首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibited apoptosis and drug resistance in acute myeloid leukaemia   总被引:9,自引:0,他引:9  
Despite extensive investigation into mechanisms of drug resistance in acute myeloid leukaemia (AML), the aetiology of therapeutic resistance is unclear. We found that five leukaemia cell lines (K562, HL-60, CEM, CEM induced to overexpress bcl-2, and REH) displayed parallel sensitivity to four antileukaemia drugs with different mechanisms of action, with K562 generally being the least sensitive and REH being the most sensitive. The amount of spontaneous apoptosis in the cell lines after serum-free culture paralleled their drug sensitivity: K562 cells displayed the least apoptosis at 24 h (2.50 ± 0.24%) and REH the most (24.47 ± 8.22%). The extent of spontaneous apoptosis of leukaemic blasts from 39 patients with newly diagnosed de novo AML also correlated with the success of the intensive, infusional cytarabine-based induction therapy. There was a median of 19.5% (range 3.6–64%) apoptotic AML cells after 24 h of serum-free culture in patients who entered a complete remission compared with 4.2% (1.8–7.0%) apoptotic AML cells in patients who did not achieve a complete remission ( P  = 0.0007). Thus, inhibited apoptosis was associated with both in vitro and in vivo pan-resistance to antileukaemic chemotherapy. The cause of inhibited apoptosis in AML is probably a function of interactions among multiple signals that influence apoptosis. Assessment of spontaneous apoptosis may serve as an important prognostic factor for AML.  相似文献   

2.
3.
Recent studies suggest that the prosurvival signal transduction pathway involving phosphoinositide 3-kinase (PI3K)/Akt can confer an aggressive, apoptosis-resistant phenotype to acute leukaemia cells. We have investigated the effect of modulating this signalling pathway on the sensitivity of leukaemic cell lines (NB-4, CEM, Jurkat, MOLT-4) and acute promyelocytic primary blasts to apoptosis induced by 1 micromol/l As2O3. Whereas parental NB-4 cells did not display any phosphorylated (active) Akt, CEM, Jurkat and MOLT-4 cells exhibited high levels of Akt activation. Consistently, treatment of NB-4 cells with pharmacological inhibitors of the PI3K/Akt pathway (LY294002, wortmannin) did not increase sensitivity of these cells to arsenic trioxide (As2O3), whereas siRNA knock-down of Akt enhanced As2O3-induced apoptosis of CEM, Jurkat and MOLT-4 cells. Overexpression of a constitutively active Akt cDNA rendered NB-4 cells less susceptible to As2O3. Upon prolonged exposure to As2O3, we isolated a NB-4 cell clone that was resistant to As2O3 and displayed high levels of active Akt. LY294002 treatment of acute promyelocytic primary blasts with elevated Akt phosphorylation levels resulted in an increased sensitivity to As2O3. These results may provide a rationale for the development of combined or sequential treatment with PI3K/Akt inhibitors to improve the efficacy of As2O3 on acute leukaemias and also to overcome As2O3 resistance.  相似文献   

4.
The rapid degradation and subsequent lack of efficacy of n-butyric acid in vivo has been improved by the synthesis of monosaccharide stable pro-drugs of butyric acid. We studied the effects of D1 (O-n-butanoyl-2,3-O-isopropylidene-alpha- D -mannofuranoside), G1 (1-O-n-butanoyl- D , L -xylitol), and F1 (1-O-n-butanoyl 2,3-O-isopropylidene- D , L -xylitol) on the maturation and proliferation of AML cell lines HL 60 and FLG 29.1 and of purified blast cells from 10 cases of de novo acute myeloid leukaemia (AML). AML cell maturation was measured by surface antigen expression, morphology and cytochemistry. Toxicology in mice was also evaluated (DL50 1000 mg/kg). In HL 60 cells G1 and D1 increased the expression of CD15 and CD11a (presenting 62% of promyelo-metamyelocytes), and in 7/10 cases of primary AMLs that of CD11a, CD11b, CD15, and myeloperoxidase. D1, G1 and F1 induced a dose-dependent inhibition of tritiated thymidine uptake. Apoptosis (evaluated by flow cytometry and agarose gel electrophoresis) was induced in AML blasts by D1 and F1 (79% and 94% respectively for HL 60 cells) and, with less effect, by G1 (27%). The persistence of maturative and apoptotic activity in these new pro-drugs of butyric acid, hydrolysed only inside the tumour cell, suggests a possible use in differentiation therapy of myelodysplastic syndromes and AMLs.  相似文献   

5.
We have studied the actions of tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) on cells isolated from patients with acute myeloid leukaemia (AML). Apoptosis induction was initially assessed by quantitative morphological analysis. Only 2/19 isolates showed a > 10% increase in apoptotic cells following TRAIL treatment. However, incubation with TRAIL combined with fludarabine, cytosine arabinoside or daunorubicin resulted in additive or super-additive apoptosis induction in approximately half of the isolates. Molecular evidence of super-additive apoptosis induction by TRAIL and cytotoxic agents was obtained by quantification of caspase 3 activation, detected by Western blot analysis of poly (ADP ribose) polymerase cleavage. The ability of TRAIL and daunorubicin to induce super-additive apoptosis correlated with the ability of these agents to activate caspase 8 and to augment cellular levels of the truncated pro-apoptotic form of the BCL-2 family member BID. Our data suggest that co-administration of TRAIL with conventional cytotoxic drugs may be of therapeutic value in some patients with AML.  相似文献   

6.
Deficiencies or structural defects of the apoptotic machinery have been postulated as a potential mechanism for a broad resistance of acute myeloid leukaemia (AML) blasts towards cytotoxic therapy comprising chemotherapeutic agents with diverse pharmacodynamic principles but also cell-mediated cytotoxicity of the graft-versus-leukaemia effect, for example, in the setting of allogeneic transplantation. This hypothesis was systematically tested by functionally analysing the early, intermediate and late events of the apoptotic process in primary AML (n = 31) blasts following activation of the intrinsic and extrinsic pathway of apoptosis (etoposide and cytarabine as DNA damaging agents, FAS-ligand as an activator of the death receptor pathway). Activation of the extrinsic pathway by FAS-ligand did not induce apoptosis in primary AML, instead the proapoptotic signal was shown to 'fade', even in the early phase of the apoptotic sequence. However, activation of the intrinsic pathway induced severe cytotoxicity in all samples that showed the characteristic features of typical apoptosis, with a prominent apoptotic volume decrease (blebbing) in the early phase, significant increases in caspase 3 activity (intermediate or effector phase) and breakdown of cellular energy production in the late phase of apoptosis. These characteristics did not differ between prognostically favourable versus unfavourable AML karyotypes or between clinically responding versus refractory AML--indicating that a functional apoptotic apparatus is present even in the unfavourable AML subgroups. Our data indicate that the mechanism for a broad clinical resistance is not a dysfunctional apparatus per se but rather the consequence of anti-apoptotic regulation impeding otherwise functional apoptotic machinery.  相似文献   

7.
8.
Lack of sufficient cellular activity of asparagine synthetase (AS) in blast cells compared with normal tissue is thought to be the basis of the antileukaemic effect of L-asparaginase in acute lymphoblastic leukaemia (ALL). Although L-asparaginase is routinely used in ALL, its role and value in the treatment of acute myelogenous leukaemia (AML) is still being discussed. To evaluate the pharmacological basis for L-asparaginase treatment, we established pretreatment monitoring of the intracellular AS activity in blast cells of patients with AML and ALL. There was no general difference in AS activity between ALL and AML samples. Significantly lower AS activity, however, was found in the B-lineage ALL subgroups as well as AML-M5.  相似文献   

9.
2-methyl-naphtho[2,3-b]furan-4,9-dione (FNQ3), a synthetic analogue of the quinone kigelinone, has demonstrated a real potential for use in the treatment of a variety of solid tumours. Unlike other quinones, such as mitomycin-C and adriamycin, the cytotoxicity of FNQ3 is often 10- to 14-fold more potent towards the tumour cells than their normal counterparts. We report, for the first time, that the drug had activity against a broad spectrum of leukaemias and multiple myeloma cells. It decreased the growth of acute myeloid leukaemia (AML) and multiple myeloma cell lines in a dose-dependent fashion (50% inhibitory concentration approximately 1.25 microg/ml against most of the leukaemia cell lines). This dose apparently initiated mitochondrial collapse as measured by depolarisation of the mitochondrial membrane. FNQ3 potentiated the differentiation of HL-60 myeloid cells in the presence of either 1alpha, 25(OH)(2) dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] or all-trans-retinoic acid (ATRA). FNQ3 inhibited the proliferation of primary AML cells while inducing apoptosis. Eleven of 14 (79%) AML marrow samples had a prominent decrease in their clonogenic growth when cultured in the presence of the drug. In summary, this drug has growth inhibitory, apoptotic and differentiative effects against myeloid leukaemias and multiple myeloma cells. FNQ3 may represent a new therapeutic approach to these malignancies.  相似文献   

10.
Dendritic cells (DCs) are key antigen-presenting cells (APCs), which link innate and adaptive immunity, ultimately activating antigen-specific T cells. This review examines the relationship between the acute and chronic myeloid leukaemias and cells with DC properties. DCs are non-dividing terminally differentiated cells, and ex vivo leukaemic cells or cell lines show little similarity to DCs. However, many leukaemias differentiate further in response to defined stimuli, and retain a degree of lineage plasticity. Therefore, several studies have explored the response of leukaemic cells to the in vitro regimens used to differentiate ex vivo primary DCs. Recent data suggest that the most 'dendritic-like' cells can be derived from more undifferentiated myeloid leukaemias, such as the myelomonocytic Mutz-3 cell line. These findings have important implications for understanding the developmental origins of DCs, for harnessing the APC properties of this class of tumour to stimulate the therapeutic anti-tumour immunity, and for developing useful models for the study of human DC physiology and pathology. There is a strong rationale for further exploration of this class of tumour and its relationship to the normal DC.  相似文献   

11.
Advances in the classification of acute leukaemias have led to improved outcomes for a substantial fraction of patients. However, chemotherapy resistance remains a major problem for specific subsets of acute leukaemias. Here, we propose that a molecularly distinct subtype of acute leukaemia with shared myeloid and T cell lymphoblastic features, which we term acute myeloid/T‐lymphoblastic leukaemia (AMTL), is divided across 3 diagnostic categories owing to variable expression of markers deemed to be defining of myeloid and T‐lymphoid lineages, such as myeloperoxidase and CD3. This proposed diagnostic group is supported by (i) retained myeloid differentiation potential during early T cell lymphoid development, (ii) recognition that some cases of acute myeloid leukaemia (AML) harbour hallmarks of T cell development, such as T‐cell receptor gene rearrangements and (iii) common gene mutations in subsets of AML and T cell acute lymphoblastic leukaemia (T‐ALL), including WT1, PHF6, RUNX1 and BCL11B. This proposed diagnostic entity overlaps with early T cell precursor (ETP) T‐ALL and T cell/myeloid mixed phenotype acute leukaemias (MPALs), and also includes a subset of leukaemias currently classified as AML with features of T‐lymphoblastic development. The proposed classification of AMTL as a distinct entity would enable more precise prospective diagnosis and permit the development of improved therapies for patients whose treatment is inadequate with current approaches.  相似文献   

12.
Chemotherapy resistance from imbalanced apoptosis regulation may contribute to poor outcome in leukaemias with t(4;11). Anti-apoptotic BCL-2 expression and target modulation were characterized in cell lines with t(4;11) and BCL-2 expression was examined in MLL and non- MLL infant/paediatric leukaemia cases by Western blot analysis and/or real-time polymerase chain reaction. Cytotoxicity of Genasense™ (Oblimersen Sodium, G3139) alone or combined with cytotoxic drugs was assessed by MTT [(3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays of the cell lines, applying pharmacostatistical response surface modelling of drug interactions. Apoptosis and cell cycle were evaluated by flow cytometry in RS4:11 cells. Primary leukaemias and cell lines with t(4;11) expressed abundant BCL2 mRNA and protein. Variable, sometimes substantial BCL2 mRNA was detected in other leukaemia subtypes. G3139 reduced BCL2 mRNA and protein in RS4:11 cells. The most sensitive cell line to single-agent G3139 was RS4:11. Low G3139 concentrations sensitized RS4:11 and MV4-11 cells to select anti-leukaemia cytotoxic drugs. In RS4:11 cells, combining G3139 with doxorubicin (ADR) increased active caspase 3 and TUNEL staining compared to ADR alone, indicating greater apoptosis, and G3139 increased S-phase progression. The abundant BCL-2 affords a molecular target in leukaemias with t(4;11). G3139 exhibits preclinical activity and synergy with select cytotoxic agents in RS4:11 and MV4-11 cells, and these effects occur through apoptosis.  相似文献   

13.
The influence of Exisulind on the viability and apoptosis of CD34(+) stem cells from patients with advanced myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML)/MDS was investigated. In eight out of 10 patient samples Exisulind reduced the fraction of viable cells by inducing apoptosis. We found evidence that Exisulind-mediated apoptosis depends on c-Jun NH(2)-terminal kinase (JNK) activation. Addition of a specific JNK-inhibitor to Exisulind-treated advanced MDS and AML/MDS cells partly abrogated apoptosis. We propose that Exisulind is tested in clinical phase I/II trials for the treatment of advanced MDS and AML/MDS.  相似文献   

14.
Sialic acid-binding immunoglobulin-like lectin (Siglec)-5 or CD170 is a CD33-related receptor, containing cytoplasmic immune receptor-based tyrosine signalling motifs, that has previously been reported to be myeloid-specific like CD33 and thus may be useful in the characterization of both normal and malignant haemopoiesis. This study showed that Siglec-5 had a distinct expression pattern to CD33 both on normal myeloid cells and in acute myeloid leukaemia (AML). In normal bone marrow and cord blood, myeloid cells predominantly expressed Siglec-5 at the later stages of granulocytic differentiation. Siglec-5 was not expressed at significant levels by CD34+ progenitors either from bone marrow or mobilized peripheral blood. During in vitro myeloid differentiation of cord blood purified CD34+ cells, Siglec-5 was upregulated later than CD33. Siglec-5 expression remained absent or very low on cultured CD34+ cells, unlike CD33, which was present on almost all CD34+ cells by day 4. However, analysis of blasts from 23 patients with AML revealed aberrant expression of Siglec-5 with CD34 in 50% (seven of 14) of patients with CD34+ AML; 61% (14 of 23) of AML cases were positive for Siglec-5 with an increased frequency in the French-American-British subtypes M3-5 (80%) compared with M0-2 (25%). All 13 acute lymphoblastic leukaemic (ALL) samples tested, including a CD33+ ALL, were Siglec-5 negative. These results support the further evaluation of Siglec-5 antibodies in the diagnosis and monitoring of AML.  相似文献   

15.
Degradation of several intracellular proteins involved in cell cycle control and tumour growth is regulated by the ubiquitin-dependent multicatalytic protease complex (proteasome). We report that proteasome inhibitor Z-Ile-Glu(OtBu)-Ala-Leucinal (PSI) was cytotoxic on most human myeloid leukaemia cell lines at IC50 doses ranging from 5 to 25 nmol/l. Additionally, PSI pre-treatment enhanced cytotoxicity by taxol and cisplatinum. PSI was more active on leukaemic than on normal CD34(+) bone marrow progenitors because the 50% growth inhibition of colony-forming unit granulocyte macrophage (CFU-GM) from cases of chronic myelogenous leukaemia (CML) and normal subjects was achieved by 15 nmol/l and 50 nmol/l PSI respectively. PSI killed cells by apoptosis as revealed by ultrastructural changes, nuclear DNA fragmentation, cleavage of poly (ADP-ribose) polymerase (PARP) and of beta-catenin, and was antagonized by ectopic expression of Bcl-2 but not by inactivating mutations of p53. This event was associated with a slight accumulation of Bcl-2, a decrease of Bax but no changes in Bcl-X(L) protein expression at any time point. In Ph(+) cell lines BCR-ABL protein was only down-regulated after 48 h of treatment with 10 nmol/l PSI. Altogether, these results indicate that PSI, alone or in association with other cytotoxic agents, has anti-tumour activity against myeloid malignancies and is more effective on leukaemic than on normal haematopoietic progenitor cells.  相似文献   

16.
Classification systems for acute and chronic leukaemias   总被引:3,自引:0,他引:3  
Modern classification systems for acute and chronic leukaemias are based on cytomorphology, cytochemistry, immunophenotyping, immunogenetics and molecular cytogenetics. Morphology forms the initial diagnosis of leukaemia, but generally is not sufficient to identify biologically and clinically relevant subsets within the main categories of leukaemia. Immunophenotyping precisely defines the lineage and stage of differentiation of malignantly transformed haematopoietic cells. This is usually sufficient for precise classification of mature lymphoid malignancies, although immunogenetic and (molecular) cytogenetic studies might be helpful to confirm the diagnosis of disseminated non-Hodgkin's lymphomas. However, certain categories of disease that are clearly defined by cytomorphology and immunophenotyping, particularly acute leukaemias, are still heterogeneous, mainly owing to different underlying leukaemogenic events. Immunophenotyping can reveal subgroups highly suggestive of certain chromosome aberrations but reliable identification of such aberrations requires cytogenetic or molecular studies. Such combined diagnostic information forms the basis of current WHO classification of tumours of haematopoietic and lymphoid tissues. This will be complemented in the near future with novel criteria revealed by microarray gene expression profiling.This chapter summarizes and comments on the currently used immunophenotypic classification systems of acute and chronic leukaemias and on the added value of molecular diagnostics.  相似文献   

17.
We analysed by immunocytochemistry metalloproteinase (MMP)-2 and MMP-9 expression in bone marrow cells from 54 acute myeloid leukaemia (AML) patients, 153 myelodysplastic syndrome (MDS) patients, and 52 non-haemopathic subjects, in order to evaluate whether MMP expression abnormalities were associated with relevant laboratory or clinical findings. In normal samples MMP-2 was detected in rare myeloid cells, MMP-9 in most maturing myeloid cells. In MDS MMP-2 myeloid levels were higher than in controls (P < 0.0001); MMP-2 and MMP-9 were often co-expressed. Also many erythroblasts expressed MMP-2. There was a positive correlation between MMP-2 erythroblast expression and erythroid dysplasia (P = 0.002) and an inverse correlation between MMP-2 or MMP-9 myeloid expression and blast cell percentage (P = 0.05 and P = 0.04 respectively). High MMP levels in myeloid cells were associated with longer overall survival (P = 0.03) and evolution-free survival (P = 0.04). In AML MMP-2 levels were lower than in MDS (P < 0.0001) and MMP-9 levels lower than in MDS and controls (P < 0.0001). MMP levels did not predict response to therapy. The release of active MMPs was detected by colorimetric analysis in cell cultures from representative MDS and AML cases. In conclusion, we have demonstrated an abnormal MMP expression in AML as well as in MDS. The production and release of these enzymes may influence haematopoietic cell behaviour. In MDS, the detection of MMP deregulated expression may be important also from the clinical point of view: it may provide a useful tool for diagnosis, prognosis and a possible target for experimental treatments.  相似文献   

18.
The French-American-British (FAB) classification and the new World Health Organization (WHO) classification distinguish acute monoblastic leukaemia (AML M5a) from acute monocytic leukaemia (AML M5b). Not much is known about the underlying genetic differences leading to these clearly different phenotypes. We analysed 58 patients with de novo AML M5a and 66 patients with de novo AML M5b in comparison with a whole group of 1603 de novo AML. An aberrant karyotype was found in 75.9% of AML M5a but in only 28.8% of M5b (P < 0.0001) and in 54.7% of all other AML subtypes (P = 0.0015). 11q23/MLL aberrations were detected in 31% of M5a, 12.1% of M5b (P = 0.01) but only 1.3% of all other AML subtypes (P < 0.0001). Trisomy 8 as the sole cytogenetic aberration was found in 22.4% of M5a, but in only 3% of M5b and in 2.5% of all other AML subcategories (P < 0.0001). Although the frequency of the MLL-partial tandem duplication (MLL-PTD) did not differ between the three cohorts (1.7%, 4.5% and 6.1% respectively, NS), the detection of FLT3 length mutations (FLT3-LM) differed significantly. AML M5a showed a low frequency of only 6.9%, but 28.8% of M5b (P = 0.0014) and 23.5% of all other AML revealed a FLT3-LM. In conclusion, we demonstrated genetic, i.e. biological, differences between AML M5a and AML M5b and all other AML. Therefore, AML M5 should further be categorized as two different groups, as proposed by the WHO classification.  相似文献   

19.
20.
There is now a plethora of new precision medicines for B‐cell malignancy including ‘classical’ kinase inhibitors, rationally designed inhibitors of anti‐apoptotic proteins and antibody or antibody drug/toxin conjugates with functional properties. Some are showing spectacular single agent activity in early phase clinical studies and may reduce or, in combination, even obviate the need for chemotherapy. Nevertheless, significant problems remain if these medicines are to be introduced into routine clinical practice in a rational and affordable manner. Firstly, precision medicines must be carefully matched in a mechanistic fashion with specific subtypes of disease. Whilst sensitivity may be predicted by the detection of key mutations or by expression of target molecules, for therapies that depend on intact intracellular signalling pathways, functional assessment on viable primary malignant cells will be necessary using assays that faithfully mimic in vivo conditions. A second, but no less important challenge is to define mechanism‐based synergistic combinations associated with minimal toxicities rather than simply adding new precision medicines to existing chemotherapeutic regimens. Finally, a closer, open, two‐way interaction between academic medicine and the pharmaceutical industry will be necessary to achieve these aims. Implementing such changes would change radically how and where patients with B‐cell malignancies are managed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号