or inflammation, all of which may produce chronic musculoskeletal pain, often pose challenges for current clinical imaging methods. The ability to distinguish an acute flare from chronic changes in rheumatoid arthritis, to survey early articular cartilage breakdown, to distinguish sarcomatous recurrence from posttherapeutic inflammation, and to directly identify generators of chronic pain are a few examples of current diagnostic limitations. There is hope that a growing field known as molecular imaging will provide solutions to these diagnostic puzzles. These techniques aim to depict, noninvasively, specific abnormal cellular, molecular, and physiologic events associated with these and other diseases. For example, the presence and mobilization of specific cell populations can be monitored with molecular imaging. Cellular metabolism, stress, and apoptosis can also be followed. Furthermore, disease-specific molecules can be targeted, and particular gene-related events can be assayed in living subjects. Relatively recent molecular and cellular imaging protocols confirm important advances in imaging technology, engineering, chemistry, molecular biology, and genetics that have coalesced into a multidisciplinary and multimodality effort. Molecular probes are currently being developed not only for radionuclide-based techniques but also for magnetic resonance (MR) imaging, MR spectroscopy, ultrasonography, and the emerging field of optical imaging. Furthermore, molecular imaging is facilitating the development of molecular therapies and gene therapy, because molecular imaging makes it possible to noninvasively track and monitor targeted molecular therapies. Implementation of molecular imaging procedures will be essential to a clinical imaging practice. With this in mind, the goal of the following discussion is to promote a better understanding of how such procedures may help address specific musculoskeletal issues, both now and in the years ahead.  相似文献   

3.
4.
Conclusion   “The order is rapidly fadin’. And the first one now will later be last ...” In 2008 myocardial perfusion imaging is the main-stay of nuclear cardiology. However, the lyrics of Dylan from the 1960s are applicable today, as we are in rapidly changing times in medicine. We are seeing a paradigm shift in disease detection and treatment from a focus on cardiovascular morphology, function, and pathophysiology to genetic and molecular events. Cardiovascular molecular imaging will be the vanguard of noninvasive imaging in this era. Nuclear cardiology is uniquely positioned to play a central role in both the clinical and research applications of cardiovascular molecular imaging. The question should not be whether myocardial perfusion imaging will remain the dominant clinical application but how does nuclear cardiology transition to embrace and foster cardiovascular molecular imaging. If we do not do this, there are several other imaging specialties that will be more than willing to fill this void.  相似文献   

5.
6.
肿瘤阳性显像具有较高的敏感性和特异性,易于对肿瘤的原发、复发以及转移做出定性、定位诊断。201Tl、99mTc-甲氧基异丁基异腈已经用于鉴别诊断良恶性病灶、寻找转移灶、评价治疗效果和判断预后,99mTc-氮-二(N-乙基-N-乙氧基二硫代氨基甲酸盐)在肿瘤中的应用则尚在探讨中。  相似文献   

7.
For optimizing MR of the joints, a sophisticated knowledge of MR system hard-and software condition, and coil technologies, sequence and contrast preparation techniques, and the use of paramagnetic contrast agents is necessary. This review article discusses the basic principles of the appropriate use of surfacecoilsas well as the different conventional and fast imagingsequences, including three-dimensional (3D)MR imaging. In addition, the applications of contrast agents as well as the most important contrast prepaation techniques are reviewed.  相似文献   

8.
Magnetic resonance imaging (MRI) of the liver is slowly transitioning from a problem solving imaging modality to a first line imaging modality for many diseases of the liver. The well established advantages of MRI over other cross sectional imaging modalities may be the basis for this transition. Technological advancements in MRI that focus on producing high quality images and fast imaging, increasing diagnostic accuracy and developing newer function-specific contrast agents are essential in ensuring that MRI succeeds as a first line imaging modality. Newer imaging techniques, such as parallel imaging, are widely utilized to shorten scanning time. Diffusion weighted echo planar imaging, an adaptation from neuroimaging, is fast becoming a routine part of the MRI liver protocol to improve lesion detection and characterization of focal liver lesions. Contrast enhanced dynamic T1 weighted imaging is crucial in complete evaluation of diseases and the merit of this dynamic imaging relies heavily on the appropriate timing of the contrast injection. Newer techniques that include fluoro-triggered contrast enhanced MRI, an adaptation from 3D MRA imaging, are utilized to achieve good bolus timing that will allow for optimum scanning. For accurate interpretation of liver diseases, good understanding of the newer imaging techniques and familiarity with typical imaging features of liver diseases are essential. In this review, MR sequences for a time efficient liver MRI protocol utilizing newer imaging techniques are discussed and an overview of imaging features of selected common focal and diffuse liver diseases are presented.  相似文献   

9.
RATIONALE AND OBJECTIVES: To investigate the feasibility of recent contrast-specific ultrasound techniques in depicting vascular flow and the effects of changing the output power of the transducer and insonation mode on contrast enhancement, the authors performed an experimental study with a flow phantom. METHODS: While changing the mechanical index and the sound insonation mode (continuous and intermittent), images were obtained with three contrast-enhanced ultrasound techniques: fundamental, second-harmonic, and pulse-inversion harmonic imaging (PIHI) after a bolus injection of microbubble contrast agent. The images were compared on a time-intensity curve. RESULTS: In assessing fixed flow (10 cm/s), PIHI showed the best depiction of flow signal. In intermittent scanning, increases in the mechanical index caused stronger flow signals and longer enhancement duration in all techniques. However, continuous scanning revealed poor depiction of flow signal regardless of the technique or changes in the mechanical index because of significant bubble destruction. CONCLUSIONS: Microbubble-enhanced PIHI with intermittent scanning at a high mechanical index can depict vascular flow highly effectively without shortening the duration of enhancement.  相似文献   

10.
In time-resolved contrast-enhanced 3D MR angiography, spatial resolution is traded for high temporal resolution. A hybrid method is presented that attempts to reduce this tradeoff in two of the spatial dimensions. It combines an undersampled projection acquisition in two dimensions with variable rate k-space sampling in the third. Spatial resolution in the projection plane is determined by readout resolution and is limited primarily by signal-to-noise ratio. Oversampling the center of k-space combined with temporal k-space interpolation provides time frames with minimal venous contamination. Results demonstrating improved resolution in phantoms and volunteers are presented using angular undersampling factors up to eight with acceptable projection reconstruction artifacts.  相似文献   

11.
Magnetic resonance spectroscopic imaging (MRSI) provides a noninvasive method of detecting small molecular markers (historically the metabolites choline and citrate) within the cytosol and extracellular spaces of the prostate, and is performed in conjunction with high-resolution anatomic imaging. Recent studies in pre-prostatectomy patients have indicated that the metabolic information provided by MRSI combined with the anatomical information provided by MRI can significantly improve the assessment of cancer location and extent within the prostate, extracapsular spread, and cancer aggressiveness. Additionally, pre- and post-therapy studies have demonstrated the potential of MRI/MRSI to provide a direct measure of the presence and spatial extent of prostate cancer after therapy, a measure of the time course of response, and information concerning the mechanism of therapeutic response. In addition to detecting metabolic biomarkers of disease behavior and therapeutic response, MRI/MRSI guidance can improve tissue selection for ex vivo analysis. High-resolution magic angle spinning ((1)H HR-MAS) spectroscopy provides a full chemical analysis of MRI/MRSI-targeted tissues prior to pathologic and immunohistochemical analyses of the same tissue. Preliminary (1)H HR-MAS spectroscopy studies have already identified unique spectral patterns for healthy glandular and stromal tissues and prostate cancer, determined the composition of the composite in vivo choline peak, and identified the polyamine spermine as a new metabolic marker of prostate cancer. The addition of imaging sequences that provide other functional information within the same exam (dynamic contrast uptake imaging and diffusion-weighted imaging) have also demonstrated the potential to further increase the accuracy of prostate cancer detection and characterization.  相似文献   

12.
13.
MR imaging of the heart: functional imaging   总被引:1,自引:0,他引:1  
To date, most applications of cardiovascular MRI relate to the evaluation of major vessels rather than the heart itself. However, MRI plays a major role in the evaluation of specific types of cardiovascular pathology, namely intracardiac and paracardiac masses, pericardial disease, and congenital heart disease. In addition, because the visualization of cardiovascular anatomy with MR is non-invasive and permits three-dimensional analysis but also allows functional assessment of the cardiac pump, it is clear that MRI will have a growing and significant impact over the next years. We review some of the technical aspect of cardiac MRI and describe the current and potential clinical and investigative applications of this new methodology.  相似文献   

14.
The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n?=?12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32?±?8 HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in vivo.  相似文献   

15.
ObjectivesExcessive use of sinus CT is a significant problem in medical imaging, resulting in unnecessary costs and radiation exposure. This study assesses frequency of sinus CT performed after recent head imaging has already adequately evaluated the sinuses.MethodsA retrospective search of the PACS database of an academic medical center was performed to identify cases of sinus CT imaging in 2017. Cases were excluded if sinus CT was performed related to trauma, tumor, operative evaluation, or acute infection other than sinusitis (orbital cellulitis, intracranial abscess). Studies with separate imaging covering the sinuses ordered at the same time as sinus CT or performed previously within 4 weeks were identified and clinical information was recorded.ResultsOf 735 sinus CTs performed, 19 (5%) had same-day head imaging and 30 (8%) had previous head imaging within 4 weeks, adding up to a cumulative 13% of cases with recent head imaging. The average patient age was 42, with 13 pediatric cases. Of ordering providers, residents ordered the highest percentage of sinus CTs with same-day head imaging (84%) and previous imaging within 4 weeks (63%). The sinuses were described in all head CT radiology reports, while 10 of 12 brain MRI reports did not mention the sinuses.ConclusionIn one year, 13% of patients receiving sinus CTs at our institution had recent head imaging. A focused education effort for ordering providers to avoid repeating sinus imaging, and for radiology to comment on sinuses on head imaging, may reduce unnecessary sinus CTs.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号