首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here the pharmacology of (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2,2'-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), a novel selective endothelin ET(A) receptor antagonist synthesized through the modification of the ET(A)/ET(B) non-selective antagonist, bosentan. YM598 inhibited [125I]endothelin-1 binding to cloned human endothelin ET(A) and ET(B) receptor, with K(i) of 0.697 and 569 nM, and inhibited endothelin-1-induced increases in intracellular Ca(2+) concentration in human and rat endothelin ET(A) receptor. YM598 also inhibited endothelin-1-induced vasoconstriction in isolated rat aorta with a pA(2) value of 7.6. In vivo, YM598 inhibited the pressor response to big endothelin-1, a precursor peptide of endothelin-1. DR(2) values of YM598 in pithed rats were 0.53 mg/kg, i.v. and 0.77 mg/kg, p.o., and its antagonism in conscious rats was maintained for more than 6.5 h at 1 mg/kg, p.o. In contrast, YM598 had no effect on the sarafotoxin S6c-induced depressor or pressor responses. YM598 showed not only superior antagonistic activity and higher-selectivity for endothelin ET(A) receptor in vitro, but at least a 30-fold higher potency in vivo than bosentan. In conclusion, YM598 is a potent and orally active selective endothelin ET(A) receptor antagonist.  相似文献   

2.
We have investigated the protective effect of YM598, a selective endothelin type A receptor antagonist, against an endothelin-1-induced proliferation of rat mesangial cells and renal function in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type II diabetes. YM598, but not K-8794, a selective endothelin type B receptor antagonist, inhibited the endothelin-1-induced proliferation of cultured mesangial cells derived from intact Wistar rats in a concentration-dependent manner. YM598 (0.1 or 1 mg/kg), enalapril (5 mg/kg), an angiotensin- converting enzyme inhibitor, or vehicle was administered once daily by gastric gavage to 22-week-old male OLETF rats for 32 weeks. YM598 blunted the development of albuminuria in a dose-dependent manner. A higher dose of YM598 reduced albuminuria comparable with enalapril. Urinary endothelin-1 excretion was greater in the diabetic rats than in the control rats, and was not substantially influenced by the agents. Enalapril, but not YM598, mildly lowered the blood pressure in the diabetic rats, indicating that blood pressure reduction is not involved in the major mechanism of the renoprotective effect of YM598 in OLETF rats. These data suggest that endothelin is involved in the progression of diabetic nephropathy in OLETF rats, and an endothelin type A antagonist is promising for the treatment of diabetic nephropathy.  相似文献   

3.
We investigated the contractile response of the lower urinary tract to endothelin-1 in vitro (rabbits) and in vivo (dogs). We also assessed the effects of a selective endothelin ETA receptor antagonist, (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2, 2′-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), on endothelin-1-induced contractile responses. In the in vitro study, endothelin-1 induced contractile responses in isolated rabbit bladder base, urethra, and prostate tissues. YM598 (10− 7–10− 5 M) antagonized these endothelin-1-induced contractile responses without affecting the maximal responses. In the in vivo study, endothelin-1 induced the elevation of non-prostatic urethral pressure as well as prostatic urethral pressure even in the presence of tamsulosin (10 μg/kg, i.v.) in anesthetized male dogs. YM598 (0.1–3 mg/kg, i.v.) inhibited these endothelin-1-induced contractile responses in a dose-dependent fashion. These results suggest that endothelin ETA receptors play an important role in the lower urinary tract contraction, and that the selective endothelin ETA receptor antagonist YM598 has ameliorating effects on various urinary dysfunctions, including benign prostatic hyperplasia.  相似文献   

4.
  1. We have synthesized a new low molecular weight, non-peptide radioligand, [125I]-PD164333, an analogue of the orally active butenolide antagonists of the endothelin ETA receptor.
  2. Analysis of saturation binding assays demonstrated that [125I]-PD164333 bound with high affinity to a single population of receptors (n⩾3 individuals ±s.e.mean) in human aorta (KD=0.26±0.08 nM; Bmax=8.8±3.95 fmol mg-1 protein), left ventricle from the heart (KD=0.16±0.02 nM; Bmax=34.2± 3.02 fmol mg-1 protein) and kidney (KD=1.24±0.16 nM; Bmax=125.3±35.07 fmol mg-1 protein). In each case Hill slopes were close to unity.
  3. In kinetic experiments, the binding of [125I]-PD164333 to ETA receptors in sections of heart was time-dependent and rapid at 23°C. The data were fitted to a one site model, with an association rate constant (K1 of 2.66±0.213×108 M-1 min-1, and a half-time for association of 11 min. The binding was reversible at 23°C: analysis of the data indicated [125I]-PD164333 dissociated from a single site, with a dissociation rate constant of 0.0031±0.0004 min-1, a half-time for dissociation of 216 min and a KD calculated from these kinetic data of 0.01 nM.
  4. Unlabelled PD164333 inhibited the binding of [125I]-ET-1 to left ventricle (which expresses both subtypes) in a biphasic manner with a KDETA of 0.99±0.32 nM and KDETB of 2.41±0.22 μM, giving a selectivity of 2500 fold. ETA-selective ligands competed monophasically for [125I]-PD164333 binding in left ventricle, a one site fit was preferred to a two site model giving similar nanomolar affinities: BQ123, KD=3.93 ±0.18 nM; FR139317 KD=3.53±0.69 nM. In contrast, the ETB selective agonists, BQ3020 and sarafotoxin S6c (1 μM) did not inhibit binding.
  5. In human isolated saphenous vein, unlabelled PD164333 was a functional antagonist, producing parallel rightward shifts of the endothelin-1 (ET-1) concentration-response curve (pA2=8.84) and a slope of unity.
  6. In the human brain, autoradiography revealed high levels of [125I]-PD164333 binding to the pial arteries of the cerebral cortex and to the numerous smaller intercerebral vessels penetrating the underlying grey and white matter. Conduit and resistance vessels contributing to the control of blood pressure from the heart, kidney, lungs and adrenal also displayed high densities of binding. In diseased vessels, binding of [125I]-PD164333 was confined to the medial layer of both coronary arteries with advanced atherosclerotic lesions or occluded saphenous vein grafts. In contrast, little or no binding was detected in the proliferated smooth muscle of the intimal layer or occluded lesion.
  7. These results show [125I]-PD164333 is a specific, high affinity, reversible non-peptide radioligand for human ETA receptors, which will facilitate the further characterization of this subtype, in vitro and in vivo.
  相似文献   

5.
The preventive effects of the novel and selective endothelin ET(A) receptor antagonist YM598 on the development of pulmonary hypertension (PH) were investigated in chronic hypoxia-induced PH rats. Oral administration of YM598 at a dose of 1 mg/kg was started on the first day of chronic hypoxia exposure for 2 and 3 weeks to investigate the effects of this compound on hemodynamic and arterial blood gas variables, respectively. Cardiopulmonary organ weights were measured at the end of the 2-week administration period. Chronic hypoxia for 2 weeks induced a marked increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary and systemic congestion, and a decrease in right cardiac diastolic function. Repeated oral administration of YM598 significantly suppressed the increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary and systemic congestion. YM598 also improved the hypoxemia which was induced by 3 weeks of exposure to hypoxia. These results suggest that repeated oral administration of YM598 to rats with chronic hypoxia effectively prevented the development of PH. Oral administration of YM598 also improved hypoxemia in this model. These data strongly suggest that YM598 will be clinically useful in the treatment of patients with either primary or secondary pulmonary hypertension.  相似文献   

6.
We tested the effect of selective endothelin ET(A) receptor blockade on the development renal damage in the Sabra rat model of genetic salt-sensitivity. Animals from the salt-sensitive (SBH/y) and salt-resistant strains (SBN/y) were either salt-loaded with deoxycorticosterone acetate and salt (DOCA) or fed a normal diet. Additional salt-loaded groups were also treated with the selective ET(A) antagonist darusentan (DA). Salt-loading in SBH/y increased systolic blood pressure by 75 mm Hg and urinary albumin excretion 23-fold (P<0.0001). Darusentan attenuated the rise of systolic blood pressure (50%) and urinary albumin excretion (63%, P<0.01, respectively). Salt-loading in SBH/y was associated with significant increased osteopontin mRNA expression as well as glomerulosclerosis and tubulointerstitial damage in the kidney (P<0.05, respectively). This was either significantly reduced or normalized by darusentan (P<0.05, respectively). Thus, darusentan confers a significant renal protection in the Sabra model of salt-sensitive hypertension.  相似文献   

7.

AIMS

To estimate the pharmacologically active dose range of a new investigational compound S-0139, a selective endothelin A (ETA) receptor antagonist, in man, and to examine the duration of its pharmacodynamic effect.

METHODS

Venous occlusion plethysmography was performed to assess changes in forearm blood flow following intra-brachial administration of endothelin-1 (ET-1). ETA antagonists have been shown to block ET-1-induced vasoconstriction in this model. The study was conducted in three parts: (1) a pilot study to explore dose–response (dose range 0.08–13.33 µg kg−1 min−1), (2) a randomized study to confirm dose–response (placebo, 2.5, 6.67 and 15 µg kg−1 min−1), and (3) a delayed administration study (15.7 µg kg−1 min−1) to explore the duration of the pharmacodynamic effect. In all studies a 3-h infusion of S-0139 was given and during the last 90 min of the infusion, ET-1 was infused concurrently for 90 min. In study (3) a second ET-1 infusion was given starting 3 h after completion of the first.

RESULTS

Intravenously administered S-0139 resulted in significant inhibition of ET-1-induced vasoconstriction in the forearm (plasma concentration 800–2000 ng ml−1). In the delayed administration study, the same extent of inhibition was still present when ET-1 was administered 3 h after the end of infusion of S-0139, even though the S-0139 plasma concentrations (mean 17 ng ml−1) were well below pharmacologically active concentrations as determined in studies 1 and 2.

CONCLUSIONS

S-0139 dose-dependently blocks ET-1-mediated vasoconstriction in the forearm and has a prolonged duration of effect beyond that expected from its pharmacokinetic profile.  相似文献   

8.
The endothelins (ET) are a group of proteins that act through G-protein coupled receptors. Endothelin-1 (ET-1) was initially identified as a potent vasoconstrictor and dysregulation of the ET axis contributes to pathological processes responsible for cardiovascular disease states. More recently, the ET axis, in particular ET-1 acting through the endothelin A receptor (ET(A) ), has been implicated in the development of several cancers through activation of pathways involved in cell proliferation, migration, invasion, epithelial-mesenchymal transition, osteogenesis and angiogenesis. The endothelin B receptor (ET(B) ) may counter tumour progression by promoting apoptosis and clearing ET-1; however, it has recently been implicated in the development of some tumour types including melanomas and oligodendrogliomas. Here, we review emerging preclinical and clinical data outlining the role of the ET axis in cancer, and its antagonism as an attractive and challenging approach to improve clinical cancer management. Clinical data of ET(A) antagonists in patients with prostate cancer are encouraging and provide promise for new ET(A) antagonist-based treatment strategies. Given the unexpected opportunities to affect pleiotrophic tumorigenic signals by targeting ET(A)-mediated pathways in a number of cancers, the evaluation of ET-targeted therapy in cancer warrants further investigation.  相似文献   

9.
  1. The endothelin (ET) receptor subtype that mediates niric oxide (NO)-dependent airway relaxation in tracheal tube preparations precontracted with carbachol and pretreated with indomethacin was investigated. The release of NO induced by ET from guinea-pig trachea using a recently developed porphyrinic microsensor was also measured.
  2. ET-1 (1 pM–100 nM) contracted tracheal tube preparations pretreated with the NO-synthase inhibitor, L-NMMA, and relaxed, in an epithelium-dependent manner, preparations pretreated with the inactive enantiomer D-NMMA. The effect of L-NMMA was reversed by L-Arg, but not by D-Arg.
  3. The selective ETB receptor agonists, IRL 1620 or sarafotoxin S6c, both (1 pM–100 nM) contracted tracheal tube preparations in a similar manner either after treatment with D-NMMA or with L-NMMA. In the presence of the ETA receptor antagonist, FR139317 (10 μM), ET-1 administration resulted in a contraction that was similar after either L-NMMA or D-NMMA. In the presence of the ETB receptor antagonist, BQ788 (1 μM), ET-1 relaxed and contracted tracheas pretreated with D-NMMA and L-NMMA, respectively.
  4. Exposure of tracheal segments to ET-1 (1–1000 nM) caused a concentration-dependent increase in NO release that was reduced by L-NMMA. IRL1620 (1 μM) did not cause any significant NO release. FR139317 (10 μM), but not, BQ788 (1 μM), inhibited the NO release induced by ET-1.
  5. These results demonstrate that in the isolated guinea-pig trachea activation of ETB receptors results in a contractile response, whereas activation of ETA receptors cause both a contraction, and an epithelium-dependent relaxation that is mediated by NO release.
  相似文献   

10.
Abstract

1.?The metabolism of the endothelin receptor antagonist macitentan has been characterized in bile duct-cannulated rats and dogs.

2.?In both species, macitentan was metabolized along five primary pathways, i.e. conjugation with glucose (M9), oxidative depropylation (M6), aliphatic hydroxylation (M7), oxidative cleavage of the ethylene glycol linker (M4) and hydrolysis of the sulfamide moiety (M3). Most of the primary metabolites underwent subsequent biotransformation including conjugation with glucuronic acid or glucose, hydrolysis of the sulfamide group or secondary oxidation of the ethylene glycol moiety.

3.?Though there were species differences in their relative importance, all metabolic pathways were present in rat and dog. The depropylated M6 was the only metabolite present in plasma of both species.

4.?Metabolism was a prerequisite for macitentan excretion as relevant amounts of parent drug were neither detected in bile nor urine. Biliary excretion was the major elimination pathway, while renal elimination was of little importance.  相似文献   

11.
Mesangial cell growth constitutes a key feature of progressive glomerular injury. Vasopressin (AVP), a potent peptide vasoconstrictor, acts on mesangial cells through the V(1A) receptors, inducing contraction and cell proliferation. This study examined the effects of YM218, a nonpeptide AVP V(1A) receptor-selective antagonist, on the mitogenic and hypertrophic effects of AVP in rat mesangial cells. When added to mesangial cells whose growth was arrested, AVP concentration-dependently induced hyperplasia and hypertrophy. YM218 potently prevented AVP-induced hyperplasia and hypertrophy of these cells. Furthermore, AVP stimulated endothelin (ET)-1 secretion from mesangial cells in a concentration-dependent manner and this effect was potently inhibited by YM218. ET-1 also induced hyperplasia and hypertrophy in mesangial cells and this effect was completely abolished by ET(A) receptor-selective antagonist YM598. In addition, AVP-induced hyperplasia and hypertrophy were partly inhibited by YM598. These results suggest that AVP may modulate mesangial cell growth not only by its direct action but also through the stimulation of ET-1 secretion. YM218 displays high potency in inhibiting the AVP-induced physiologic responses of mesangial cells via the V(1A) receptors and is a potent pharmacologic probe for investigating the physiologic and pathophysiologic roles of AVP in several renal diseases.  相似文献   

12.
AIMS: A number of endothelin receptor antagonists (ERAs) are currently in clinical development as potential therapies in states characterized by vasoconstriction, such as systemic hypertension. We investigated the haemodynamic effects of locally and systemically active doses of BMS-193884, an endothelin A (ET(A)) receptor selective ERA, and its influence on vasoconstriction to endothelin-1 (ET-1) in healthy men. METHODS: In three separate randomized, placebo-controlled studies, the forearm blood flow (FBF) response to intra-arterial (i.a.) infusion of ET-1 (5 pmol min(-1)) was assessed during i.a. co-infusion of BMS-193884 (5 and 50 nmol min(-1)), and at 12 and at 24 h after oral administration of BMS-193884 (50, 100 and 200 mg at 12 h; and 200 mg at 24 h). Data were examined by repeated-measures analysis of variance (anova) with treatment and subject as factors. RESULTS: ET-1 caused significant forearm vasoconstriction, attenuated after oral dosing with BMS-193884 (200 mg) at 12 (P < 0.01) and 24 h (P < 0.0001). BMS-193884 (50 nmol min(-1), i.a.) caused local vasodilatation (25 +/- 11%) when infused alone (P = 0.02) and abolished forearm vasoconstriction to ET-1 (P < 0.0001 vs. ET-1 alone). Orally, BMS-193884 (200 mg) caused a reduction in total systemic vascular resistance at 12 (-14 +/- 9%, P = 0.03) and 24 h (-12 +/- 7%, P < 0.0001). There was no rise in plasma ET-1 levels. CONCLUSION: BMS-193884 causes local and systemic vasodilatation and attenuation of local vasoconstriction to ET-1. The absence of a rise in plasma endothelin levels suggests BMS-193884 is selective for the ET(A) receptor. This form of pharmacodynamic modelling may be useful in the development of ERAs in cardiovascular disease.  相似文献   

13.
We determined the role of endothelin ET(B) receptor in the renal hemodynamic and excretory responses to big endothelin-1, using A-192621, a selective endothelin ET(B) receptor antagonist and the spotting-lethal (sl) rat, which carries a naturally occurring deletion in the endothelin ET(B) receptor gene. An intravenous injection of big endothelin-1 produced a hypertensive effect, which is greater in wild-type (+/+) rats pretreated with A-192621 and in homozygous (sl/sl) rats. Big endothelin-1 markedly increased urine flow, urinary excretion of sodium and fractional excretion of sodium in wild-type rats treated with the vehicle. These excretory responses to big endothelin-1 were markedly reduced by pharmacological endothelin ET(B) receptor blockade. On the other hand, big endothelin-1 injection to the endothelin ET(B) receptor-deficient homozygous animals resulted in a small diuretic effect. When renal perfusion pressure was protected from big endothelin-1-induced hypertension by an aortic clamp, the excretory responses in vehicle-treated wild-type rats were markedly attenuated. In homozygous or A-192621-treated wild-type rats, there was a small but significant decreasing effect in urine flow. In addition, big endothelin-1 significantly elevated nitric oxide (NO) metabolite production in the kidney of wild-type rats but not in the homozygous rats. We suggest that the diuretic and natriuretic responses to big endothelin-1 consist of pressure-dependent and pressure-independent effects and that the increased NO production via the activation of endothelin ET(B) receptors in the kidney is closely related to the big endothelin-1-induced excretory responses.  相似文献   

14.
A relationship between endogenous endothelins and bladder overactivity has recently been suggested, but the related endothelin receptor subtype has not been identified. Here, to evaluate the involvement of endothelin-1 and its receptors in bladder overactivity, we investigated endothelin-1 levels and the expression of its receptors in the bladder of rats with bladder outlet obstruction (BOO), a model for bladder overactivity. We also investigated the effects of a selective endothelin ETA receptor antagonist, (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2,2′-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), on bladder functions in conscious BOO rats. Partial obstruction of the urethra led to a progressive increase in bladder weight from weeks 1 to 6. Binding assays performed using plasma membranes prepared from these bladders to estimate endothelin receptor density from the maximum [125I]endothelin-1 binding showed increased endothelin receptor density (about double) at 1, 2, and 6 weeks after the operation in the BOO bladder. The densities of endothelin ETA receptors in the bladder of sham-operated and BOO rats at 2 weeks after operation were about 3.5 and 5 times those of endothelin ETB receptors respectively. Furthermore, the endothelin-1 level was also increased in the BOO bladder. Two weeks after operation, BOO rats showed an increase in maximum bladder capacity and micturition volume and the generation of premicturition contractions. The frequency of premicturition contractions was dose-dependently reduced by YM598 (0.1–3 mg/kg, i.v.) without any effect on other voiding parameters in BOO rats. These data suggest that endothelin-1 and endothelin ETA receptors might be involved in the generation of premicturition contractions in BOO rats, and that endothelin ETA receptor antagonists such as YM598 may have ameliorating effects in patients with bladder overactivity associated with BOO.  相似文献   

15.
1. We examined whether KRH-594, a new angiotensin AT1 receptor antagonist, ameliorates the progression of diabetic nephropathy and hyperlipidaemia in streptozotocin (STZ)-induced diabetic unilateral nephrectomized spontaneously hypertensive rats (DM-1K-SHR) or not. 2. The oral administration of KRH-594 (3 and 10 mg/kg per day) and candesartan cilexetil (1 mg/kg per day) for 16 weeks significantly reduced systolic blood pressure, urinary albumin and urinary total protein in DM-1K-SHR. 3. In a histological study, KRH-594 (3 and 10mg/kg per day) and candesartan cilexetil (0.3 and 1 mg/kg per day) dose-dependently improved glomerulosclerosis and the hyalin cast of tubules in DM-1K-SHR kidneys. Both KRH-594 (10 mg/kg per day) and candesartan cilexetil (0.3 and 1 mg/kg per day) dose-dependently inhibited cardiac hypertrophy. 4. KRH-594 (3 and 10 mg/kg per day), but not candesartan cilexetil, dose-dependently reduced the levels of triglyceride, total cholesterol and phospholipids in DM-1K-SHR. 5. These results suggest that KRH-594 improves diabetic complications, such as nephropathy and hyperlipidaemia, with hypertension.  相似文献   

16.
  1. This study was performed to characterize the receptor subtypes involved in the endothelin stimulation of phospholipase D (PLD) in rat cortical astrocytes in primary culture. PLD activity was determined by measuring the formation of [32P]phosphatidylbutanol in [32P]orthophosphate prelabelled cells stimulated in the presence of 25 mM butanol.
  2. The agonists endothelin-1 (ET-1), endothelin-3 (ET-3), sarafotoxin 6c (S6c) and IRL 1620 elicited PLD activation in a concentration-dependent manner. The potencies of ET-1, ET-3 and S6c were similar. The maximal effects evoked by the ETB-preferring agonists, ET-3, S6c and IRL 1620, were significantly lower than the maximal response to the non-selective agonist ET-1.
  3. The response to 1 nM ET-1 was inhibited by increasing concentrations of the ETA receptor antagonist BQ-123 in a biphasic manner. A high potency component of the inhibition curve (24.2±3.5% of the ET-1 response) was defined at low (up to 1 μM) concentrations of BQ-123, yielding an estimated Ki value for BQ-123 of 21.3±2.5 nM. In addition, the presence of 1 μM BQ-123 significantly reduced the maximal response to ET-1 but did not change the pD2 value.
  4. Increasing concentrations of the ETB selective antagonist BQ-788 inhibited the S6c response with a Ki of 17.8±0.8 nM. BQ-788 also inhibited the effect of ET-1, although, in this case, two components were defined, accounting for approximately 50% of the response, and showing Ki values of 20.9±5.1 nM and 439±110 nM, respectively. The ET-1 concentration-response curve was shifted to the right by 1 μM BQ-788, also revealing two components. Only one of them, corresponding to 69.8±4.4% of the response, was sensitive to BQ-788 which showed a Ki value of 28.8±8.9 nM.
  5. Rapid desensitization was achieved by preincubation with ET-1 or S6c. In cells pretreated with S6c neither ET-3 nor S6c activated PLD, but ET-1 still induced approximately 40% of the response shown by non-desensitised cells. This remaining response was insensitive to BQ-788, but fully inhibited by BQ-123.
  6. In conclusion, endothelins activate PLD in rat cortical astrocytes acting through both ETA and ETB receptors, and this response desensitizes rapidly in an apparently homologous fashion. The percentage contribution of ETA and ETB receptors to the ET-1 response was found to be approximately 20% and 80%, respectively, when ETB receptors were not blocked, and 30–50% and 50–70%, respectively, when ETB receptors were inhibited or desensitized. These results may be relevant to the study of a possible role of PLD in the proliferative effects shown by endothelins on cultured and reactive astrocytes.
  相似文献   

17.
  1. Both the plasma endothelin-1 (ET-1) levels and the plasma glucose levels were markedly elevated in streptozotocin (STZ)-induced diabetic rats.
  2. The maximum contractile response of the mesenteric arterial bed to ET-1 was significantly reduced, and the vasodilatation induced by the ETB-receptor agonist IRL-1620 in the mesenteric arterial bed was significantly reduced in STZ-induced diabetic rats.
  3. ET-1 (10−8M) caused a transient vasodilatation followed by a marked vasoconstriction in methoxamine-preconstricted mesenteric arterial beds. The ET-1-induced vasodilatation was significantly larger in beds from diabetic rats than in those from age-matched controls. By contrast, the ET-1-induced vasoconstriction was significantly smaller in STZ-induced diabetic rats than in the controls.
  4. Both removal of the endothelium with Triton X-100 and preincubation with BQ-788 (10−6M) (ETB-receptor antagonist) abolished the ET-1-induced vasodilatation. Preincubation with BQ-485 (10−6M) or BQ-123 (3×10−6) (ETA-receptor antagonist) significantly augmented the ET-1-induced vasodilatation in control mesenteric arterial beds, but not that in beds from diabetic rats.
  5. These results demonstrate that marked increases not only in plasma glucose, but also in plasma ET-1 occur in STZ-induced diabetic rats. We suggest that the decreased contractile response and the increased vasodilator response of the mesenteric arterial bed to ET-1 may both be due to desensitization of ETA receptors, though ETB receptors may also be desensitized. This desensitization may result from the elevation of the plasma ET-1 levels seen in STZ-induced diabetic rats.
  相似文献   

18.
Endothelin (ET), a vasoconstrictive peptide, acts as an anti-apoptotic factor, and endothelin receptor B (ETB receptor) is associated with neuronal survival in the brain. Human group IIA secretory phospholipase A2 (sPLA2-IIA) is expressed in the cerebral cortex after brain ischemia and causes neuronal cell death via apoptosis. In primary cultures of rat cortical neurons, we investigated the effects of an ETB receptor agonist, ET-3, on sPLA2-IIA-induced cell death. sPLA2-IIA caused neuronal cell death in a concentration- and time-dependent manner. ET-3 significantly prevented neurons from undergoing sPLA2-IIA-induced cell death. These agonists reversed sPLA2-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. Before cell death, sPLA2-IIA potentiated the influx of Ca2+ into neurons. Blockers of the L-type voltage-dependent calcium channel (L-VSCC) not only suppressed the Ca2+ influx, but also exhibited neuroprotective effects. As well as L-VSCC blockers, ET-3 significantly prevented neurons from sPLA2-IIA-induced Ca2+ influx. An ETB receptor antagonist, BQ788, inhibited the effects of ET-3. The present cortical cultures contained few non-neuronal cells, indicating that the ETB receptor agonist affected the survival of neurons directly, but not indirectly via non-neuronal cells. In conclusion, we demonstrate that the ETB receptor agonist rescues cortical neurons from sPLA2-IIA-induced apoptosis. Furthermore, the present study suggests that the inhibition of L-VSCC contributes to the neuroprotective effects of the ETB receptor agonist.  相似文献   

19.

Background and purpose:

Cysteinyl leukotrienes (CysLTs) have been implicated in the pathophysiology of inflammatory and cardiovascular disorders. Their actions are mediated by CysLT1 and CysLT2 receptors. Here we report the discovery of 3-({[(1S,3S)-3-carboxycyclohexyl]amino}carbonyl)-4-(3-{4-[4-(cyclo-hexyloxy)butoxy]phenyl}propoxy) benzoic acid (HAMI3379), the first potent and selective CysLT2 receptor antagonist.

Experimental approach:

Pharmacological characterization of HAMI3379 was performed using stably transfected CysLT1 and CysLT2 receptor cell lines, and isolated, Langendorff-perfused, guinea pig hearts.

Key results:

In a CysLT2 receptor reporter cell line, HAMI3379 antagonized leukotriene D4- (LTD4-) and leukotriene C4- (LTC4-) induced intracellular calcium mobilization with IC50 values of 3.8 nM and 4.4 nM respectively. In contrast, HAMI3379 exhibited very low potency on a recombinant CysLT1 receptor cell line (IC50 > 10 000 nM). In addition, HAMI3379 did not exhibit any agonistic activity on both CysLT receptor cell lines. In binding studies using membranes from the CysLT2 and CysLT1 receptor cell lines, HAMI3379 inhibited [3H]-LTD4 binding with IC50 values of 38 nM and >10 000 nM respectively. In isolated Langendorff-perfused guinea pig hearts HAMI3379 concentration-dependently inhibited and reversed the LTC4-induced perfusion pressure increase and contractility decrease. The selective CysLT1 receptor antagonist zafirlukast was found to be inactive in this experimental setting.

Conclusions and implications:

HAMI3379 was identified as a potent and selective CysLT2 receptor antagonist, which was devoid of CysLT receptor agonism. Using this compound, we showed that the cardiac effects of CysLTs are predominantly mediated by the CysLT2 receptor.  相似文献   

20.
The present study investigated the effect of the GABA(B) receptor antagonist, SCH 50911 [(2S)(+)-5,5-dimethyl-2-morpholineacetic acid], on the occurrence of seizures in ethanol-dependent rats undergoing ethanol withdrawal syndrome. The acute administration of nonconvulsive doses of SCH 50911 (0, 100, 170 and 300 mg/kg, i.p.) resulted in a dramatic facilitation of spontaneous seizure occurrence. This finding, together with the reported ability of the GABA(B) receptor agonist, baclofen, to suppress seizures associated to ethanol withdrawal syndrome, suggests that the GABA(B) receptor may be part of the neural substrate underlying the hyperexcitability of ethanol withdrawal syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号