首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholinesterase inhibitor, rivastigmine, ameliorates cognitive dysfunction and is approved for the treatment of Alzheimer's disease (AD). Rivastigmine is a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE); however, the impact of BuChE inhibition on cognitive dysfunction remains to be determined. We compared the effects of a selective BuChE inhibitor, N1-phenethyl-norcymserine (PEC), rivastigmine and donepezil (an AChE-selective inhibitor) on cognitive dysfunction induced by amyloid-β peptide (Aβ1-40) in mice. Five-week-old imprinting control region (ICR) mice were injected intracerebroventricularly (i.c.v.) with either Aβ1-40 or the control peptide Aβ40-1 on Day 0, and their recognition memory was analyzed by a novel object recognition test. Treatment with donepezil (1.0 mg/kg), rivastigmine (0.03, 0.1, 0.3 mg/kg) or PEC (1.0, 3.0 mg/kg) 20 min prior to, or immediately after the acquisition session (Day 4) ameliorated the Aβ1-40 induced memory impairment, indicating a beneficial effect on memory acquisition and consolidation. In contrast, none of the investigated drugs proved effective when administrated before the retention session (Day 5). Repeated daily administration of donepezil, rivastigmine or PEC, on Days 0-3 inclusively, ameliorated the cognitive dysfunction in Aβ1-40 challenged mice. Consistent with the reversal of memory impairments, donepezil, rivastigmine or PEC treatment significantly reduced Aβ1-40 induced tyrosine nitration of hippocampal proteins, a marker of oxidative damage. These results indicate that BuChE inhibition, as well as AChE inhibition, is a viable therapeutic strategy for cognitive dysfunction in AD.  相似文献   

2.
Opuntia ficus-indica var. saboten Makino (Cactaceae) is used to treat burns, edema, dyspepsia, and asthma in traditional medicine. The present study investigated the beneficial effects of the n-butanolic extract of O. ficus-indica var. saboten (BOF) on memory performance in mice and attempts to uncover the mechanisms underlying its action. Memory performance was assessed with the passive avoidance task, and western blotting and immunohistochemistry were used to measure changes in protein expression and cell survival. After the oral administration of BOF for 7 days, the latency time in the passive avoidance task was significantly increased relative to vehicle-treated controls (P < 0.05). Western blotting revealed that the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element binding-protein (pCREB), and phosphorylated extracellular signal-regulated kinase (pERK) 1/2 were significantly increased in hippocampal tissue after 7 days of BOF administration (P < 0.05). Doublecortin and 5-bromo-2-deoxyuridine immunostaining also revealed that BOF significantly enhanced the survival of immature neurons, but did not affect neuronal cell proliferation in the subgranular zone of the hippocampal dentate gyrus. These results suggest that the subchronic administration of BOF enhances long-term memory, and that this effect is partially mediated by ERK-CREB-BDNF signaling and the survival of immature neurons.  相似文献   

3.
Murphy NP  Sakoori K  Okabe C 《Brain research》2006,1094(1):107-118
Previous studies using the 5alpha-reductase inhibitor finasteride suggest that progesterone metabolites, particularly the endogenous neurosteroid allopregnanolone, mediate some of the effects of ethanol. Consequently, we studied the effect of finasteride (2 x 25 mg/kg s.c., 12 h apart) pretreatment on the acquisition and expression of ethanol (2 g/kg i.p.) induced conditioned place preference and c-fos expression in DBA/2 mice; a strain known to be particularly sensitive to ethanol. Ethanol administration induced a clear conditioned place preference and widespread c-fos expression, with elements of the extended amygdala, Edinger-Westphal nucleus and paraventricular nucleus being especially sensitive. However, despite an approximately 99% decrease in whole brain allopregnanolone content, finasteride pretreatment had remarkably little effect on either ethanol-induced conditioned place preference or ethanol-induced c-fos expression. Thus, aside from a general stimulatory effect on c-fos expression in the ventral tegmental area, and generally mild depression of locomotor activity, no other effects of finasteride or interaction with ethanol effects were identifiable. Together, these studies suggest that endogenous allopregnanolone plays little part in mediating acute ethanol-induced reward or neural activation in DBA/2 mice.  相似文献   

4.
5.
Nitric oxide (NO) is considered as an intracellular messenger in the brain. Its involvement in learning and memory processes has been proposed. The present study was designed to investigate the effects of the NO-releasing derivative of ferulic acid NCX 2057 on rats' recognition memory. For this purpose the object recognition task was selected. Post-training treatment with NCX 2057 (10 mg/kg, i.p.) and with the reference compound, the NO donor molsidomine (4 mg/kg, i.p.), antagonized extinction of recognition memory in the normal rat. Conversely, animals treated with the parent compound ferulic acid (1.9, 6.2 and 18.7 mg/kg, i.p.) failed to do so. In addition, NCX 2057 (3 and 10 mg/kg, i.p) reversed the scopolamine (0.2 mg/kg, s.c.)-induced performance deficits in this recognition memory task. These results indicate that this novel NO donor may modulate different aspects of recognition memory and suggest that an interaction between the nitrergic and cholinergic system is relevant to cognition.  相似文献   

6.
7.
Pharmacotherapy of schizophrenia is associated with the stressful side effects. Muscle rigidity causes distress, discomfort and poor compliance. The aim of the study was to determine the relationship between plasma hormones (cortisol and prolactin/PRL) and muscle rigidity in female schizophrenic patients treated with olanzapine or fluphenazine. In a randomized, double-blind 22-weeks study, 12 patients were treated with olanzapine (5-20 mg/day) and 10 patients received fluphenazine (6-21 mg/day). Treatment with olanzapine moderately decreased, while treatment with fluphenazine significantly increased plasma cortisol levels and muscle rigidity. The marked and moderate increase in plasma PRL levels were found in patients treated with fluphenazine and olanzapine, respectively. The results suggested that olanzapine induced moderate neuroendocrine effects and a reduction in rigidity as compared to fluphenazine treatment.  相似文献   

8.
Quinine specifically blocks connexin 36 (Cx36), one of the proteins that form gap junction channels. Quinine suppressed ictal epileptiform activity in in vitro and in vivo studies without decreasing neuronal excitability. In this study, we considered the possible mechanism of anticonvulsant effects of quinine (1, 250, 500, 1000 and 2000 microM, i.c.v.) in the pentylenetetrazole (PTZ) model of seizure. Thus, we used trimethylamine (TMA) (0.05 microM, 5 microM, 50 microM), a gap junction channel opener, to examine whether it could reverse the effects of quinine in rats. Intracerebroventricular (i.c.v.) injection of quinine affected generalized tonic-clonic seizure (GTCS) induced by PTZ by increments in seizure onset and reducing seizure duration. Additionally, pretreatment with different doses of TMA (i.c.v.) attenuated the anticonvulsant effects of quinine on the latency and duration of GTCS. It can be concluded that quinine possesses anticonvulsant effects via modulation of gap junction channels, which could contribute to the control of GTCS.  相似文献   

9.
Depressed patients with increased inflammatory cytokines in peripheral blood have been reported to be more likely to exhibit treatment resistance. However, it is unknown whether the inflammation influences the action of antidepressant drugs. Here, we investigated the influence of lipopolysaccharide (LPS) on the antidepressant action of fluoxetine in depressive rats induced by chronic unpredictable mild stress (CUMS). In this study, we first modified the CUMS paradigm by administration of LPS daily before the stressor, and then investigated the influence of inflammation on the antidepressant action of fluoxetine. The effects of stress exposure and antidepressant treatment were assessed by behavioral testing (sucrose preference test, forced swimming test, novelty suppressed feeding test) and hippocampal BrdU labeling. The CUMS-induced behavioral changes can be reversed by 4-week fluoxetine treatment. Fluoxetine also increased the hippocampal neurogenesis in the depressive rats. Pretreatment with LPS, to mimic inflammation, had no significant effect on depressive behavior but attenuated the antidepressant action of fluoxetine significantly. Thus, our results suggest that the inflammation might play a certain role in the pathophysiology of antidepressant treatment resistance.  相似文献   

10.
The aim of this experiment was to investigate whether nebivolol and zofenopril have protective effects against oxidative damage and apoptosis induced by cerebral ischemia/reperfusion (I/R).There were seven groups of rats, with each containing eight rats. The groups were: the control group, I/R group, I/R plus zofenopril, I/R plus nebivolol, I/R plus nebivolol and zofenopril, zofenopril only and nebivolol only. Cerebral I/R was induced by clamping the bilateral common carotid artery and through hypotension. The rats were sacrificed 1 h after ischemia, and histopathological and biochemical analyses were carried out on their brains. The total antioxidant capacity was evaluated by using an automated and colorimetric measurement method developed by Erel. I/R produced a significant increase in the levels of total oxidant status and malondialdehyde levels, the number of caspase-3 immunopositive cells and activities of prolidase and paraoxonase in brain when compared with the control group (p < 0.05). A significant decrease in brain total antioxidant capacity and nitric oxide levels were found in I/R group when compared with the control group (p < 0.05). Both nebivolol and zofenopril treatment prevented decreasing of the total antioxidant capacity and nitric oxide levels, produced by I/R in the brain (p < 0.05). Both nebivolol and zofenopril treatment prevented the total oxidant status, malondialdehyde levels, activities of paraoxonase and prolidase from increasing in brains of rats exposed to I/R (p < 0.05).In conclusion, both nebivolol and zofenopril protected rats from ischemia-induced brain injury. The protection may be due to the indirect prevention of oxidative stress and apoptosis.  相似文献   

11.
12.
Alzheimer's disease (AD) is one of the most threatening diseases to the elderly population at present. However, there is no yet efficient therapeutic method to AD. Recently, accumulating evidence indicates that valproic acid (VPA), a widely used mood stabilizer and antiepileptic drug, has neuroprotective potential relevant to AD. Moreover, VPA can induce neurogenesis of neural progenitor/stem cells both in vitro and in vivovia multiple signaling pathways. Therefore, it is suggested that VPA is a promising agent to combat AD.  相似文献   

13.
Serotonergic receptors take their physiologic effects by affecting adenylyl cyclase (AC) catalytic activity and cyclic adenosine monophosphate (cAMP) concentration. AC-cAMP second messenger pathway has been recently suggested to play an important role in depression. Therefore, the compound that regulates the signal pathway may have potential as antidepressant. Curcumin is the main component of Curcuma longa L, a well-known indigenous herb with comprehensive bioactivities. In the present study, we investigated the effects of chronic unpredictable mild stress (CUMS) and curcumin on behaviours and serotonergic receptor-coupled AC-cAMP signal pathway in rats. Curcumin produced beneficial effects on the stressed rats by effectively improving CUMS-induced low sucrose consumption and reducing serum corticosterone levels in rats. Moreover, curcumin enhanced AC activity and cAMP levels in platelet and various brain regions, and up-regulated mRNA expressions of AC subtypes AC 2, AC 8 and cAMP response element binding protein (CREB) in the hippocampus, cortex and hypothalamus of the CUMS rats. Curcumin also attenuated CUMS-induced reductions of 5-hydroxytryptamine (5-HT) levels and high expressions of central 5-HT1A/1B/7 receptors in rats. These results suggested that the potent antidepressant property of curcumin might be attributed to its improvement of AC-cAMP pathway as well as CREB via suppressing central 5-HT1A/1B/7 receptors in the CUMS rats. Our findings provided a basis for examining the interaction of serotonergic receptors and AC-cAMP pathway in depression and curcumin treatment.  相似文献   

14.
PACAP is a peptide with neuroprotective activity, which induces adenylate cyclase and protein kinase A (PKA) activity. PACAP has also been shown to induce neurite outgrowth in PC12 cells and dorsal root ganglion (DRG) neurons. Here, we report that exogenous PACAP38 promotes neurite outgrowth in the F11 neuroblastoma/dorsal DRG hybrid cell line. Using an automated microscopy system, we show that PACAP38 induces a 170-fold increase in neurite length, with an EC50 of 3.1 nM, compared to 3.7 microM for forskolin and 143.4 microM for dibutyril cyclic AMP (dbcAMP). PACAP38 induced a 4-fold increase in the level of phosphorylation of cAMP-responsive element binding protein (CREB) in F11 cells with an EC50 of 130 pM. In contrast a peptide related to PACAP, vasoactive intestinal peptide (VIP) failed to induce CREB phosphorylation or neurite outgrowth in F11 cells. Addition of the nonselective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX) increased the potency of PACAP at inducing neurite outgrowth by ten-fold. The PKA inhibitor, H89, was a potent inhibitor of PACAP38-induced neurite outgrowth. The delta-opioid receptor agonist, SNC 80, did not inhibit PACAP-induced neurogenesis even though it did reduce CREB phosphorylation. In contrast to previous studies in PC12 cells, PACAP38 failed to show MEK1 activation in F11 cells. PACAP is upregulated in DRG neurons as a result of injury, and F11 cells provide an easily accessible in vitro model for understanding mechanisms underlying PACAP differentiation and neurogenesis.  相似文献   

15.
Several lines of evidence suggest that the N-methyl-D-aspartate (NMDA) receptor plays a significant role in fear conditioning and extinction. However, our knowledge of the role of d-serine, an endogenous ligand for the glycine site of the NMDA receptor, in fear extinction is quite limited compared to that of d-cycloserine, an exogenous partial agonist for the same site. In the current study, we examined the effects of d-serine on fear extinction and phosphorylation of extracellular signal-regulated kinase (ERK) in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC) during the process of fear extinction. Systemic administrations of d-serine (2.7 g/kg, i.p.) with or without the ERK inhibitor SL327 (30 mg/kg, i.p.) to C57BL/6 J mice were performed before fear extinction in a cued fear conditioning and extinction paradigm. Cytosolic and nuclear ERK 1/2 phosphorylation in the hippocampus, BLA, and mPFC were measured 1 h after extinction (E1h), 24 h after extinction (E24h), and 1 h after recall (R1h) by Western blotting. We found that d-serine enhanced the extinction of fear memory, and the effects of d-serine were reduced by the ERK phosphorylation inhibitor SL327. The Western blot analyses showed that d-serine significantly increased cytosolic ERK 2 phosphorylation at E1h in the hippocampus and cytosolic ERK 1/2 phosphorylation at R1h in the BLA. The present study suggested that d-serine might enhance fear extinction through NMDA receptor-induced ERK signaling in mice, and that d-serine has potential clinical importance for the treatment of anxiety disorders.  相似文献   

16.

Introduction

Exposure of vascular smooth muscle cells (VSMC) to homocysteine, at concentrations associated with an increased risk of cardiovascular events, enhances synthesis and secretion of Matrix Metalloproteinase-2 (MMP-2), which is involved in atherosclerotic plaque instabilization. This effect was prevented by inhibitors of Mitogen Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3-K) pathways, allowing to hypothesize that homocysteine activates both these pathways, likely via a receptor-mediated mechanism. One possible receptor is N-methyl-D-aspartate receptor (NMDAr), which is expressed in VSMC and is involved in homocysteine effects in other cell types.

Materials and Methods

VSMC exposed to DL-homocysteine or NMDA (100 μmol/L for both; 5 min-8 hours), were investigated by measuring: i) phosphorylation of ERK1/2, p38MAPK (signaling molecules of MAPK pathway) and Akt and p70S6K (signaling molecules of PI3-K pathway) by western blot; ii) synthesis and secretion of MMP-2 (western blot); iii) activation of MMP-2 (gelatin zimography). To evaluate NMDAr involvement in the homocysteine effects, the experiments were repeated in the presence of a non-competitive NMDAr-antagonist MK-801 (50 μmol/L) or L-glycine (10 μmol/L), which inhibits NMDAr function by promoting its internalization.

Results

DL-homocysteine and NMDA time-dependently increased: i) the phosphorylation of ERK1/2, p38 MAPK, Akt and p70S6K (ANOVA, p < 0.0001); ii) the synthesis, secretion and activation of MMP-2. DL-homocysteine and NMDA effects were prevented by VSMC pre-incubation with MK-801 or high L-glycine concentrations.

Conclusions

In human VSMC homocysteine-at concentrations associated with increased cardiovascular risk- activates MAPK and PI3-K pathways and MMP-2 synthesis and secretion through NMDA receptor, a potential mechanism involved in intracellular signaling in response to homocysteine in VSMC.  相似文献   

17.
Curcumin is a major constituent of curcuma longa, a traditional medicine used to manage mental disorders effectively in China. The neuroprotective effects of curcumin have been demonstrated in our previous studies. In the present research, we confirmed this effect by showing that curcumin application promoted the viability of cultured rodent cortical neurons. Moreover, when neurons were pretreated with tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), the protective effect of curcumin was blocked. Additionally, treatment of curcumin increased BDNF and phosphor-TrkB and both of these enhancements can be suppressed by ERK and PI-3K inhibitors. The administration of curcumin led to increased levels of phosphor-ERK and AKT, which were each blocked by MAPK and PI-3K inhibitors. Furthermore, the curcumin-induced increase in phosphorylated cyclic AMP response element binding protein (CREB), which has been implicated as a possible mediator of antidepressant actions, was prevented by MAPK and PI-3K inhibitors. Therefore, we hypothesize the neuroprotection of curcumin might be mediated via BDNF/TrkB-MAPK/PI-3K-CREB signaling pathway.  相似文献   

18.
HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors.  相似文献   

19.
Maternal smoking contributes to preterm delivery; glucocorticoids are the consensus treatment for prematurity, thus producing fetal coexposure to nicotine and dexamethasone. We administered nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers. Later in gestation, animals received dexamethasone (0.2 mg/kg). We assessed developmental indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, evaluating brain regions possessing major ACh projections and cell bodies; we measured choline acetyltransferase activity, hemicholinium-3 binding to the presynaptic choline transporter and nicotinic ACh receptor binding. In general, nicotine and dexamethasone, alone or in combination, produced regionally-selective increases or decreases in choline acetyltransferase activity but larger, consistent elevations in hemicholinium-3 and nicotinic ACh receptor binding; the patterns were indicative of ACh synaptic hyperactivity. Superimposed on these overall effects, there were significant disparities in temporal and regional relationships among the different treatments, notably involving effects that emerged later in life, after a period of apparent normality. This indicates that nicotine and dexamethasone do not simply produce an initial ACh neuronal injury that then persists throughout the lifespan but rather, they alter the developmental trajectory of ACh function. Most importantly, the combined exposure to nicotine + dexamethasone elicited greater changes than either of the individual exposures, involving both additive and synergistic effects. Our results thus point to potentially worse neurobehavioral outcomes of the pharmacotherapy of preterm labor in the offspring of smokers.  相似文献   

20.
Electroconvulsive therapy (ECT) is an effective treatment alternative for schizophrenia. Previous studies have already indicated the possible effects of oxidative stress in this disorder. However, there have been no previous studies evaluating the effects of ECT on the oxidative stress in these patients. We therefore aimed to investigate the acute and chronic effects of ECT on serum levels of oxidant and antioxidant molecules in schizophrenia patients (n = 28). The serum MDA and CAT levels of the patients with schizophrenia were higher than that of the controls before ECT (n = 20) but there was no significant difference in the serum NO and GSH levels of the patient groups compared to the controls. We found that the NO levels of the patients were higher than the controls in the group experiencing their first episode but not in the chronic group. There was a significant clinical improvement in the patients in terms of BPRS, SANS and SAPS reduction after the 9th ECT, but not the 1st ECT. Serum MDA levels were significantly reduced compared to the baseline after the 9th ECT session although there was no significant difference after the 1st session. Separate evaluation of the patient groups revealed that the significant MDA decrease following ECT was in the patients experiencing their first episode and not in the chronic group. No significant difference was noted in the serum levels of other oxidant and antioxidant molecules after either the 1st or 9th ECT session. These results suggest that ECT does not produce any negative effect on oxidative stress in patients with schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号