首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epithelial growth factor receptor (EGFR) has been proposed as a target for anticancer therapy. ZD1839 (Iressa) is a quinazoline derivative that selectively inhibits the EGFR tyrosine kinase activity and is under clinical use in cancer patients. However, the molecular mechanisms involved in ZD1839-mediated anticancer effects remain largely uncharacterized. In this study, exposure of human lung adenocarcinoma A549 cells to ZD1839 caused G1 arrest, and subsequently induced apoptosis. Moreover, ZD1839 increased the protein levels of p27(KIP1) and retinoblastoma-related Rb2/p130 while decreased the expression of cyclin-dependent kinase-2 (CDK2), CDK4, CDK6 and cyclin-D1, cyclin-D3. In vitro kinase assay showed that ZD1839 decreased these CDKs expression in A549 cells, leading to significantly reduce their kinase activities. In addition, ZD1839-induced death of A549 cells with characteristics of apoptosis including apoptotic morphological changes, DNA fragmentation and enhancement of TUNEL-positive cell. These events were accompanied by a marked increase of Fas protein expression, and activation of caspase-2, -3, -8. Co-treatment of cells with Fas antagonist antibody significantly blocked ZD1839-induced apoptosis. Caspase-8 and caspase-3 inhibitors, but not a caspase-9 inhibitor, were also capable of restoring cell viability. Our results indicate that downregulation of the expression and function of CDK2, CDK4, CDK6, cyclin-D1 and cyclin-D3, as well as upregulation of p27(KIP1) and pRb2/p130, are strong candidates for the cell cycle regulator that arrests ZD1839-treated A549 cells at G1 phase. Furthermore, upregulation of Fas appears to play a major role in the initiation of ZD1839-induced apoptosis, activation of caspase-8/caspase-3 cascade is involved in the execution phase of this death program.  相似文献   

2.
Aucubin, an iridoid glycoside isolated from the leaves of Aucuba japonica, inhibits human non-small cell lung cancer A549 cells by blocking cell cycle progression in the G(0)/G(1) phase and inducing apoptosis. An ELISA showed that the G(0)/G(1) phase arrest is due to p53-mediated induction of p21. Enhancement of Fas and its two ligands, membrane-bound and soluble Fas ligand, may be responsible for the apoptotic effect induced by aucubin. The present study shows, for the first time, that the induction of p53 and activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of aucubin in A549 cells.  相似文献   

3.
Gynostemma pentaphyllum Makino is known in Asia for its effect on the treatment of hepatitis and cardiovascular diseases. Gypenosides (Gyp) are the major components extracted from Gynostemma pentaphyllum Makino. However, the molecular mechanism underlying the Gyp-induced cell cycle arrest and apoptotic process is unclear. In this study, the chemopreventive role of Gyp in human lung cancer (A549) cells in vitro was evaluated by studying the regulation of the cell cycle and apoptosis. Gyp induced GO/G1 arrest and apoptosis in the human lung cancer A549 cells. Investigation of the cyclin-dependent protein kinase inhibitors by Western blotting showed that p16, p21, p27 and p53 proteins were increased with the increasing time of incubation with Gyp in the A549 cells. This increase may be the major factor by which Gyp caused GO/G1 arrest in the examined cells. Flow cytometric assay and gel electrophoresis of DNA fragmentation also confirmed that Gyp induced apoptosis in the A549 cells. Our data demonstrated that Gyp-induced apoptotic cell death was accompanied by up-regulation of Bax, caspase-3 and caspase-9, but down-regulation of the Bcl-2 levels. Taken together, Gyp appears to exert its anticancer properties by inducing GO/GI-phase arrest and apoptosis via activation of caspase-3 in human lung A549 cancer cells.  相似文献   

4.
Kuo PL  Hsu YL  Lin TC  Chang JK  Lin CC 《Anti-cancer drugs》2005,16(4):409-415
Casuarinin, a hydrolyzable tannin isolated from the bark of Terminalia arjuna Linn. (Combretaceae), inhibits human non-small cell lung cancer A549 cells by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis. Enzyme-linked immunosorbent assay showed that the G0/G1 phase arrest is due to p53-dependent induction of p21/WAF1. An enhancement in Fas/APO-1 and the two forms of Fas ligand (FasL), membrane-bound FasL and soluble FasL, might be responsible for the apoptotic effect induced by casuarinin. Our study reports here for the first time that the induction of p53 and the activity of the Fas/FasL apoptotic system may participate in the antiproliferative activity of casuarinin in A549 cells.  相似文献   

5.
Ye B  Xie Y  Qin ZH  Wu JC  Han R  He JK 《Acta pharmacologica Sinica》2011,32(11):1397-1401

Aim:

To assess the cytotoxic effect of crotoxin (CrTX), a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus, in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.

Methods:

A549 cells were treated with gradient concentrations of CrTX, and the cell cycle and apoptosis were analyzed using a flow cytometric assay. The changes of cellular effectors p53, caspase-3 and cleaved caspase-3, total P38MAPK and pP38MAPK were investigated using Western blot assays. A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.

Results:

Treatment of A549 cells with CrTX (25–200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL). Treatment with CrTX (25 μg/mL) for 24 h caused G1 arrest and induced cell apoptosis. CrTX (25 μg/mL) significantly increased the expression of wt p53, cleaved caspase-3 and phospho-P38MAPK. Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level, but G1 arrest remained unchanged and highly expressed p53 sustained. Intraperitoneal injection of CrTX (10 μg/kg, twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth, and decreased MVD and VEGF levels.

Conclusion:

CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3, and by cell cycle arrest mediated by increased wt p53 expression. In addition, CrTX displayed anti-angiogenic effects in vivo.  相似文献   

6.
1. Isoliquiritigenin (ISL) is a natural pigment with the simple chalcone structure 4,2',4'-trihydroxychalcone. In the present study, we report, for the first time, ISL-induced inhibition of the proliferation of the human non-small cell lung cancer A549 cell line. 2. The results showed that ISL not only inhibited A549 cell proliferation, but also induced apoptosis and blocked cell cycle progression in the G1 phase. An ELISA assay demonstrated that ISL significantly increased the expression of p53 and p21/WAF1 protein, which caused cell cycle arrest. 3. An enhancement in Fas and its two ligands, namely membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), may be responsible for the apoptotic effect induced by ISL. 4. Taken together, the results indicate that the p53 and Fas/FasL apoptotic system may participate in the antiproliferative activity of ISL in A549 cells.  相似文献   

7.
Abstract: Asperfuranone, a novel compound of genomic mining in Aspergillus nidulans, was investigated for its anti‐proliferative activity in human non‐small cell lung cancer A549 cells. To identity the anti‐cancer mechanism of asperfuranone, we assayed its effect on apoptosis, cell cycle distribution, and levels of p53, p21 Waf1/Cip1, Fas/APO‐1 receptor and Fas ligand. Enzyme‐linked immunosorbent assay showed that the G0/G1 phase arrest might be due to p53‐dependent induction of p21 Waf1/Cip1. An enhancement in Fas/APO‐1 and its two form ligands, membrane‐bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by asperfuranone. Our study reports here for the first time that the induction of p53 and the activity of Fas/Fas ligand apoptotic system may participate in the anti‐proliferative activity of asperfuranone in A549 cells.  相似文献   

8.
This study is the first to investigate isokotomolide A (IKA), a butanolide compound isolated from the leaves of Cinnamomum kotoense Kanehira & Sasaki (Lauraceaee), which exhibits an anti-proliferative activity in human non-small cell lung cancer A549 cells. The results show that IKA inhibits the proliferation of A549 by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis. Blockade of cell cycle was associated with increased p21/WAF1 levels and reduced amounts of cyclin D1, cyclin E, Cdk2, Cdk4, and Cdk6 in a p53-mediated manner. IKA treatment also increased p53 phosphorylation (Ser15) and decreased the interaction of p53-MDM2. IKA treatment triggered the mitochondrial apoptotic pathway, indicated by changing Bax/Bcl-2 ratios, cytochrome c release and caspase-9 activation. In addition, pre-treatment of cells with caspase-9 inhibitor inhibited IKA-induced apoptosis, indicating that caspase-9 activation was involved in A549 cells' apoptosis induced by IKA. Our study reports here for the first time that the induction of p53/p21 and the initiation of the mitochondrial apoptotic system may participate in the anti-proliferative activity of IKA in human non-small cell lung cancer cells.  相似文献   

9.
1. Paeoniflorin (PF), isolated from the paeony root, is reported to have immunoregulatory, neuromuscular blocking, anticonvulsant, antihyperglycaemic and antihypotensive effects. 2. The present study investigated the antiproliferative activity of PF. The results showed that PF inhibited the proliferation of A549 by blocking cell cycle progression in the G(0)/G(1) phase and inducing apoptosis. 3. An ELISA showed that G(0)/G(1) phase arrest may be due to p53-independent induction of p21/wild-type p53-activated fragment 1 (WAF1). Increased protein expression of Fas/apoptosis-1 (APO-1) and its two ligands, membrane-bound Fas ligand and soluble Fas ligand, may be responsible for the PF-induced apoptosis. 4. This is the first study to show that the induction of p21/WAF1 and the activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of PF in A549 cells.  相似文献   

10.
Prodelphinidin B-2 3'-O-gallate, a proanthocyanidin gallate isolated from green tea leaf, was investigated for its anti-proliferative activity in human non-small cell lung cancer A549 cells. The results showed that prodelphinidin B-2 3'-O-gallate inhibited the proliferation of A549 cells with no detectable toxic effects on normal WI-38 cells as measured by the XTT assay. Flow cytometric analysis showed that prodelphinidin B-2 3'-O-gallate blocked cell cycle progression in the G0/G1 phase. In addition, prodelphinidin B-2 3'-O-gallate effectively induced A549 cell apoptosis as determined by assessing the nucleosome level in cytoplasm. Enzyme-linked immunosorbent assay showed that the G0/G1 phase arrest is due to p53-independent induction of p21/WAF1. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by prodelphinidin B-2 3'-O-gallate. We suggested that prodelphinidin B-2 3'-O-gallate's activities might be potentially contribute to its overall chemopreventive effects against lung cancer, and can possibly be considered for future therapeutic application.  相似文献   

11.
BPR0Y007, a bis-benzylidenecyclopentanone derivative (2,5-bis- (4-hydroxy-3-methoxybenzylidene) cyclopentanone), was identified in our laboratory as a novel antineoplastic agent with a broad spectrum of antitumor activity against many human cancer cells. A previous study showed that BPR0Y007 inhibited DNA topoisomerase I (Top 1) activity and prevented tubulin polymerization. Notably, no cross-resistance with BPR0Y007 was observed in camptothecin-, VP-16- or vincristine-resistant cell lines. In this study, we further investigated the cellular and molecular events underlying the antitumoral function of this compound in human oral epidermoid carcinoma KB cells, focusing on the early cytotoxic effect. Treatment of KB cells with BPR0Y007-induced G(2)/M phase arrest followed by sub-G(1) phase accumulation. Annexin-V-propidium iodide (PI) binding assay and DNA fragmentation assay further indicated that BPR0Y007-induced cell death proceeded through an apoptotic pathway as opposed to via necrosis. This compound produced a time-dependent activation of caspases-3 and -8, however, another caspase-3 initiator, caspase-9, was only marginally activated at later time point. We further demonstrated that the activation of the caspases cascade and nuclear fragmentation was not associated with inactivated Bcl-2 and perturbed mitochondrial membrane potential by BPR0Y007. The finding that BPR0Y007-induced apoptosis through a membrane-mediated mechanism was supported by up-regulated expression of Fas (CD95/APO-1), but not Fas-L. Furthermore, up-regulation of p53 and its affected gene, MDM2, in KB cells was found after BPR0Y007 exposure. Overall, our results demonstrated that the BPR0Y007 could induce an early cytotoxic apoptosis through a caspase-8-dependent but mitochondrial-caspase-9 independent pathway, and involving upregulation of p53.  相似文献   

12.
This study first investigates the anticancer effect of kotomolide A (KTA) in human non-small cell lung cancer cells, A549. KTA has exhibited effective cell growth inhibition by inducing cancer cells to undergo G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased the activation of ataxia telangiectasia-mutated (ATM). Activation of ATM by KTA phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute-2 (MDM2) interaction. In addition, KTA-mediated G2/M phase arrest also was associated with the decrease in the amounts of cyclinB1, cyclinA, Cdc2 and Cdc25C and increase in the phosphorylation of Chk2, Cdc25C and Cdc2. Specific ATM inhibitor, caffeine, significantly decreased KTA-mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. KTA treatment triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in mitochondrial membrane potential loss and caspase-9 activation. Taken together, these results suggest a critical role for ATM and p53 in KTA-induced G2/M arrest and apoptosis of human non-small cell lung cancer cells.  相似文献   

13.
Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP‐ribose) polymerase‐1 (PARP‐1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP‐1 regulatory pathway mediated HQ‐induced cell cycle arrest and apoptosis, we assessed the effect of PARP‐1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP‐1 deficientTK6 cells (TK6‐shPARP‐1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP‐1‐deficient TK6 cells (TK6‐shPARP‐1) compared to those negative control cells (TK6‐shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up‐regulation of Fas expression, followed by caspase‐3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6‐shPARP‐1 cells than in TK6‐shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6‐shPARP‐1 cells than in TK6‐shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up‐regulation and p53‐mediated apoptosis in TK6‐shNC cells. The reduction of PARP‐1 expression further intensified up‐regulation of p53 in TK6‐shPARP‐1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6‐shPARP‐1 cells compared to TK6‐shNC cells.  相似文献   

14.
15.
In human neuroblastoma SK-N-BE(2) cells undergoing apoptotic death induced by ginsenoside Rh2, a dammarane glycoside that was isolated from Panax ginseng C. A. Meyer, caspase-1 and caspase-3 were activated. The expression of Bax was increased in the cells treated with ginsenoside Rh2, whereas Bcl-2 expression was not altered. Treatment with caspase-1 inhibitor, Ac-YVAD-CMK, or caspase-3 inhibitor, Z-DEVD-FMK, partially inhibited ginsenoside Rh2-induced cell death but almost suppressed the cleavage of the 116 kDa PARP into a 85 kDa fragment. When the levels of p53 were examined in this process, p53 accumulated rapidly in the cells treated early with ginsenoside Rh2. These results suggest that activation of caspase-1 and -3 and the up-regulation of Bax are required in order for apoptotic death of SK-N-BE(2) cells to be induced by ginsenoside Rh2, and p53 plays an important role in the pathways to promote apoptosis.  相似文献   

16.
Gossypol has wide antineoplastic effects in vitro, but its effects on human lung cancer have not been explored. To evaluate the activity of gossypol against alveolar cell lung cancer and to provide information on the mechanism of action, we examined the effects of gossypol on the proliferation of A549 cells indirectly using an XTT assay and on the distribution of cells within the phases of the cell cycle using flow cytometry. We also examined several factors that may affect apoptosis, including p53, p21/WAF1, Fas receptor, Fas ligand (FasL) and caspase 8 activity. The results showed that gossypol inhibited proliferation of A549 cells at a concentration of 0.5 micromol/L after 12 h treatment. The effect was both dose- and time-dependent by the induction of apoptosis without the effect of p53 and p21/WAF1. Upregulation of Fas/FasL, in association with the activation of downstream caspase 8 activity, was observed following treatment with gossypol. The Fas/FasL pathway accounted for 75% of gossypol-mediated apoptosis. We suggest that the Fas/FasL apoptotic system is the major pathway for gossypol-mediated apoptosis of A549 cells. Gossypol had no effect on the distribution of A549 cells within the phases of the cell cycle. In conclusion, gossypol inhibited A549 cells mainly by induction of the Fas/FasL apoptotic pathway, but not the p53 and p21/WAF1 pathway.  相似文献   

17.
Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we evaluated the in vitro effects of FCCP on the growth of Calu-6 lung cancer cells. FCCP inhibited the growth of Calu-6 cells with an IC50 of approximately 6.64 ± 1.84 μM at 72 h, as shown by MTT. DNA flow cytometric analysis indicated that FCCP induced G1 phase arrest below 20 μM of FCCP. Treatment with FCCP decreased the level of CDKs and cyclines in relation to G1 phase. In addition, FCCP not only increased the p27 level but also enhanced its binding with CDK4, which was associated with hypophosphorylation of Rb protein. While transfection of p27 siRNA inhibited G1 phase arrest in FCCP-treated cells, it did not enhance Rb phosphorylation. FCCP also efficiently induced apoptosis. The apoptotic process was accompanied with an increase in sub-G1 cells, annexin V staining cells, mitochondria membrane potential (MMP) loss and cleavage of PARP protein. All of the caspase inhibitors (caspase-3, -8, -9 and pan-caspase inhibitor) markedly rescued the Calu-6 cells from FCCP-induced cell death. However, knock down of p27 protein intensified FCCP-induced cell death. Moreover, FCCP induced the depletion of GSH content in Calu-6 cells, which was prevented by all of the caspase inhibitors. In summary, our results demonstrated that FCCP inhibits the growth of Calu-6 cells in vitro. The growth inhibitory effect of FCCP might be mediated by cell cycle arrest and apoptosis via decrease of CDKs and caspase activation, respectively. These findings now provide a better elucidation of the mechanisms involved in FCCP-induced growth inhibition in lung cancer.  相似文献   

18.
We previously demonstrated that MG-2477 (3-cyclopropylmethyl-7-phenyl-3H-pyrrolo[3,2-f]quinolin-9(6H)-one) inhibits the growth of several cancer cell lines in vitro. Here we show that MG-2477 inhibited tubulin polymerization and caused cells to arrest in metaphase. The detailed mechanism of action of MG-2477 was investigated in a non-small cell lung carcinoma cell line (A549). Treatment of A549 cells with MG-2477 caused the cells to arrest in the G2/M phase of the cell cycle, with a concomitant accumulation of cyclin B. Moreover, the compound induced autophagy, which was followed at later times by apoptotic cell death. Autophagy was detected as early as 12h by the conversion of microtubule associated protein 1 light chain 3 (LC3-I) to LC3-II, following cleavage and lipid addition to LC3-I. After 48h of MG-2477 exposure, phosphatidylserine externalization on the cell membrane, caspase-3 activation, and PARP cleavage occurred, revealing that apoptotic cell death had begun. Pharmacological inhibition of autophagy with 3-methyladenine or bafilomycin A1 increased apoptotic cell death, suggesting that the autophagy caused by MG-2477 played a protective role and delayed apoptotic cell death. Additional studies revealed that MG-2477 inhibited survival signaling by blocking activation of Akt and its downstream targets, including mTOR, and FHKR. Treatment with MG-2477 also reduced phosphorylation of mTOR downstream targets p70 ribosomal S6 kinase and 4E-BP1. Overexpression of Akt by transfection with a Myr-Akt vector decreased MG-2477 induced autophagy, indicating that Akt is involved. Taken together, these results indicated that the autophagy induced by MG-2477 delayed apoptosis by exerting an adaptive response following microtubule damage.  相似文献   

19.
20.
Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at 5-15 μM. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号