共查询到20条相似文献,搜索用时 46 毫秒
1.
K Rehman Z Chen WW Wang YW Wang A Sakamoto YF Zhang H Naranmandura N Suzuki 《Toxicology and applied pharmacology》2012,263(3):273-280
Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAsIII) and its intermediate metabolites such as monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMAIII and DMAIII) but not by iAsIII. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMAIII directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. 相似文献
2.
Hamdi M Yoshinaga M Packianathan C Qin J Hallauer J McDermott JR Yang HC Tsai KJ Liu Z 《Toxicology and applied pharmacology》2012,262(2):185-193
Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (AsIII) produces organic arsenicals, including MMAIII, MMAV and DMAV with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated AsIII to DMAV as an end product and produced MMAIII and MMAV as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate AsIII as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. 相似文献
3.
4.
Metabolic differences between two dimethylthioarsenicals in rats 总被引:1,自引:0,他引:1
Thioarsenicals are newly found arsenic metabolites in man and animals, and also in marine organisms. Dimethylmonothioarsinic acid (DMMTA(V)) and dimethyldithioarsinic acid (DMDTA(V)) are the only two thioarsenic metabolites detected in man and/or animals. However, their toxicological and biological significance is not known yet. The present study was performed to gain an insight into the significance of DMMTA(V) and DMDTA(V) in the metabolism of arsenic. The two thioarsenicals were synthesized chemically and injected intravenously into rats at the dose of 0.5 mg As/kg body weight. The distributions of arsenic in organs/tissues and body fluids were determined at 10 min and 12 h after the injection, and arsenic in liver and kidney supernatants, urine, plasma and red blood cell (RBC) lysates was subjected to speciation analysis by HPLC-ICP MS on a gel filtration GS 220 HQ column. Although both thioarsenicals are pentavalent arsenicals, they were distributed in organs/tissues and body fluids differently from the corresponding non-thiolated pentavalent arsenicals, and also from each other. Namely, DMMTA(V) was first found in organs/tissues at 10 min, and then redistributed and retained mostly in RBCs at 12 h, as in the case of trivalent dimethylarsinous acid (DMA(III)). On the other hand, although DMDTA(V) was also found in organs/tissues at 10 min, it had been efficiently excreted in urine in its intact form at 12 h. Thus, DMMTA(V) was unexpectedly distributed in and taken up by organs/tissues in a manner similar to DMA(III) rather than DMA(V), whereas DMDTA(V) was distributed similarly to DMA(V) as expected, but was much more efficiently excreted in urine. 相似文献
5.
Hua Naranmandura Katsuya Iwata Yasumitsu Ogra 《Toxicology and applied pharmacology》2010,245(1):67-75
Arsenic toxicity and distribution are highly dependent on animal species and its chemical species. Recently, thioarsenical has been recognized in highly toxic arsenic metabolites, which was commonly found in human and animal urine. In the present study, we revealed the mechanism underlying the distribution and metabolism of non-thiolated and thiolated dimethylarsenic compounds such as dimethylarsinic acid (DMAV), dimethylarsinous acid (DMAIII), dimethylmonothioarsinic acid (DMMTAV), and dimethyldithioarsinic acid (DMDTAV) after the administration of them into femoral vein of hamsters. DMAV and DMDTAV distributed in organs and body fluids were in their unmodified form, while DMAIII and DMMTAV were bound to proteins and transformed to DMAV in organs. On the other hand, DMAV and DMDTAV were mostly excreted into urine as their intact form 1 h after post-injection, and more than 70% of the doses were recovered in urine as their intact form. By contrast, less than 8-14% of doses were recovered in urine as DMAV, while more than 60% of doses were distributed in muscles and target organs (liver, kidney, and lung) of hamsters after the injection of DMMTAV and DMAIII. However, in red blood cells (RBCs), only a small amount of the arsenicals was distributed (less than 4% of the doses) after the injection of DMAIII and DMMTAV, suggesting that the DMAIII and DMMTAV were hardly accumulated in hamster RBCs. Based on these observations, we suggest that although DMMTAV and DMDTAV are thioarsenicals, DMMTAV is taken up efficiently by organs, in a manner different from that of DMDTAV. In addition, the distribution and metabolism of DMMTAV are like in manner similar to DMAIII in hamsters, while DMDTAV is in a manner similar to DMAV. 相似文献
6.
Formation of dimethylthioarsenicals in red blood cells 总被引:1,自引:0,他引:1
The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA(V)) and dimethyldithioarsinic (DMDTA(V)) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA(V)) and comparable to dimethylarsinous acid (DMAIII) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA(V) and DMDTA(V) were not taken up by either type of RBCs, DMAIII and DMMTA(V) were taken up by both (more efficiently by rat ones), though DMMTA(V) was taken up slowly, and then the arsenic transformed into DMDTA(V) was excreted from both types of animal RBCs. On the other hand, although DMA(III) taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA(V) and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 microM DMAIII was recovered from the incubation medium in the forms of DMA(V) and DMMTA(V) in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA(V) was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMAIII and then taken up by RBCs in humans, where it is transformed into DMMTA(V) and then excreted again into the bloodstream. 相似文献
7.
8.
Valenzuela OL Germolec DR Borja-Aburto VH Contreras-Ruiz J García-Vargas GG Del Razo LM 《Toxicology and applied pharmacology》2007,222(3):264-270
Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-alpha) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs(III), MAs(V), DMAs(III), DMAs(V)). This study examines the relationship between TGF-alpha concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-alpha in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-alpha concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-alpha levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-alpha concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-alpha than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-alpha in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. 相似文献
9.
Yung-Kai Huang Yeong-Shiau Pu Chi-Jung Chung Horng-Sheng Shiue Mo-Hsiung Yang Chien-Jen Chen Yu-Mei Hsueh 《Food and chemical toxicology》2008,46(3):929-938
To elucidate the influence of folate concentration on the association between urinary arsenic profiles and urothelial carcinoma (UC) risks in subjects without evident arsenic exposure, 177 UC cases and 488 controls were recruited between September 2002 and May 2004. Urinary arsenic species including inorganic arsenic, monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) were determined by employing a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry procedure. After adjustment for suspected risk factors of UC, the higher indicators of urinary total arsenic levels, percentage of inorganic arsenic, percentage of MMA(V), and primary methylation index were associated with increased risk of UC. On the other hand, the higher plasma folate levels, urinary percentage of DMA(V) and secondary methylation index were associated with decreased risk of UC. A dose-response relationship was shown between plasma folate levels or methylation indices of arsenic species and UC risk in the respective quartile strata. The plasma folate was found to interact with urinary arsenic profiles in affecting the UC risk. The results of this study may identify the susceptible subpopulations and provide insight into the carcinogenic mechanisms of arsenic even at low arsenic exposure. 相似文献
10.
Hua Naranmandura Noriyuki Suzuki Tony McKnight-Whitford Kazuo T. Suzuki 《Toxicology and applied pharmacology》2009,237(2):214-220
Diphenylarsinic acid (DPAA) is an environmental degradation product of diphenylarsine chloride or diphenylarsine cyanide, which were chemical warfare agents produced by Japan during the World War II. DPAA is now considered a dangerous environmental pollutant in Kamisu, Japan, where it is suspected of inducing health effects that include articulation disorders (cerebellar ataxia of the extremities and trunk), involuntary movements (myoclonus and tremor), and sleep disorders. In order to elucidate the toxic mechanism of DPAA, we focused on the distribution and metabolism of DPAA in rats. Systemic distribution of DPAA was determined by administering DPAA orally to rats at a single dose of 5.0 mg As/kg body weight, followed by speciation analysis of selected organs and body fluids. Most of the total arsenic burden was recovered in the urine (23% of the dose) and feces (27%), with the distribution in most other organs/tissues being less than 1%. However, compared with the typical distribution of inorganic dietary arsenic, DPAA administration resulted in elevated levels in the brain, testes and pancreas. In contrast to urine, in which DPAA was found mostly in its unmodified form, the tissues and organs contained arsenic that was mostly bound to non-soluble and soluble high molecular weight proteins. These bound arsenic species could be converted back to DPAA after oxidation with H2O2, suggesting that the DPAA bound to proteins had been reduced within the body and was in a trivalent oxidation state. Furthermore, we also detected two unknown arsenic metabolites in rat urine, which were assumed to be hydroxylated arsenic metabolites. 相似文献
11.
Thioarsenicals have been paid much attention due to the toxicity of arsenic, since some of them are highly toxic and commonly found in the urine of mammals. We previously reported that thioarsenicals might be produced in red blood cells (RBCs). Here, we further characterized the mechanism underlying the production and metabolism of thioarsenicals in RBCs using 34S-labeled dimethylmonothioarsinic acid (34S-DMMTAV) and purified rat hemoglobin (Hb) or a rat RBC lysate. 34S-DMMTAV did not bind to Hb on incubation with purified rat Hb, remaining in its original form. However, when 34S-DMMTAV was incubated with a rat RBC lysate, only arsenic, i.e., not sulfur (34S), was detected in a form bound to Hb (As-Hb). In addition, another arsenic product containing sulfur (34S) in the molar ratio of 34S/As = 2 was detected, which was assigned as dimethyldithioarsinic acid (DMDTAV), suggesting that arsenic does not bind to Hb in the form of 34S-DMMTAV but does so in the form of dimethylarsinous acid (DMAIII). Namely, DMMTAV appeared to be hydrolyzed into dimethylarsinic acid (DMAV) and H34S-, and the released H34S- reacted with DMMTAV to produce DMDTAV. Thus, DMMTAV was transformed into DMDTAV and DMAV (2DMMTAV - > DMDTAV + DMAV), the latter product being reduced to DMAIII in the presence of GSH and bound to Hb. In a separate experiment, 34S-DMMTAV was incubated with sulfide (Na2S) and GSH. Although DMMTAV was not transformed into DMDTAV in the presence of only Na2S or GSH, it was transformed into DMDTAV in the presence of both Na2S and GSH. Our results suggest that DMMTAV is hydrolyzed enzymatically into DMAV and sulfide, the former being reduced to DMAIII and bound to Hb, and the latter reacting with DMMTAV to yield DMDTAV. Thus, DMMTAV is transformed into DMDTAV and DMAV through a hydrolytic reaction in a manner similar to a disproportionation reaction, DMAV being reduced and bound to Hb (As-Hb), and DMDTAV being produced more in the presence of sulfides in the medium. 相似文献
12.
L Ding RJ Saunders Z Drobná FS Walton P Xun DJ Thomas M Stýblo 《Toxicology and applied pharmacology》2012,264(1):121-130
Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAsIII) or methylarsonous acid (MAsIII) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAsIII to MAsIII, methylarsonic acid (MAsV), dimethylarsinous acid (DMAsIII), and dimethylarsinic acid (DMAsV); MAsIII was converted to DMAsIII and DMAsV. Although neither enzyme required GSH to support methylation of iAsIII or MAsIII, addition of 1 mM GSH decreased Km and increased Vmax estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, Vmax and Km values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAsIII was produced from iAsIII in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAsIII. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. 相似文献
13.
M. Molin T.A. Ydersbond S.M. Ulven M. Holck L. Dahl J.J. Sloth D. Fliegel W. Goessler J. Alexander H.M. Meltzer 《Food and chemical toxicology》2012
Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals than most seafood. Eight volunteers ingested a test meal consisting of 150 g blue mussel (680 μg As), followed by 72 h with an identical, low As controlled diet and full urine sampling. We provide a complete speciation, with individual patterns, of urinary As excretion. Total As (tAs) urinary excretion was 328 ± 47 μg, whereof arsenobetaine (AB) and dimethylarsinate (DMA) accounted for 66% and 21%, respectively. Fifteen minor urinary arsenicals were quantified with inductively coupled plasma mass spectrometry (ICPMS) coupled to reverse-phase, anion and cation-exchange high performance liquid chromatography (HPLC). Thio-arsenicals and non-thio minor arsenicals (including inorganic As (iAs) and methylarsonate (MA)) contributed 10% and 7% of the total sum of species excretion, respectively, but there were large individual differences in the excretion patterns. Apparently, formation of thio-arsenicals was negatively correlated to AB formation and excretion, possibly indicating a metabolic interrelationship. The results may be of toxicological relevance since DMA and MA have been classified as possibly carcinogenic, and six of the excreted As species were thio-arsenicals which recently have been recognized as toxic, while iAs toxicity is well known. 相似文献
14.
Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration 总被引:1,自引:0,他引:1
Hughes MF Devesa V Adair BM Styblo M Kenyon EM Thomas DJ 《Toxicology and applied pharmacology》2005,208(2):186-197
Exposure to monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) can result from their formation as metabolites of inorganic arsenic and by the use of the sodium salts of MMA(V) as herbicides. This study compared the disposition of MMA(V) and MMA(III) in adult female B6C3F1 mice. Mice were gavaged p.o. with MMA(V), either unlabeled or labeled with 14C at two dose levels (0.4 or 40 mg As/kg). Other mice were dosed p.o. with unlabeled MMA(III) at one dose level (0.4 mg As/kg). Mice were housed in metabolism cages for collection of excreta and sacrificed serially over 24 h for collection of tissues. MMA(V)-derived radioactivity was rapidly absorbed, distributed and excreted. By 8 h post-exposure, 80% of both doses of MMA(V) were eliminated in urine and feces. Absorption of MMA(V) was dose dependent; that is, there was less than a 100-fold difference between the two dose levels in the area under the curves for the concentration-time profiles of arsenic in blood and major organs. In addition, urinary excretion of MMA(V)-derived radioactivity in the low dose group was significantly greater (P < 0.05) than in the high dose group. Conversely, fecal excretion of MMA(V)-derived radioactivity was significantly greater (P < 0.05) in the high dose group than in the low dose group. Speciation of arsenic by hydride generation-atomic absorption spectrometry in urine and tissues of mice administered MMA(V) or MMA(III) found that methylation of MMA(V) was limited while the methylation of MMA(III) was extensive. Less than 10% of the dose excreted in urine of MMA(V)-treated mice was in the form of methylated products, whereas it was greater than 90% for MMA(III)-treated mice. In MMA(V)-treated mice, 25% or less of the tissue arsenic was in the form of dimethylarsenic, whereas in MMA(III)-treated mice, 75% or more of the tissue arsenic was in the form of dimethylarsenic. Based on urinary analysis, administered dose of MMA(V) did not affect the level of its metabolites excreted. In the tested range, dose affects the absorption, distribution and route of excretion of MMA(V) but not its metabolism. 相似文献
15.
Kevin M. Kubachka Karen Herbin-Davis David J. Thomas 《Toxicology and applied pharmacology》2009,239(2):137-143
Although metabolism of arsenicals to form methylated oxoarsenical species has been extensively studied, less is known about the formation of thiolated arsenical species that have recently been detected as urinary metabolites. Indeed, their presence suggests that the metabolism of ingested arsenic is more complex than previously thought. Recent reports have shown that thiolated arsenicals can be produced by the anaerobic microflora of the mouse cecum, suggesting that metabolism prior to systemic absorption may be a significant determinant of the pattern and extent of exposure to various arsenic-containing species. Here, we examined the metabolism of 34S labeled dimethylthioarsinic acid (34S-DMTAV) by the anaerobic microflora of the mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS/MS to monitor for the presence of various oxo- and thioarsenicals. The use of isotopically enriched 34S-DMTAV made it possible to differentiate among potential metabolic pathways for production of the trimethylarsine sulfide (TMASV). Upon in vitro incubation in an assay containing anaerobic microflora of mouse cecum, 34S-DMTAV underwent several transformations. Labile 34S was exchanged with more abundant 32S to produce 32S-DMTAV, a thiol group was added to yield DMDTAV, and a methyl group was added to yield 34S-TMASV. Because incubation of 34S-DMTAV resulted in the formation of 34S-TMASV, the pathway for its formation must preserve the arsenic-sulfur bond. The alternative metabolic pathway postulated for formation of TMASV from dimethylarsinic acid (DMAV) would proceed via a dimethylarsinous acid (DMAIII) intermediate and would necessitate the loss of 34S label. Structural confirmation of the metabolic product was achieved using HPLC-ESI-MS/MS. The data presented support the direct methylation of DMTAV to TMASV. Additionally, the detection of isotopically pure 34S-TMASV raises questions about the sulfur exchange properties of TMASV in the cecum material. Therefore, 34S-TMASV was incubated and the exchange was monitored with respect to time. The data suggest that the As-S bond associated with TMASV is less labile than the As-S bond associated with DMTAV. 相似文献
16.
Kinoshita A Wanibuchi H Wei M Yunoki T Fukushima S 《Toxicology and applied pharmacology》2007,221(3):295-305
Monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)) and trimethylarsine oxide (TMAO(V)) are well-documented inorganic arsenic (iAs) methylated metabolites. In our previous studies, DMA(V) and TMAO(V) were shown to exert carcinogenicity in the rat bladder and liver, respectively. Furthermore, MMA(V), DMA(V) and TMAO(V) exhibited promoting activity on rat hepatocarcinogenesis. To clarify mechanisms of arsenical carcinogenicity and compare biological responses in the liver and bladder, male F344 rats were sequentially treated for 5, 10, 15, 20 days with MMA(V), DMA(V) and TMAO(V) in their drinking water at a dose of 0.02%. Significant increase of P450 total content and generation of hydroxyl radicals in the liver were observed from 10 and 15 days of treatment with arsenicals, respectively, with the highest levels induced by TMAO(V). Similarly, elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation was found in the DNA with significant increase by TMAO(V) treatment in the liver at days 15 and 20, and DMA(V) in the bladder after 20 days treatment. In addition, cell proliferation and apoptosis indices were significantly increased by TMAO(V) in the liver and by DMA(V) in the bladder of rats. These events were accompanied by differential up-regulation of phase I and II metabolizing enzymes, cyclins D1 and E, PCNA, caspase 3 and FasL. The results indicate that early elevation of 8-OHdG and cell proliferation via generation of oxidative stress by TMAO(V) and DMA(V) contributes to their carcinogenicity in the rat liver and bladder. 相似文献
17.
The effects of six arsenic compounds including As(+3), MMA(+3), DMA(+3), As(+5), MMA(+5), and DMA(+5) on the viability of NIH3T3 cells were examined. As(+3) and MMA(+3), but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As(+3) and MMA(+3) were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As(+3) and MMA(+3) treatments. An increase in the intracellular peroxide level was examined in As(+3)- and MMA(+3)-treated NIH3T3 cells, and As(+3)- and MMA(+3)-induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As(+3)- and MMA(+3)-induced cytotoxicity. Suppression of JNKs significantly inhibited As(+3)- and MMA(+3)-induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As(+3)- and MMA(+3)-induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As(+3) or MMA(+3). These data provide the first evidence to indicate that apoptosis induced by As(+3) and MMA(+3) is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved. 相似文献
18.
A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H2O2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo. 相似文献
19.
Shen J Wanibuchi H Waalkes MP Salim EI Kinoshita A Yoshida K Endo G Fukushima S 《Toxicology and applied pharmacology》2006,210(3):171-180
Epidemiological studies indicated that human arsenic exposure can induce urinary bladder cancer. Methylation of inorganic arsenic can generate more reactive and toxic organic arsenical species. In this regard, it was recently reported that the methylated arsenical metabolite, dimethylarsinic acid [DMA(V)], induced urinary bladder tumors in rats. However, other methylated metabolites, like monomethylarsonic acid [MMA(V)] and trimethylarsine oxide (TMAO) were not carcinogenic to the urinary bladder. In order to compare the early effects of DMA(V), MMA(V), and TMAO on the urinary bladder transitional cell epithelium at the scanning electron microscope (SEM) level, we investigated the sub-chronic (13 weeks) toxicological effects of MMA(V) (187 ppm), DMA(V) (184 ppm), TMAO (182 ppm) given in the drinking water to male and female F344 rats with a focus on the urinary bladder in this study. Obvious pathological changes, including ropy microridges, pitting, increased separation of epithelial cells, exfoliation, and necrosis, were found in the urinary bladders of both sexes, but particularly in females receiving carcinogenic doses of DMA(V). Urine arsenical metabolic differences were found between males and females, with levels of MMA(III), a potential genotoxic form, higher in females treated with DMA(V) than in males. Thus, this study provides clear evidence that DMA(V) is more toxic to the female urinary bladder, in accord with sensitivity to carcinogenesis. Important gender-related metabolic differences including enhanced presentation of MMA(III) to the urothelial cells might possibly account for heightened sensitivity in females. However, the potential carcinogenic effects of MMA(III) need to be further elucidated. 相似文献
20.
Mitchell L. Jones Christopher J. Martoni Sandeep Tamber Mathieu Parent Satya Prakash 《Food and chemical toxicology》2012
Probiotic organisms have shown promise in treating diseases. Previously, we have reported on the efficacy of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation at lowering serum cholesterol levels in otherwise healthy hypercholesterolemic adults. This study investigates the safety and toxicology of oral ingestion of microencapsulated L. reuteri NCIMB 30242 in a yogurt formulation. A randomized group of 120 subjects received a dose of 5 × 1010 CFU microencapsulated L. reuteri NCIMB 30242 in yogurt (n = 59) or placebo yogurt (n = 61) twice/day for 6 weeks. Clinical chemistry and hematological parameters of safety were analyzed. Fecal samples were collected at these time points for the analysis of deconjugated bile acids. The frequency, duration and intensity of adverse events (AEs) and clinical significance of safety parameters were recorded for both groups. No clinically significant differences between the probiotic yogurt and placebo yogurt treated groups were detected in either the blood clinical chemistry or hematology results and there was no significant increase in fecal deconjugated bile acids (P > 0.05) between treated and control groups. The frequency and intensity of AEs was similar in the two groups. These results demonstrate the safe use of this formulation in food. 相似文献