首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
对盐城市某医用仪表厂10年间(1987~1996年)车间空气汞浓度检测和历年职业性健康检查的监护资料进行回顾性分析,以探索其接触与反应的关系,为修订车间空气汞的卫生标准提供科学依据.1 材料与方法1.1 车间空气中汞蒸气浓度的测定 自1987年起,按工人作业情况定点,用个体采样器(GC—Ⅰ型)置操作工人呼吸带高度定点采样(流量1L/min,采样60分钟).用双硫腙比色法测定汞.1.2 汞作业工人健康监护 按1980年全国5种毒物普查方案中汞作业工人健康检查的要求进行.观察  相似文献   

2.
为了解车间空气汞对作业工人健康的影响,我们于1999年10月对盐城市某医用仪表厂进行了劳动卫生学调查,现将调查结果报告如下。1 调查内容和方法1.1 一般劳动卫生学调查1.2 车间空气中汞蒸气的浓度测定用个体采样器(GC-Ⅰ型)置操作工人呼吸带高度定点采样(流量1 L/min,采样60 min)。  相似文献   

3.
乡镇荧光灯厂汞作业劳动卫生学调查   总被引:1,自引:0,他引:1       下载免费PDF全文
1988年以来,我们对某灯泡厂(甲厂)、某电光源厂(乙厂)开展了系统的动态劳动卫生调查,以了解不同接触水平的生产工人的汞毒性反应,探讨剂量-反应关系,为现行车间卫生标准的验证作参考。1 内容和方法1.1 车间空气汞浓度测定每年对排气、注汞、接脚等汞作业车间进行定点呼吸带空气采样,用F732型测汞仪分析。  相似文献   

4.
某体温计厂汞危害分析   总被引:3,自引:0,他引:3  
[目的]了解体温计厂汞作业环境及工人健康状况。[方法]对该厂进行劳动卫生学调查,包括车间空气汞浓度测定,工人健康检查和尿汞测定。[结果]车间空气汞浓度均不同程度地超标,超标范围0.5~35.0倍。107名作业工人体检发现各车间工人尿汞均值都超出正常范围,各车间工人尿汞均值与空气汞浓度具有显著相关性(r=0.923)。[结论]以手工操作为主的各车间工人均受到汞的危害,应采取综合防制措施,控制汞危害。  相似文献   

5.
[目的]了解以生产体温计为主的仪表厂,汞作业环境及工人健康状况。[方法]对该厂进行劳动卫生学调查。包括车间空气汞浓度测定。工人健康检查和尿汞测定。[结果]车间空气汞浓度均不同程度地超标,超标范围0.7-57.8倍。73名作业2工人体检发现各车间工人尿汞均值都超出正常范围。各车间工人尿汞均值与空气汞浓度具有显著正相关性(r=0.931)。[结论]以手工操作为主,制造温度计的各车间工人均受到汞的危害。应积极采取措施,改善生产环境。  相似文献   

6.
目的 比较某医用仪表公司技术改造前后对汞作业工人健康状况的影响.方法 按汞作业工人职业健康检查项目及周期规定进行职业健康检查.车间空气汞浓度按GBZ 159-2004和CBZ/T 160.14-2004规定采样和冷原子吸收光谱法测定,尿汞用酸性氯化亚锡还原-冷原子吸收光谱法测定.结果 技术改造后车间空气汞浓度为(0.031±0.008)mg/m3,与改造前(0.093±0.012)mg/m3比较,显著下降(P<0.05);技术改造后汞作业工人尿汞浓度(0.042±0.011)mg/L,与改造前(0.181±0.009)mg/L比较,显著降低(P<0.05);技术改造后汞作业工人类神经症检出率(11.1%)、口腔炎检出率(20.0%),显著低于技术改造前(47.4%、38.1%,P<0.05).结论 该公司技术改造效果较好.推广医用仪表企业技术改造对保护汞作业工人健康及提高企业经济效益具有重要的现实意义.  相似文献   

7.
某照明公司汞作业人员的健康状况调查分析   总被引:1,自引:0,他引:1  
汞是常见的金属类工业毒物 ,属剧毒物质[1] 。 1999年 11月我们对某外资照明公司接触汞作业场所人员进行健康调查 ,现报告如下。1 对象与方法1 1 调查对象某照明公司日光灯及节能灯车间的排气工序、废品质检房等汞作业人员共 32名 ,年龄 2 0~ 30岁 ,其中男性 2 8人 ,女性 4人 ,接触时间为 3个月至 7年。1 2 调查方法汞作业工人健康检查包括职业史、自觉症状、内科、肝功能、尿汞等 ;车间空气汞蒸气浓度测定采用吸收液收集 ,尿汞和空气汞均由广东省职业病防治院采用测汞仪测定。2 结果2 1 体检结果 (见表 1)未发现异常临床体征 ,检出…  相似文献   

8.
汞是生产体温计的主要原料,在生产过程中汞以蒸气形态污染工作环境。为了解汞对工人的危害情况,于1996年7月对体温计厂进行了劳动卫生汞毒害调查,将监测结果报告如下: 一、内容与方法 1.车间空气中汞蒸气浓度的测定按国家《车间空气监测检验方法》规定第三版冷原子吸收光谱法甲法。在车间工人呼吸带高度定点采样测定,以平均浓度表示。  相似文献   

9.
某金矿车间空气汞对作业工人健康影响的调查分析   总被引:2,自引:0,他引:2  
为了解某金矿车间空气汞对作业工人健康的影响 ,2 0 0 0年 4月对某金矿进行了劳动卫生学调查 ,现将调查结果报告如下。1 调查内容和方法1.1 一般劳动卫生学调查1.2 车间空气中汞浓度测定用大气采样器 (GS—Z型 )。用双硫腙比色法测定。1.3 汞作业工人的健康检查 ,包括询问职业史、症状、体征及尿汞检查等。1.4 尿汞测定取一次晨尿 ,尿样采用双硫腙法测定。1.5 诊断标准 :以 1974年卫生部颁汞中毒诊断标准为依据。结合职业史、症状体征和尿汞检验等结果综合分析判断。2 结果与分析2 .1 金矿生产工艺流程主要有 :采矿破碎球磨…  相似文献   

10.
目的了解汞对生产环境的污染状况及对作业工人的健康危害。方法结合车间空气中汞浓度,对311名汞作业工人尿汞检测结果进行分析。结果 311名汞作业工人中,211人尿汞含量超过正常值上限,阳性率67.8%,尤其是工龄5-9年者阳性率最高,达78%;长期接触汞的作业工人(〉5年工龄),其尿汞阳性率随工龄增加而下降,尿中汞含量也随工龄增加出现先升后降。结论接毒工龄长短与尿汞阳性率关系密切,车间空气中汞浓度与尿汞含量呈正相关,汞在生产场所的二次污染值得重视,应采取综合性治理措施,降低其对作业工人的健康危害。  相似文献   

11.
12.
【目的】建立以直接测汞仪测定尿汞的方法。【方法】利用DMA80型直接测汞仪对尿样进行分析测定。【结果】该方法在尿汞为1.0~200.0 ng水平时具有良好的线性关系,该方法检出限为0.4μg/L,样品测定精密度为0.38%~1.68%,回收率为92.6%~96.9%。【结论】该方法可以作为尿中总汞的日常检测方法。  相似文献   

13.
农民炼汞所致大气汞污染和汞中毒   总被引:1,自引:0,他引:1  
The article reports the results of the investigation on atmospheric pollution and mercury poisoning caused by the peasants mercury smelting. Mercury-smelting is a sideline occupation of the peasants in the mining area. They carried out the production in their homes, which were not protected. The equipment used was simple and the technological level low. Much was done during the slack seasons in farming. Before mercury-smelting was carried out the mercury concentration of air inside the house of the key household was 0.099 2 mg/m3, and outside 0.060 9 mg/m3. During mercury-smelting, near the stove, inside the house of the key household and the next door neighbour the concentrations were high, reaching 0.6463, 0.3160, 0.1717 mg/m3 respectively. At 10m, 30m, 100m, from the stove the figures were 0.0628, 0.0377 and 0.0079 mg/m3 respectively. 126 persons in 36 key households and their neighbours were given physical examinations and the incidence of chronic mercury poisoning of the operators, family members and their neighbours' family members were 75.00%, 13.79%, 3.57%, the mercury absorptivity were 12.50%, 34.48% and 21.43%, while the concentrations of mercury in the urine were 59.18, 18.21, 9.62 micrograms/L respectively. The mercury absorptivity of children under 15 was high 45.45%. The youngest age that absorbed mercury was 3. The characteristics of the harm that the peasants mercury smelting caused were discussed and suggestions proposed for their remedy.  相似文献   

14.
Summary Elemental mercury (Hg°) in urine samples from workers in thermometer manufacturing factories was determined. In a factory in which the mercury level in the ambient air averaged more than 0.1 mg Hg m–3, the Hg° concentration in the workers' urine ranged between 0.05 and 1.7 g Hg 1–1 and constituted less than 1% of the inorganic mercury (In-Hg) in urine. Higher amounts of Hg° could be detected in urine on the day of the filling operation when thermometer blanks were filled with metallic mercury and on the following day when compared with other days. During this operation, the workers were exposed to mercury vapor levels with as much as 0.47–0.67 mg Hg m–3. Our findings suggest that Hg° appears in urine quite rapidly after the worker's exposure to unusually high mercury levels.  相似文献   

15.
16.
17.
Elemental mercury spills   总被引:1,自引:0,他引:1  
Sources of elemental mercury (Hg0) include old natural gas regulators, manometers, sphygmomanometers, thermometers, and thermostats. Causes of Hg0 spills include improper storage, container breakage, children playing with Hg0, the breakage of devices containing Hg0, and ritualistic use of Hg0. Inhalation is the primary exposure route for Hg0. Mercury released into the environment can enter lakes and streams, where bacteria convert it into methylmercury, which bioaccumulates in fish. Chronic exposure to Hg0 vapors can damage the kidneys and neurologic system. Short-term exposure to high levels of Hg0 vapors may cause lung damage, nausea, vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation, among other effects. Minimizing Hg0 dispersal is important after an Hg0 spill. Tracking by shoes or apparel or vacuuming can spread Hg0, increasing airborne concentrations and cleanup costs. The Illinois Department of Public Health's response to an Hg0 spill depends on the size of the spill. Airborne concentrations after large spills are mapped with a mercury vapor analyzer (MVA). The cleanup begins with the spill site and any hot spots that were identified with the MVA. Hard surfaces can usually be cleaned, but contaminated porous items must be discarded. Leaving marginally contaminated items outdoors for a month or more during warm weather may dissipate the Hg0. After a cleanup, clearance sampling is conducted to determine if further cleanup is needed. The best way to prevent Hg0 spills is reduce its use. Key words: cleanup, elemental mercury, health effects, mercury, prevention, remediation, spill, spill management.  相似文献   

18.
Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m−3. Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L−1 in rainwater samples and 14.9-18.6 ng L−1 in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 μg m−2 a−1, and dry deposition flux is estimated to be 16.5 μg m−2 a−1 according to a throughfall method and 20.2 μg m−2 a−1 using a model method.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号