共查询到20条相似文献,搜索用时 228 毫秒
1.
Afaq F Zaman N Khan N Syed DN Sarfaraz S Zaid MA Mukhtar H 《International journal of cancer. Journal international du cancer》2008,123(7):1508-1515
Inhibitors of the epidermal growth factor receptor (EGFR) have generated considerable hope for cancer treatment, specifically for lung and breast cancers. Therefore, identification of a natural, nontoxic agent(s) as an inhibitor of EGFR is of considerable importance. Delphinidin, an anthocyanidin present in pigmented fruits and vegetables, possesses potent antioxidant and antiproliferative properties. In our study, employing EGFR positive breast cancer AU-565 cells and immortalized MCF-10A cells, we evaluated the effect of delphinidin on EGFR and its downstream signaling pathways. Delphinidin (5-40 microM; 3 hr) treatment of both AU-565 cells and MCF-10A cells inhibited the (i) phosphorylation of EGFR, (ii) activation of PI3K, (iii) phosphorylation of AKT and MAPK. Further, delphinidin treatment of AU-565 cells inhibited EGF-induced autophosphorylation of EGFR, AKT and MAPK, activation of PI3K and cell invasion. We then compared the growth inhibitory effects of delphinidin (5-40 microM; 48 hr), and found that it resulted in a decrease in cell growth of AU-565 and MCF-10A cells but had only minimal effects on normal mammary epithelial 184A1 cells. Treatment of AU-565 cells with delphinidin resulted in (i) induction of apoptosis, (ii) cleavage of PARP protein, (iii) activation of caspase-3 and (iv) downregulation of Bcl-2 with an increase in the expression of Bax. In summary, our study identifies a naturally occurring dietary agent delphinidin as an effective inhibitor of EGFR signaling in breast cancer cells. We suggest that delphinidin could be developed as an agent for the management of EGFR positive human cancers. 相似文献
2.
Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib 下载免费PDF全文
Qiaoli Zhao Nadine Kretschmer Rudolf Bauer Thomas Efferth 《International journal of cancer. Journal international du cancer》2015,137(6):1446-1456
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib‐shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β‐dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR‐expressing cell lines, BS153, A431 and DK‐MG. Shikonin not only dose‐dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib. 相似文献
3.
Growth factor receptors of the tyrosine kinase family regulate proliferation of a variety of cell types. In some human cancers, the epidermal growth factor receptor (EGFR) and its ligands often are overexpressed, leading to both constitutive and autocrine activation. Intracellular signaling via this receptor takes place through several mechanisms of action, including activation of ras and the mitogen‐activated protein kinase (MAPK) pathway. Our previous studies have shown that human squamous cell carcinoma (SCC) lines overexpress EGFR and do not increase proliferation in response to exogenous epidermal growth factor (EGF). The vitamin A metabolite retinoic acid (RA) has been used as a chemotherapeutic drug in the treatment of SCC. RA decreases proliferation of SCC lines, in part owing to inhibition of EGFR expression. However, we previously found that treatment of SCC lines with inhibitory doses of RA sensitized cells to the proliferative effects of EGF. We now present a mechanism of action for this effect. RA inhibited expression of EGFR and proteins in the MAPK signaling pathway. Expression of these molecules returned to basal levels within 24 h after RA withdrawal. RA also inhibited autocrine secretion of EGF, which returned to basal levels with slower kinetics. During this time, addition of exogenous EGF stimulated mitosis in SCC lines. These data suggested that signaling proteins downstream of overexpressed EGFR may have limited the mitotic response in SCC lines. In support of this hypothesis, overexpression of the EGFR adaptor protein Grb2 increased cell proliferation and restored EGF‐induced mitosis. © 2001 Wiley‐Liss, Inc. 相似文献
4.
We found that 12-O-tetradecanoylphorbol-13-acetate (TPA) promoted anchorage-independent growth but did not affect anchorage-dependent growth of MIA PaCa-2 human pancreatic carcinoma cells. TPA markedly activated mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase in an anchorage-independent manner. Two protein kinase C (PKC) isoforms, conventional PKC (cPKC) and novel PKC (nPKC), but not apical PKC, translocated from the cytosolic to the particulate fraction upon TPA treatment. To identify the PKC isoforms involved in the regulation of anchorage-independent growth, four PKC isoforms (alpha, delta, epsilon, and zeta) were forced to be expressed in MIA PaCa-2 cells with an adenovirus vector. Overexpression of nPKCdelta or nPKC epsilon activated MAPK and promoted anchorage-independent growth. Overexpression of cPKCalpha alone did not influence anchorage-independent growth but lowered the concentration of TPA that was required to enhance such growth. Expression of constitutively active MAPK kinase-1 (MEK1) also promoted anchorage-independent growth. Furthermore, PKC inhibitors or an MEK inhibitor completely suppressed both TPA-induced activation of MAPK and promotion of anchorage-independent growth, but a cPKC-selective inhibitor partially suppressed TPA-induced promotion of the growth. Based on these results, we suggest that MAPK activation, mediated by certain isoforms of PKC, plays a part in oncogenic growth of MIA PaCa-2 cells. In summary, our data indicated that specific inhibitors of the cPKC and nPKC signaling pathway might be selective anti-oncogenic growth agents for some types of human pancreatic cancer. 相似文献
5.
3-OH flavone inhibition of epidermal growth factor-induced proliferaton through blocking prostaglandin E2 production 总被引:2,自引:0,他引:2
Shen SC Ko CH Hsu KC Chen YC 《International journal of cancer. Journal international du cancer》2004,108(4):502-510
Epidermal growth factor (EGF) has been shown to induce proliferation in cells, however, the role of prostaglandin E(2) (PGE(2)) plays in EGF-induced proliferation in still unclear. EGF and PGE(2) showed proliferation responses in epidermoid carcinoma cell A431 by MTT and [(3)H] thymidine incorporation assay. Activation of the EGF receptor and extracellular signal-regulated protein kinases (ERK1/2), but not p38 and JNK, appeared 10 min after EGF treatment, whereas total amounts of ERK1/2, p38 and JNK remained unchanged in A431 cells, accompanied by induction of COX-2 and PGE(2) production. PD98059, a specific ERK1/2 inhibitor, inhibited EGF-induced proliferation with concomitant decreases in ERK1/2 phosphorylation and COX-2/PGE(2) induction. Non-steroid anti-inflammatory drugs (NSAIDs) such as aspirin and diclofenac, a COX activity inhibitor, inhibited EGF-induced proliferation by blocking PGE(2) production. The addition of PGE(2) reversed the inhibitory effects of PD98059, aspirin, and diclofenac on EGF-induced proliferation. This suggests that COX-2/PGE(2) activation involves in EGF-induced proliferation and locates at the downstream of ERK1/2 activation. Furthermore, the natural product, 3-OH flavone, showed the most-potent inhibitory activity on EGF-induced proliferation among 9 structurally-related compounds, and suppression of EGF receptor phosphorylation, ERK1/2 phosphorylation, and COX-2/PGE(2) production by 3-OH flavone was identified. PGE(2) addition attenuates the inhibitory activity of 3-OH flavone on EGF-induced proliferation by MTT assay and colony formation by soft agar assay. Additionally, 3-OH flavone also showed more-specific inhibition on EGF- than on fetal bovine serum (FBS)-induced proliferation in A431 cells. Results of our present study provide evidence to demonstrate that PGE(2) is an important downstream molecule in EGF-induced proliferation, and 3-OH flavone, which inhibits PGE(2) production by blocking MAPK cascade, might reserve potential for development as an anti-cancer drug. 相似文献
6.
Shikonin modulates cell proliferation by inhibiting epidermal growth factor receptor signaling in human epidermoid carcinoma cells 总被引:9,自引:0,他引:9
Shikonin isolated from the roots of the Chinese herb Lithospermum erythrorhizon has been associated with anti-inflammatory properties. We evaluated shikonin's chemotherapeutic potential and investigated its possible mechanism of action in a human cutaneous neoplasm in tissue culture. Shikonin preferentially inhibits the growth of human epidermoid carcinoma cells concentration- and time-dependently compared to SV-40 transfected keratinocytes, demonstrating its anti-proliferative effects against this cancer cell line. Additionally, shikonin decreased phosphorylated levels of EGFR, ERK1/2 and protein tyrosine kinases, while increasing phosphorylated JNK1/2 levels. Overall, shikonin treatment was associated with increased intracellular levels of phosphorylated apoptosis-related proteins, and decreased levels of proteins associated with proliferation in human epidermoid carcinoma cells. 相似文献
7.
Ras-mediated transformation is associated with upregulation of cyclooxygenase-2 (COX-2), which in turn promotes prostaglandin E2 (PGE2) synthesis and secretion. Although recent studies have identified molecular mechanisms by which Ras mediates upregulation of COX-2, conflicting observations have been made. Furthermore, while COX-2 upregulation has been shown to be important for Ras transformation, the signaling pathways initiated by PGE2-stimulation of EP family of heterotrimeric G protein-coupled receptors (GPCR) and contribution of PGE2 signaling to Ras-mediated transformation are issues that remain unresolved. In this study, we first determined that Raf effector pathway activation of the extracellular-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade alone was sufficient and necessary for COX-2 and PGE2 upregulation. However, Raf-independent regulation of the c-jun N-terminal kinase (JNK) and p38 MAPK cascades is also involved in COX-2 and PGE2 upregulation, with the JNK and p38 pathways exhibiting opposing roles in COX-2 and PGE2 upregulation. Furthermore, in contrast to previous studies, we found that an epidermal growth factor (EGF) receptor autocrine growth mechanism, another Raf-independent signaling mechanism, was necessary for COX-2 and PGE2 upregulation. Second, we determined that inhibition of EP1/2 receptor function blocked growth transformation by Ras, demonstrating that PGE2 upregulation is a key transforming function of COX-2. Finally, we found that PGE2 stimulated the activation of Ras and ERK, but not Akt, and reduced matrix deprivation-induced apoptosis, in untransformed epithelial cells. In summary, our studies define additional, multiple signaling mechanisms that promote COX-2 and PGE2 expression and show that COX-2-stimulated PGE2-EP receptor signaling is required for growth and survival transformation by Ras. 相似文献
8.
《Expert review of anticancer therapy》2013,13(9):1179-1193
In this review, key aspects of epidermal growth factor receptor (EGFR) biology and the fruitful translation of these fundamental findings into recent treatment advances in head and neck squamous cell cancer (HNSCC) are highlighted. In contrast to a number of contemporary reviews of the EGFR, many of which focus on colorectal and nonsmall cell lung cancer, this review discusses the EGFR as a validated therapeutic target in HNSCC. Recent data confirm a survival advantage for the addition of the anti-EGFR monoclonal antibody cetuximab to definitive radiation therapy in locoregionally advanced HNSCC patients, as well as palliative benefits for patients with incurable recurrent and metastatic HNSCC. Small-molecule EGFR tyrosine kinase inhibitors also show considerable promise in this disease, both alone and in combination with radiation and chemotherapy. Both classes of anti-EGFR agent are generally well tolerated, with side effects (notably skin rash) that are distinct from the toxicities of conventional chemotherapy. Ongoing clinical trials will more clearly define the role for EGFR inhibitors in all treatment phases of HNSCC. 相似文献
9.
Sara Rubio José Quintana José L. Eiroa Jorge Triana Francisco Estévez 《Molecular carcinogenesis》2010,49(1):32-43
Betuletol 3‐methyl ether (BME) is a natural phenylbenzo‐γ‐pyrone that inhibits cell proliferation in human tumor cell lines and induces apoptotic cell death in HL‐60 cells. Here we show that BME displays strong cytotoxic properties in several human leukemia cell lines (U937, K‐562, THP‐1, Jurkat, and Molt‐3) and in cells that over‐express two anti‐apoptotic proteins, namely Bcl‐2 and Bcl‐xL. BME arrested HL‐60 cells at G2‐M phase of the cell cycle, which was associated with the accumulation of cyclin B1 and p21Cip1. Fluorescence microscopy experiments suggest that BME blocked the cell cycle in mitosis. The in vivo tubulin polymerization assay shows that BME inhibits tubulin polymerization and causes similar changes of cellular microtubule network as colchicine. Our results demonstrate that BME‐induced cell death is (i) triggered in human myeloid leukemia cell that over‐express Bcl‐2 and Bcl‐xL, and (ii) associated with loss of inner mitochondrial membrane potential (ΔΨm) and an increase in reactive oxygen species (ROS). Although ROS increased in response to BME, this did not seem to play a pivotal role in the apoptotic process since the anti‐oxidant trolox was unable to provide cell protection. The treatment of HL‐60 cells with BME induces the activation of mitogen‐activated protein kinases (MAPKs) such as c‐Jun N‐terminal kinases, p38 mitogen‐activated protein kinases and extracellular signal‐regulated kinases (ERK)1/2 and stimulates the acid sphingomyelinase with concomitant ceramide generation. The findings of this study suggest that BME could be useful in the development of novel anticancer agents. © 2009 Wiley‐Liss, Inc. 相似文献
10.
Clonidine,an alpha‐2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatin‐induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension 下载免费PDF全文
Sol‐Ji Kim Seog‐Bae Oh Jang‐Hern Lee Alvin J. Beitz Dae‐Hyun Roh 《International journal of cancer. Journal international du cancer》2016,138(10):2466-2476
Cancer chemotherapy with platinum‐based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha‐2 adrenoceptor agonist, clonidine on oxaliplatin‐induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin‐induced neuropathy and (ii) concurrent inhibition of p38 mitogen‐activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01–0.1 mg kg?1, i.p.), with or without SB203580(1‐10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg?1, i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p‐p38 and p‐ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose‐dependently reduced oxaliplatin‐induced mechanical allodynia and spinal p‐p38 MAPK expression, but not p‐ERK. At 0.1 mg kg?1, clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p‐p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg?1 clonidine and reduced the increased p‐p38 MAPK. Coadministration of SB203580 and 0.03 mg kg?1 clonidine decreased allodynia similar to that of 0.10 mg kg?1 clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin‐induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects. 相似文献
11.
12.
表皮生长因子受体在多种肿瘤中存在过度表达.在三苯氧胺耐药(TAM-R)的乳腺癌细胞中表皮生长因子受体(EGFR)的过度表达预示着肿瘤预后不良.研究乳腺癌TAM-R的机制及寻找克服耐药的方案十分重要.已有大量临床前研究显示EGFR信号通路的激活导致乳腺癌细胞产生TAM-R,临床上已有应用EGFR抑制剂于TAM-R乳腺癌的报道,但并非所有患者都能从中获益.EGFR抑制剂的原发或继发耐药是临床上遇到的新难题. 相似文献
13.
Mia Carapancea Oana Alexandru Ani S. Fetea Laura Dragutescu Juan Castro Ada Georgescu A. Popa-Wagner Magnus L. Bäcklund Rolf Lewensohn Anica Dricu 《Journal of neuro-oncology》2009,92(2):137-147
In this study, we investigated the protein expression of platelet-derived growth factor receptor (PDGFR), insulin like growth factor-1 receptor (IGF-1R), phosphatidylinositol 3-kinase (PI3-K) and extracellular signal-regulated kinase (ERK1/2) in five primary glioblastoma (GB), with a view to their possible use as therapeutic targets. Our results demonstrated that appreciable levels of these proteins could be detected in the analysed GB cell lines, except for a low level of PDGFR and ERK1/2 expression in one GB cell line. The small molecule inhibitors towards IGF-1R, PDGFR, PI3-K and ERK1/2 respectively, have only modest or no anti-tumour activity on GB cells and therefore their combination with other therapy modalities was analysed. The interaction between small inhibitors and radiation was mostly additive or sub-additive; synergistic interaction was found in five of forty analysed combinations. Our results showed that GB cells are in general resistant to treatment and illustrate the difficulties in predicting the treatment response in malignant gliomas. 相似文献
14.
Flavonoids are polyphenolic compounds which display a vast array of biological activities and are promising anticancer agents. In this study we investigated the effect of 5,7,3′‐trihydroxy‐3,4′‐dimethoxyflavone (THDF) on viability of nine human tumor cell lines and found that it was highly cytotoxic against leukemia cells. THDF induced G2–M phase cell‐cycle arrest and apoptosis through a caspase‐dependent mechanism involving cytochrome c release, processing of multiple caspases (caspase‐3, ‐6, ‐7, and ‐9) and cleavage of poly(ADP‐ribose) polymerase. Overexpression of the protective mitochondrial proteins Bcl‐2 and Bcl‐xL conferred partial resistance to THDF‐induced apoptosis. This flavonoid induced the phosphorylation of members of the mitogen‐activated protein kinases (MAPKs) family and cell death was attenuated by inhibition of c‐jun N‐terminal kinases/stress‐activated protein kinases (JNK/SAPK) and of extracellular signal‐regulated kinases (ERK) 1/2. In the present study we report that THDF‐induced cell death is mediated by an intrinsic dependent apoptotic event involving mitochondria and MAPKs, and through a mechanism independent of the generation of reactive oxygen species. The results suggest that THDF could be useful in the development of novel anticancer agents. Mol. Carcinog. © 2010 Wiley‐Liss, Inc. 相似文献
15.
Rabenoelina F Semlali A Duchesne MJ Freiss G Pons M Badia E 《International journal of cancer. Journal international du cancer》2002,98(5):698-706
Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug. 相似文献
16.
Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length 总被引:8,自引:0,他引:8
Epidermal growth factor receptor is overexpressed and/or amplified in up to 50% of glioblastomas, suggesting an important role of this gene in glial tumorigenesis and progression. In the present study we demonstrated that epidermal growth factor receptor is involved in regulation of telomerase activity in glioblastoma. Antisense-epidermal growth factor receptor approach was used to inhibit epidermal growth factor receptor expression of glioblastoma U87MG cells. Telomerase activity in antisense-epidermal growth factor receptor cells decreased by up to 54 folds compared with control cells. Moreover, the telomere lengths of antisense-epidermal growth factor receptor cells were shortened. In addition, the tumorigenicity of antisense-epidermal growth factor receptor cells was significantly inhibited. Taken together, there were strong correlations between tumorigenicity and epidermal growth factor receptor expression levels, and between tumorigenicity and telomerase activity. These results provide evidence that epidermal growth factor receptor plays an important role in the regulation of telomerase activity of glioma cells. Our findings provide new insights into both the biological functions of epidermal growth factor receptor and the regulation of telomerase activity. The inhibition of telomerase activity triggered by antisense-epidermal growth factor receptor treatment may reflect yet another mechanism of antisense-epidermal growth factor receptor approach in tumour suppression. 相似文献
17.
Sonobe M Nakagawa M Takenaka K Katakura H Adachi M Yanagihara K Otake Y Wada H Tanaka F 《Journal of surgical oncology》2007,95(1):63-69
BACKGROUND AND OBJECTIVES: In this paper we examined the influence of epidermal growth factor receptor (EGFR) gene mutations on EGFR expression, downstream mediators, and survival in patients with non-small cell lung cancer (NSCLC). METHODS: We retrospectively analyzed the tumors of 53 patients with completely resected pathological stage I-IIIA NSCLC for the presence of EGFR gene mutations, the expression of EGFR mRNA and protein, phosphoryl-Akt, and phosphoryl-mitogen-activated protein kinase (MAPK) using immunostaining, and patients' prognosis. RESULTS: EGFR mutations were associated with elevations in EGFR mRNA (P = 0.004) and protein (P = 0.029) expression, but not with the expression of phosphoryl-Akt or phosphoryl-MAPK. The 5-year survival rate for all patients who exhibited an EGFR mutation was similar to those who were free of such mutations (71% vs. 56%, P = 0.252). However, the 5-year survival rate of patients with either a stage I adenocarcinoma or large cell carcinoma who had an EGFR mutation was significantly greater than for those who did not have such a mutation (92% vs. 57%, P = 0.037). CONCLUSIONS: EGFR gene mutations were significantly associated with higher EGFR expression, but not with p-Akt or p-MAPK status. In early stage NSCLC, the presence of an EGFR gene mutation bode well for the patient's prognosis. 相似文献
18.
Expression of an altered epidermal growth factor receptor by human glioblastoma cells 总被引:3,自引:0,他引:3
The expression and activities of epidermal growth factor (EGF) receptor and a highly related protein (Mr approximately 190,000 protein; p190) were characterized from a human glioma cell line, KE. p190 was specifically immunoprecipitated with a monoclonal antibody with specificity against the EGF receptor (Mr approximately 170,000; p170). Furthermore, both proteins were shown to possess tyrosine-protein kinase activities, although p170 required the presence of EGF to undergo autophosphorylation, whereas p190 appeared to be constitutively activated. Partial and total proteolytic polypeptide analyses of the two proteins suggested that their phosphopeptides were nearly identical and were phosphorylated on similar amino acid residues. However, a number of alterations were observed between [35S]methionine-labeled polypeptides of p170 and p190. This was also supported by the finding that the size of the protein cores of p170 and p190 was different. This observation is in agreement with Northern blot analysis in which KE cells expressed a novel EGF receptor RNA of 10.5 kilobases in addition to the previously reported 10-kilobase RNA. Southern blot analysis of the EGF receptor gene also revealed some amplification, approximately 4- to 5-fold; however, no significant rearrangements were noted in the KE cell DNA. These results suggest that p190 represents an endogeneous structurally and functionally altered EGF receptor. 相似文献
19.
Lev DC Kim LS Melnikova V Ruiz M Ananthaswamy HN Price JE 《British journal of cancer》2004,91(4):795-802
One of the major targets for breast cancer therapy is the epidermal growth factor receptor (EGFR) and related receptors, which signal via different signal transduction pathways including the mitogen-activated protein kinase (MAPK) pathway. This study determined whether there is a correlation between EGFR/HER2 status and MAPK (ERK1/2) phosphorylation in breast cancer cells, and how this affects the response to an inhibitor of the receptors. Expression of EGFR, HER2 and phosphorylated ERK1/2 were measured by immunoblotting in a panel of breast cancer cell lines. Several lines expressed high levels of pERK1/2, with no obvious correlation with the level of EGFR/HER2. The EGFR tyrosine kinase inhibitor PKI166 inhibited growth and induced apoptosis in some cells with high levels of growth factor receptors (MDA-MB-468, SUM149, SKBR3), but was less effective in cells that also had high basal ERK1/2 activity (MDA-MB-231). The combination of an inhibitor of MAPK signalling (U0126) and PKI166 produced significantly more inhibition and apoptosis than either agent alone. This suggests that constitutive activation of the MAPK pathway may bypass inhibition of EGFR/HER2 tyrosine kinases, and lead to insensitivity to agents targeting the receptors. However, inhibiting both EGFR/HER2 and MAPK signalling can result in significant growth inhibition and apoptosis of EGFR-expressing breast cancer cells. 相似文献