首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe glutathione synthetase (GS) deficiency is a rare genetic disorder with neonatal onset. The enzymatic block of the gamma-glutamyl cycle leads to a generalized glutathione deficiency. Clinically affected patients present with severe metabolic acidosis, 5- oxoprolinuria, increased rate of hemolysis and defective function of the central nervous system. The disorder is inherited in an autosomal recessive mode and, until recently, the molecular basis has remained unknown. We have sequenced 18 GS alleles associated with enzyme deficiency and we detected missense mutations by direct sequencing of cDNAs and genomic DNA. In total, 13 different mutations were identified. Four patients were found to be compound heterozygotes and two individuals were apparently homozygous. Reduced enzymatic activities were demonstrated in recombinant protein expressed from cDNAs in four cases with different missense mutations. The results from biochemical analysis of patient specimens, supported by the properties of the expressed mutant proteins, indicate that a residual activity is present in affected individuals. Our results suggest that complete loss of function of both GS alleles is probably lethal. It is postulated that missense mutations will account for the phenotype in the majority of patients with severe GS deficiency.   相似文献   

2.
《Genetics in medicine》2008,10(12):903-909
PurposeThe Druze community is characterized by consanguinity and endogamy, and by reluctance to genetic testing and technological interventions for the prevention of birth defects. Multiple patients with four rare and severe inborn errors of metabolism cerebrotendinous xanthomatosis, prolidase deficiency, argininosuccinate lyase deficiency, and carbamyl phosphate synthetase I deficiency were identified in an isolated Druze village in northern Israel. The aims of this study were to identify couples at risk for four inherited diseases, and to prevent birth defects in a community presenting religious and cultural obstacles to genetic testing.MethodsA genetic screening and counseling program in a high-risk community.ResultsThe 1425 residents who attended group genetic counseling sessions between 2003 and 2007 consented to genetic testing. We identified 217 carriers for either one or two disease causing mutations. High carrier frequencies for cerebrotendinous xanthomatosis, prolidase deficiency, argininosuccinate lyase deficiency, and carbamyl phosphate synthetase I deficiency were identified as 1:11, 1:21, 1:41, and 1:95, respectively. Fifty-eight percent (125) of the carriers' spouses agreed to genetic counseling and testing. Ten couples at risk for affected offspring were identified and offered prenatal genetic counseling and diagnosis.ConclusionsThe genetic screening program, the first of its kind reported in a Druze community, was well received. We expect this program to increase awareness of genetic counseling, to contribute to disease prevention, and to serve as a model for other isolated communities.  相似文献   

3.
Pyroglutamic aciduria (5-oxoprolinuria) is a rare autosomal recessive disorder caused by either glutathione synthetase deficiency (GSSD) or 5-oxoprolinase deficiency. GSSD results in low glutathione levels in erythrocytes and may present with hemolytic anemia alone or together with pyroglutamic aciduria, metabolic acidosis, and CNS damage. Five patients with pyroglutamic aciduria were studied. All presented with hemolytic anemia and metabolic acidosis. Two (brothers) also had Fanconi nephropathy, which is not seen in pyroglutamic aciduria. Molecular analyses of the GSS gene was performed in 3 patients. RT-PCR and heteroduplex analysis identified a homozygous deletion in 1 patient and a homozygous mutation in 2 others (brothers with Fanconi nephropathy). Sequencing of glutathione synthetase (GSS) cDNA from the first patient showed a 141-bp deletion corresponding to the entire exon 4, whilst the corresponding genomic DNA showed a G491 --> A homozygous splice site mutation. Sequencing of GSS cDNA from the Fanconi nephropathy patients showed a C847 --> T [ARG283 --> CYS] mutation in exon 9.  相似文献   

4.
Kim J  Song J  Lyu CJ  Kim YR  Oh SH  Choi YC  Yoo JH  Choi JR  Kim H  Lee KA 《Clinical genetics》2012,82(2):180-186
The aim of this study was to investigate a mutation spectrum of F11 among Korean patients with factor XI (FXI) deficiency and to determine the haplotypes of mutations frequently found in Koreans. Thirteen unrelated patients from non-consanguineous families with FXI deficiency were included in the study. In the mutation analysis, the most frequently found mutations were Q263X (four cases; 31%) and Q226X (three cases; 23%). The frequency of Q263X-bearing haplotype was significantly different between normal and patient groups (p = 0.001), which is consistent with a founder effect of Q263X mutation. Testing for the presence of these two mutations should be the first genetic screening in Korean patients with FXI deficiency.  相似文献   

5.
Hyperphenylalaninemia (HPA), due to a deficiency of phenylalanine hydroxylase (PAH) enzyme, is caused by mutations in the PAH gene. Molecular analysis in 23 Italian patients with PAH deficiency identified two novel (P281R, L287V) and 20 previously described genetic lesions in the PAH gene. The detection of the A403V amino acid substitution in combination with null mutations in patients with BH4-responsive PAH deficiency leads us to correlate it with BH4 responsiveness.  相似文献   

6.
Holocarboxylase synthetase (HCS) catalyses the biotinylation of the four biotin-dependent carboxylases found in humans. A deficiency in HCS results in biotin-responsive multiple carboxylase deficiency (MCD). We have identified six different point mutations in the HCS gene in nine patients with MCD. Two of the mutations are frequent among the MCD patients analyzed. Four of the mutations cluster in the putative biotin- binding domain as deduced from the corresponding Escherichia coli enzyme and consistent with an explanation for biotin-responsiveness based on altered affinity for biotin. The two others may define an additional domain involved in biotin-binding or biotin-mediated stabilization of the protein.   相似文献   

7.
Citrullinemia type I is an autosomal recessive disorder that is caused by a deficiency of the urea cycle enzyme argininosuccinate synthetase (ASS1). Deficiency of ASS1 shows various clinical manifestations encompassing severely affected patients with fatal neonatal hyperammonemia as well as asymptomatic individuals with only a biochemical phenotype. This is a comprehensive report of all 87 mutations found to date in the ASS1 gene on chromosome 9q34.1. A large proportion of the mutations (n=27) are described here for the first time. Mutations are distributed throughout exons 3 to 15, most of them being identified in exons 5, 12, 13, and 14. The mutation G390R in exon 15 is the single most common mutation in patients with the classical phenotype. Certain mutations clearly link to specific clinical courses but the clinical phenotype cannot be anticipated in all patients. This update presents a survey of the correlation between mutations in the ASS1 gene and the respective clinical courses as described so far. It also sheds light on the geographic incidence of the mutations. Enzymatic studies have been done in bacterial and human cell systems. However, the prognostic value of genetic aberrations with respect to their effect on protein function and clinical manifestation remains uncertain. Hum Mutat 0, 1–8, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The activity of glutathione reductase (GR) is closely associated with the riboflavin level in diet. Dietary deficiency of this water-soluble vitamin causes glutathione reductase deficiency. Furthermore, a variable frequency of GR variants with reduced activity has been reported in several populations. In an attempt to determine GR deficiency due to genetic (GR variant) and acquired causes (riboflavin deficiency), red cell GR activity was estimated in 461 male and female Saudis from the South-Western province of Saudi Arabia. The frequency of genetic GR deficiency (GR variant) was 24.5% in Saudi males and 20.3% in females. The frequency of acquired GR deficiency (riboflavin deficiency) was 17.8% and 22.4%, respectively. Interaction between genetic GR deficiency and other genetic abnormalities, i.e. sickle cell gene and glucose-6-phosphate dehydrogenase deficiency were also estimated. No specific link could be demonstrated.  相似文献   

9.
 By using homozygosity mapping and positional cloning, we have shown that adult-onset type II citrullinemia (CTLN2) is caused by mutations of the SLC25A13 gene, which is localized on chromosome 7q21.3 and encodes a mitochondrial solute carrier protein named citrin. So far, we have reported nine mutations, most of which cause loss of citrin, and we have established several methods for DNA diagnosis. These methods have shown that more than 90% of the patients diagnosed as suffering from CTLN2 by enzymatic analysis carry SLC25A13 mutations in both alleles, indicating that CTLN2 is caused by citrin deficiency. Furthermore, by using the same DNA diagnosis methods, we discovered that 70 neonates or infants suffering from a particular type of neonatal hepatitis carry the same SLC25A13 mutations. Since the symptoms of the neonates are different from those of the more severe CTLN2 and usually ameliorate without special treatment, we designated the neonatal disease neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). We conclude that citrin deficiency causes NICCD in neonates and CTLN2 in adults through the additional effects of genetic or environmental modifiers. Since the function of citrin, together with that of an isoform, aralar, was found to be as a mitochondrial aspartate glutamate carrier, the various symptoms of NICCD and CTLN2 may be understood as caused by defective aspartate export from the mitochondria to the cytosol and defects in the malate aspartate shuttle. It is, however, still difficult to understand the cause of the hepatic deficiency of argininosuccinate synthetase protein in CTLN2. Received: March 20, 2002 / Accepted: March 28, 2002  相似文献   

10.
Intracellular levels of glutathione (GSH), glutathione disulphide (GSSG), glutamic acid and gamma-glutamyl cysteine synthetase (gamma-GCS) were measured in lymphoblast lines from patients with familial and sporadic Alzheimer's disease (AD) and from age-matched controls. Lymphoblasts carrying presenilins (PS) and amyloid precursor protein (APP) genes mutations showed significantly decreased GSH content with respect to controls. Levels of GSSG and glutamic acid, as well as the activity of gamma-GCS were not significantly different in lymphoblasts carrying genes mutations as compared with control cells. These results indicate that even peripheral cells not involved in the neurodegenerative process of AD show altered GSH content when carrying PS and APP genes mutations. The provided data appear to be in accordance with the known alteration of GSH levels in central nervous system and strengthen the hypothesis of oxidative stress as an important, possibly crucial mechanism in the pathogenesis of AD.  相似文献   

11.
Carbamoylphosphate synthetase I deficiency (CPS1D) is a urea-cycle disorder characterized by episodes of life-threatening hyperammonemia. Correct diagnosis is crucial for patient management, but is difficult to make from clinical presentation and conventional laboratory tests alone. Enzymatic or genetic diagnoses have also been hampered by difficult access to the appropriate organ and the large size of the gene (38 exons). In this study, in order to address this diagnostic dilemma, we performed the largest mutational and clinical analyses of this disorder to date in Japan. Mutations in CPS1 were identified in 16 of 18 patients with a clinical diagnosis of CPS1D. In total, 25 different mutations were identified, of which 19 were novel. Interestingly, in contrast to previous reports suggesting an extremely diverse mutational spectrum, 31.8% of the mutations identified in Japanese were common to more than one family. We also identified two common polymorphisms that might be useful for simple linkage analysis in prenatal diagnosis. The accumulated clinical data will also help to reveal the clinical presentation of this rare disorder in Japan.  相似文献   

12.
目的 旨在从基因水平证实多种羧化酶缺乏症(multiple carboxylase deficiency,MCD)的诊断,探讨我国MCD患儿的基因突变情况.方法 12例MCD患儿接受基因诊断.采用PCR及直接测序法分别对4例生物素酶(biotinidase,BT)缺乏症和8例全羧化酶合成酶(holocarboxylase synthetas,HLCS)缺乏症进行BT基因和HLCS基因突变分析,对基因新突变通过限制性片段长度多态性分析及患儿父母和50名正常对照者基因检测以证实.结果 12例患儿基因突变检出率100%.4例BT缺乏症中发现BT基因突变6种:c.98-104del7ins3,c.1369G>A(V457M),c.1157G>A(W386X),c.1284C>A(Y428X),c.1384delA,c.1493_1494insT,后4种为新突变.8例HLCS缺乏症中发现HLCS基因突变4种:c.126G>T(E42D),c.1994G>C(R665P),c.1088T>A(V363D),c.1522C>T(R508W),后两种为热点突变[75%(12/16)],c.1994G>C为新突变.结论 本研究从基因水平上证实了12例MCD的诊断.共发现了6种BT基因突变,4种HLCS基因突变,其中5种为新突变;得出2种HLCS基因的热点突变.  相似文献   

13.
Citrin deficiency, caused by mutations in SLC25A13, can present with neonatal intrahepatic cholestasis or with adult onset neuropsychiatric, hepatic and pancreatic disease. Until recently, it had been thought to be found mostly in individuals of East Asian ancestry. A key diagnostic feature has been the deficient argininosuccinate synthetase (ASS) activity (E.C. 6.3.4.5) in liver, with normal activity in skin fibroblasts. In this series we describe the clinical presentation of 10 patients referred to our laboratories for sequence analysis of the SCL25A13 gene, including several patients who presented with elevated citrulline on newborn screening. In addition to sequence analysis performed on all patients, ASS enzyme activity, citrulline incorporation and Western blot analysis for ASS and citrin were performed on skin fibroblasts if available. We have found 5 unreported mutations including two apparent founder mutations in three unrelated French-Canadian patients. In marked contrast to previous cases, these patients have a markedly reduced ASS activity in skin fibroblasts. The presence of citrin protein on Western blot in three of our cases reduces the sensitivity of a screening test based on protein immunoblotting. The finding of citrin mutations in patients of Arabic, Pakistani, French Canadian and Northern European origins supports the concept that citrin deficiency is a panethnic disease.  相似文献   

14.
Citrin deficiency induces two clinical features; namely neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and adult-onset type II citrullinemia. Hypercitrullinemia is the most characteristic feature, whereas there are non-citrullinemic individuals. Diagnosis of citrin deficiency is performed by genetic analysis, although the 12 known mutations in the alleles are not detected in about 15% of cases. Thus, we aimed to examine citrin protein in lymphocytes isolated from peripheral blood as an alternative diagnostic method. We examined 38 children having an episode of cholestatic liver dysfunction, 8 heterozygotes, and 11 healthy individuals. All subjects were evaluated for citrin protein by Western blotting and for the 12 known mutations by gene analysis. Citrin protein was detected in 15 of 38 children with cholestatic liver dysfunction. Fourteen of them were negative for 12 known mutations in both alleles, whereas one patient was found to have a known mutation in one allele. Citrin protein was absent in 23 of the 38 patients. Among these 23, gene analysis diagnosed citrin deficiency in 19, whereas 2 patients were later revealed to be NICCD with novel mutations. In the remaining 2 patients, who exhibit the clinical features of NICCD, a known mutation was detected in one allele but no mutation was identified in another allele. Citrin protein was also detected in the 8 heterozygotes and 11 healthy individuals. We disclosed that citrin was deficient in lymphocytes among patients with citrin deficiency. Analysis of citrin is useful to diagnose citrin deficiency even in patients without known mutations or hypercitrullinemia.  相似文献   

15.
16.
Citrullinemia is caused by either deficiency of argininosuccinate synthetase (ASS, citrullinemia type 1) or a defect of the SLC25A13 gene encoding a mitochondrial aspartate-glutamate transporter (citrullinemia type II). Citrullinemia type 1-referred to as classical citrullinemia-is characterized by largely elevated concentrations of citrulline, manifesting with acute hyperammonemic crises predominantly early in life and occurs panethnically. Citrullinemia type II is a rare multisystem-disorder nearly exclusively observed in the Japanese population and characterized by less pronounced elevations of plasma citrulline and mainly a late onset of clinical symptoms. Here, we investigated 21 citrullinemic patients (mean peak plasma citrulline 1023 micromol/l, range 152-3360), all of whom remained asymptomatic during the observation period (6-156 months). These patients were referred to as mild citrullinemia due to less striking peak citrulline concentrations or absent clinical symptoms. Extended newborn screening using tandem mass spectrometry detected 15/21 patients, 4/21 patients were identified by investigation of siblings, 2/21 during metabolic work-up of unspecific neurological symptoms. We characterized the genetic defects in all affected families and found all patients affected by citrullinemia type 1 due to mutations of the ASS gene. We identified 15 different mutations, 14/15 missense and 1/15 nonsense, 6/15 were novel mutations. This is the first genetic study in a series of patients with hitherto asymptomatic citrullinemia. According to the mutations found in this study, mild citrullinemia seems to be primarily related to the human ASS gene, at least in patients of caucasian origin.  相似文献   

17.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

18.
Glanzmann thrombasthenia (GT) is an inherited genetic disorder affecting platelets, which is characterized by spontaneous mucocutaneous bleeding and abnormally prolonged bleeding in response to injury or trauma. The underlying defect is failure of platelet aggregation due to qualitative and/or quantitative deficiency of platelet integrin αIIbβ3 resulting from molecular genetic defects in either ITGA2B or ITGB3. Here, we examine a Pakistani cohort of 15 patients with clinical symptoms of GT who underwent laboratory and molecular genetic analysis. In patients with a broad range of disease severity and age of presentation, we identified pathogenic mutations in ITGA2B in 11 patients from 8 different families, including 2 novel homozygous mutations and 1 novel heterozygous mutation. Mutations in ITGB3 were identified in 4 patients from 3 families, two of which were novel homozygous truncating mutations. A molecular genetic diagnosis was established in 11 families with GT, including 5 novel mutations extending the spectrum of mutations in this disease within a region of the world where little is known about the incidence of GT. Mutational analysis is a key component of a complete diagnosis of GT and allows appropriate management and screening of other family members to be performed.  相似文献   

19.
Two hydroxylamine-induced mutants of bacteriophage T4 defective in modification of host valyl-tRNA synthetase have been isolated by assay of crude extracts for the activity that is characteristic of the wild-type virus. The mutations define a single gene that is situated between the rI and e genes on the T4 genetic map. This new gene is designated vs for valyl-tRNA synthetase. One of the mutations may be of the missense type since it results in the production of a valyl-tRNA synthetase activity that has unusual urea-inactivation properties. The other appears to be an amber mutation since the viral enzyme can only be found after infection of cells that are permissive for amber mutations. No differences in growth properties were found between wild type and amber mutant strains on the nonpermissive host. We conclude that the bacteriophage T4 valyl-tRNA synthetase is not essential for viability under prevailing laboratory conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号