首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.  相似文献   

3.
High‐risk neuroblastomas harbor abundant myeloid cells that suppress antitumor immunity and support tumor growth. Macrophages lacking the inhibitory NF‐κB p50 subunit adopt a pro‐inflammatory phenotype. We now report that murine 9464D neuroblastoma cells, which express high levels of exogenous MYCN, grow slower in syngeneic p50(f/f);Lys‐Cre mice that lack p50 in macrophages and neutrophils, compared with p50(f/f) littermates. Tumors in p50(f/f);Lys‐Cre mice possess increased numbers of total and activated CD4+ and CD8+ T cells, and depletion of both of these T‐cell populations accelerates tumor growth. Anti‐PD‐1 T‐cell checkpoint blockade, or DNA methyltransferase and histone deacetylase inhibition, further slows tumor growth. In addition, adoptive transfer of immature myeloid cells lacking NF‐κB p50 (p50‐IMC), generated either from the bone marrow of p50−/− mice or via nucleofection of a p50 sgRNA:Cas9 complex into wild‐type hematopoietic progenitors, also slowed growth of MHC‐matched 9464D tumors but not of MHC‐mismatched Neuro2A tumors. These findings further validate the utility of targeting myeloid NF‐κB p50 as a strategy for cancer therapy and demonstrate activity of p50‐IMC generated by gene editing of syngeneic marrow cells, a cell product relevant to clinical translation.  相似文献   

4.
5.
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease‐specific survival, and disease‐free survival. Gain‐of‐function and loss‐of‐function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF‐κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin‐bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF‐κB signaling. Through activation of NF‐κB, LINC01578 further upregulated YY1 expression. Through activation of the NF‐κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF‐κB/YY1 formed a positive feedback loop. Blocking NF‐κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF‐κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.

Abbreviations

ChIP
chromatin immunoprecipitation
ChIRP
chromatin isolation by RNA purification
COAD
colon adenocarcinoma
CPAT
Coding‐Potential Assessment Tool
CPC
coding potential calculator
DFS
disease‐free survival
DSS
disease‐specific survival
EdU
5‐ethynyl‐2''‐deoxyuridine
H&E
hematoxylin and eosin
HR
hazard ratio
IHC
immunohistochemistry
IKK
IκB kinase
IκB
inhibitory κB
lncRNAs
long noncoding RNAs
NC
negative control
NCBI
National Center for Biotechnology Information
NF‐κB
nuclear factor kappa B
qRT‐PCR
quantitative real‐time polymerase chain reaction
RIP
RNA immunoprecipitation
RPISeq
RNA‐Protein Interaction Prediction
TCGA
The Cancer Genome Atlas
TNF
tumor necrosis factor
TUNEL
TdT‐mediated dUTP Nick‐End Labeling
YY1
Yin Yang 1
  相似文献   

6.
Tumor‐associated macrophages (TAMs), one of the most common cell components in the tumor microenvironment, have been reported as key contributors to cancer‐related inflammation and enhanced metastatic progression of tumors. To explore the underlying mechanism of TAM‐induced tumor progression, TAMs were isolated from colorectal cancer patients, and the functional interaction with colorectal cancer cells was analyzed. Our study found that coculture of TAMs contributed to a glycolytic state in colorectal cancer, which promoted the stem‐like phenotypes and invasion of tumor cells. TAMs produced the cytokine transforming growth factor‐β to support hypoxia‐inducible factor 1α (HIF1α) expression, thereby upregulating Tribbles pseudokinase 3 (TRIB3) in tumor cells. Elevated expression of TRIB3 resulted in activation of the β‐catenin/Wnt signaling pathway, which eventually enhanced the stem‐like phenotypes and cell invasion in colorectal cancer. Our findings provided evidence that TAMs promoted colorectal cancer progression in a HIF1α/TRIB3‐dependent manner, and blockade of HIF1α signals efficiently improved the outcome of chemotherapy, describing an innovative approach for colorectal cancer treatment.  相似文献   

7.
Ovarian cancer is the leading cause of death in gynecological malignancies worldwide. Our previous studies have proved that metformin inhibited the proliferation and invasion of ovarian cancer in vitro and in vivo. However, the underlying mechanisms have not been fully elucidated. Immunohistochemistry was carried out to detect the expression of tripartite motif‐containing 37 (TRIM37), Ki‐67, and MMP‐9 in ovarian cancer and normal tissues. The influence of TRIM37 on the proliferation and invasion of ovarian cancer cells was verified by the real‐time cellular analysis proliferation test, colony formation test, and Transwell assay. Western blot analysis and immunoprecipitation were used to detect the expression of the nuclear factor‐κB (NF‐κB) pathway and the interaction between TRIM37 and tumor necrosis factor receptor‐associated factor 2 (TRAF2). Ubiquitination detection was carried out to detect the ubiquitination level of TRAF2. The present study revealed that TRIM37 expression was significantly increased in ovarian cancer tissues compared with normal control tissues, and its overexpression was closely associated with proliferation and metastasis. Metformin inhibited the NF‐κB signaling pathway by downregulating TRIM37. Metformin also inhibited the ubiquitination of TRAF2 induced by TRIM37 overexpression. Metformin inhibits the proliferation and invasion of ovarian cancer cells by suppressing TRIM37‐induced TRAF2 ubiquitination.  相似文献   

8.
9.
10.
Carbonic anhydrases (CAs) play an important role in maintaining pH homeostasis. We previously demonstrated that overexpression of CA2 was associated with invasion and progression of urothelial carcinoma (UC) in humans. The purpose of the present study was to evaluate the effects of the CA inhibitor acetazolamide (Ace) on N‐butyl‐N‐(4‐hydroxybutyl)nitrosamine (BBN)‐induced bladder carcinogenesis in mice and explore the function of CA2 in muscle invasion by UC. Male mice were treated with 0.025% (experiment 1) or 0.05% BBN (experiment 2) in their drinking water for 10 weeks, then treated with cisplatin (Cis), Ace, or Cis plus Ace for 12 weeks. In experiment 1, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Ace and BBN→Cis+Ace groups. In experiment 2, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Cis+Ace group, and the incidence of muscle invasive UC was significantly decreased in both the BBN→Ace and the BBN→Cis+Ace groups. We also show that overexpression of CA2 by human UC cells T24 and UMUC3 significantly increased their migration and invasion capabilities, and that Ace significantly inhibited migration and invasion by CA2‐overexpressing T24 and UMUC3 cells. These data demonstrate a functional association of CA2 with UC development and progression, confirming the association of CA2 with UC that we had shown previously by immunohistochemical analysis of human UC specimens and proteome analysis of BBN‐induced UC in rats. Our finding that inhibition of CA2 inhibits UC development and muscle invasion also directly confirms that CA2 is a potential therapeutic target for bladder cancers.  相似文献   

11.
12.
Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling is a promising approach in cancer treatment. Although ERK and/or NF-κB signaling is involved in the expression of TRAIL receptors (TRAIL-R), the exact underlying mechanisms remain unknown. In this study, we evaluated the role of ERK2 and NF-κB in the cytotoxicity of TRAIL during cisplatin treatment. Cisplatin treatment of neuroepithelioma cells (SK-N-MC) significantly induced ERK2 activation and increased TRAIL cytotoxicity via the upregulation of death receptor 5 (DR5) expression. In partial ERK2 knockdown cell lines that maintained only basal levels of ERK2 activity, cisplatin treatment did not increase ERK2 activity or DR5 expression. These findings indicate that induced (rather than basal) ERK2 activity enhances TRAIL susceptibility via DR5 expression. In complete ERK2 knockdown cell lines with no basal ERK2 activity, DR4, DR5, and DcRs expression levels were increased, and additional treatment with cisplatin did not further increase TRAIL-R expression. Chemical inhibition of ERK2 also enhanced TRAIL cytotoxicity by upregulating DR4 and DR5 expression. These findings indicate that basal ERK2 activity suppresses TRAIL-R expression. Both basal and inducible ERK2 activities regulate TRAIL-R expression via the NF-κB signaling pathway. Overall, our findings suggest that the ERK2/NF-κB signaling pathway has a dual role in TRAIL susceptibility by differentially regulating TRAIL-R expression in the same cellular system.  相似文献   

13.
Chromobox 4 (CBX4) is a core component of polycomb-repressive complex 1 with important roles in cancer biology and tissue homeostasis. Aberrant expression of CBX4 has been implicated in several human malignancies. However, its role and underlying mechanisms in the tumorigenesis of lung adenocarcinoma (LUAD) have not been defined in vivo. Here, we found that expression of CBX4 was frequently up-regulated in human LUAD samples and correlated with poor patient survival. Importantly, genetic ablation of CBX4 greatly dampened lung tumor formation and improved survival in the KrasG12D/P53L/L (KP) autochthonous mouse model of LUAD. In addition, CBX4 depletion significantly inhibited proliferation and anchorage-independent growth of KP mouse embryonic fibroblasts. Moreover, ectopic CBX4 expression clearly promoted proliferation and anchorage-independent growth in both human and mouse LUAD cells, whereas silencing of CBX4 exerted opposite effects. Mechanistically, CBX4 promoted growth of LUAD cells through activation of the Wnt/β-catenin pathway. Furthermore, expression levels of CBX4 were positively correlated with β-catenin in human LUAD samples. In conclusion, our data suggest that CBX4 plays an oncogenic role via the Wnt/β-catenin pathway and could serve as a potential therapeutic target in LUAD.  相似文献   

14.
15.
The activation of RIG‐I‐like receptor (RLR) signaling in cancer cells is widely recognized as a critical cancer therapy method. The expected mechanism of RLR ligand‐mediated cancer therapy involves the promotion of cancer cell death and strong induction of interferon (IFN)‐β that affects the tumor microenvironment. We have recently shown that activation of RLR signaling in triple‐negative breast cancer cells (TNBC) attenuates transforming growth factor‐β (TGF‐β) signaling, which partly contributes to the promotion of cancer cell pyroptosis. However, the consequences of suppression of TGF‐β signaling by RLR ligands with respect to IFN‐β‐mediated tumor suppression are not well characterized. This study showed that transfection of a typical RLR ligand polyI:C in cancer cells produces significant levels of IFN‐β, which inhibits the growth of the surrounding cancer cells. In addition, IFN‐β‐induced cell cycle arrest in surrounding cancer cells was inhibited by the expression of constitutively active Smad3. Constitutively active Smad3 suppresses IFN‐β expression through the alleviation of IFN regulatory factor 3 binding to the canonical target genes, as suggested by ChIP sequencing analysis. Based on these findings, a new facet of the protumorigenic function of TGF‐β that suppresses IFN‐β expression is suggested when RLR‐mediated cancer treatment is used in TNBC.  相似文献   

16.
Salt‐inducible kinase 2 (SIK2) is an important regulator in various intracellular signaling pathways related to apoptosis, tumorigenesis and metastasis. However, the involvement of SIK2 in gastric tumorigenesis and the functional linkage with gastric cancer (GC) progression remain to be defined. Here, we report that SIK2 was significantly downregulated in human GC tissues, and reduced SIK2 expression was associated with poor prognosis of patients. Overexpression of SIK2 suppressed the migration and invasion of GC cells, whereas knockdown of SIK2 enhanced cell migratory and invasive capability as well as metastatic potential. These changes in the malignant phenotype resulted from the ability of SIK2 to suppress epithelial–mesenchymal transition via inhibition of AKT/GSK3β/β‐catenin signaling. The inhibitory effect of SIK2 on AKT/GSK3β/β‐catenin signaling was mediated primarily through inactivation of AKT, due to its enhanced dephosphorylation by the upregulated protein phosphatases PHLPP2 and PP2A. The upregulation of PHLPP2 and PP2A was attributable to SIK2 phosphorylation and activation of mTORC1, which inhibited autophagic degradation of these two phosphatases. These results suggest that SIK2 acts as a tumor suppressor in GC and may serve as a novel prognostic biomarker and therapeutic target for this tumor.

Abbreviations

AMPK
AMP‐activated protein kinase
Co‐IP
co‐immunoprecipitation
EMT
epithelial–mesenchymal transition
GAPDH
glyceraldehyde‐3‐phosphate dehydrogenase
GC
gastric cancer
GEO
Gene Expression Omnibus
H&E
hematoxylin and eosin
IHC
immunohistochemistry
mTOR
mechanistic target of rapamycin
NC
negative control
PHLPP
PH domain leucine‐rich repeat protein phosphatase
PP2A
protein phosphatase 2A
qRT‐PCR
quantitative real‐time polymerase chain reaction
SIK2
salt‐inducible kinase 2
TCF/LEF
T cell factor/lymphoid enhancer‐binding factor
TCGA
The Cancer Genome Atlas
  相似文献   

17.
The Wnt/β-catenin signaling pathway regulates many aspects of tumor biology, and many studies have focused on the role of this signaling pathway in tumor cells. However, it is now clear that tumor development and metastasis depend on the two-way interaction between cancer cells and their environment, thereby forming a tumor microenvironment (TME). In this review, we discuss how Wnt/β-catenin signaling regulates cross-interactions among different components of the TME, including immune cells, stem cells, tumor vasculature, and noncellular components of the TME in hepatocellular carcinoma. We also investigate their preclinical and clinical insights for primary liver cancer intervention, and explore the significance of using Wnt/β-catenin mutations as a biomarker to predict resistance in immunotherapy.  相似文献   

18.
19.
Tumor necrosis factor receptor‐associated factor‐6 (TRAF6) is a ubiquitin E3 ligase. TRAF6 plays an important role in tumor invasion and metastasis. However, the specific mechanism by which TRAF6 promotes colorectal cancer (CRC) metastasis is incompletely understood. This study aimed to determine whether TRAF6 affects the LPS‐NF‐κB‐VEGF‐C signaling pathway through ubiquitination, which plays a role in colorectal cancer metastasis. Here, our results showed that TRAF6 affected lymphangiogenesis through the LPS‐NF‐κB‐VEGF‐C signaling pathway. Using ubiquitination experiments, we found that TRAF6 was mainly ubiquitinated with the K63‐linked chains, and LPS promoted ubiquitination of TRAF6 and K63‐linked chains. More importantly, TRAF6 124mut is the main ubiquitination site of TRAF6 interacting with K63‐linked chains. TRAF6 affected the migration, invasion, and lymphatic metastasis of colorectal cancer through its ubiquitination. In subcutaneous xenograft models, TRAF6 124mut inhibited tumor growth. In conclusion, our results provide new insight for studying the mechanism of lymphangiogenesis in colorectal cancer to promote cancer metastasis, which may provide new ideas for tumor immunotherapy.  相似文献   

20.
RING finger protein 43 (RNF43) is a ubiquitin E3 ligase that negatively regulates Wnt/β-catenin signalling. Mutation, inactivation and downregulation of RNF43 in cholangiocarcinoma (CCA) are associated with a less favourable prognosis. Since the functional role of RNF43 in CCA has not yet been demonstrated, the present study aimed to assess the effect of its overexpression in mediating CCA suppression via Wnt/β-catenin signalling pathway inhibition. Accordingly, RNF43 was overexpressed, and various malignant phenotypic changes studied, including cell proliferation, cell migration, chemotherapeutic sensitivity and the expression of several Wnt/β-catenin target genes. Overexpression of RNF43 in the CCA cell-line KKU-213B hindered activation of Wnt/β-catenin signalling, evidenced by: i) Accumulation of β-catenin in the cytoplasmic fraction and downregulation of several known Wnt target genes at the mRNA level [AXIN2, survivin (BIRC5), CCND1, MMP-7, c-MYC and ABCB1 (MDR1)]; ii) a reduction of cell proliferation; iii) a significant decrease in KKU-213B cell migration with RNF43 overexpression via upregulation of E-cadherin (CDH1); and iv) a reduction in N-cadherin (CDH2), MMP-2, MMP-7 and MMP-9. In addition, overexpression of RNF43 increased 5-fluorouracil sensitivity and downregulation of ABC transporter genes [including ABCB1 and ABCC1 (MRP1)]. The current results demonstrate a functional role for RNF43 in CCA by: i) Blocking β-catenin nuclear translocation; and ii) the subsequent downregulation of Wnt/β-catenin target genes (the latter being involved in the progression of CCA and chemotherapeutic drug susceptibility). Therefore, the present findings suggest that RNF43 could serve a tumour suppressive role in CCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号