首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate ethnic differences in the glyoxylate reductase/hydroxypyruvate reductase (GRHPR) gene in patients with primary hyperoxaluria type 2 (PH2). GRHPR was genotyped in Japanese patients with PH2 and all GRHPR mutations described to date were reviewed in terms of geographic and ethnic association. We identified a novel mutation, a two‐nucleotide deletion (c.248_249delTG) in exon 3 creating a premature ‘stop’ at codon 91. Also, we found that the c.864_865delTG mutation was associated with the rs35891798 single‐nucleotide polymorphism. The allelic frequencies of the c.103delG, c.494G>A, c.403_404+2 delAAGT, and c.864_865delTG mutations in PH2 patients were 37.8%, 15.6%, 10.0%, and 10.0%, respectively. All patients with the c.103delG mutation were Caucasian. Patients with the c.494G>A mutation and 78% (7/9) of those with the c.403_404+2 delAAGT mutation were from the Indian subcontinent, whereas those with the c.864_865delTG mutation were Chinese or Japanese. Molecular analysis of GRHPR of four Japanese PH2 patients identified a novel mutation (c.248_249delTG in exon 3). Caucasians with PH2 should be screened for the c.103delG mutation; patients from the Indian subcontinent for c.494G>A; and patients of East Asian origin (particularly) for c.864_865delTG. The prevalence of the latter mutation in PH2 patients from East Asia was 75.0%.  相似文献   

2.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

3.
Mucolipidosis type IV (MLIV) is a neurodegenerative lysosomal storage disorder that occurs in an increased frequency in the Ashkenazi Jewish (AJ) population. The frequency of the disease in this population has been established by the testing of 66,749 AJ subjects in the Dor Yeshorim program, a unique premarital population-screening program designed for the Orthodox Jewish community. A carrier rate of 0.0104 (95% C.I 0.0097-0.011) was found. The distribution of the 2 AJ founder mutations, namely, c.416-2A>G and c.1_788del, was determined to be 78.15% and 21.85%, respectively. Three novel mutations were identified in non-Jewish MLIV patients, a missense mutation c.1207C>T, p.Arg403Cys; a 2bp deletion, c.302_303delTC; and a nonsense, c.235C>T, Gln79X.  相似文献   

4.
Hereditary non-polyposis colorectal cancer (HNPCC), the most common hereditary colon cancer syndrome, is a dominant disorder caused by germline defects in mismatch repair (MMR) genes. Identification of MMR gene mutations can have direct clinical implications in counseling and management of HNPCC families. We screened 44 HNPCC and 97 suspected HNPCC Korean families for germline mutations in three MMR genes: MLH1, MSH2 and MSH6. We identified twelve novel mutations: nine in MLH1(c.632_633insT, c.808_811delACTT, c.845C>G, c.1625A>C, c.1730+1delG, c.1907T>C, c.1918C>T, c.2104-2A>G and c.2170T>A), two in MSH2 (c.1886A>G, c.1316_1318delCCT) and one in MSH6 (c.3488A>T). In addition, two statically significant cSNPs in MLH1: c.1128T>C ( p=0.008 in HNPCC and p=0.037 in early-onset CRC) and c.2168C>A ( p<0.001 in HNPCC). Interestingly, the most frequent mutation, c.1757_1758insC in MLH1, was a founder mutation inherited from a common Korean ancestor.  相似文献   

5.
Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. Mutations of the Bruton's tyrosine kinase (BTK) gene are responsible for most of the congenital agammaglobulinemia. In this study, the phenotypes of congenital agammaglobulinemia were investigated in 21 male children from 21 unrelated Chinese families. Sixteen different mutations of BTK gene were identified in 18 patients, and three patients did not have BTK gene mutations. Nine mutations had been reported previously including one gross deletion (c.722_2041del), one missense mutation (c.1764G>T), three non-sense mutations (c.194C>A, c.895C>T and c.1821G>A) and four invariant splice-site mutations (c.971+2T>C, c.1481+2T>A, c.1482-2A>G, c.1699-2A>G). Seven novel mutations were identified (c.373_441del, c. 504delG, c.537delC, c.851delA, c.1637G>A, c.1879T>C and c. 1482_1882 del). Ten of the eighteen mutations of BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domain. Candidate genes of autosomal-recessive agammaglobulinemia, including IGHM, CD79a, CD79b and IGLL1, were screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in the IGHM gene (c.1956G>A, c.175_176insC) was identified in one patient. The results of our study further support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.  相似文献   

6.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (ARSB) gene. These mutations result in a deficiency of ARSB activity. Ten MPS VI patients were involved in a phase II clinical study of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Thirteen substitutions (c.215T>G [p.L72R] c.284G>A [p.R95Q], c.305G>A [p.R102H], c.323G>T [p.G108V], c.389C>T [p.P130L], c.511G>A [p.G171S], c.904G>A [p.G302R], c.944G>A [p.R315Q], c.1057T>C [p.W353R], c.1151G>A [p.S384N], c.1178A>C [p.H393P], c.1289A>G [p.H430R] and c.1336G>C [p.G446R]), one deletion (c.238delG), and two intronic mutations (c.1213+5G>A and c.1214-2A>G) were identified. Nine of the 16 mutations identified were novel (R102H, G108V, P130L, G171S, W353R, H430R, G446R, c.1213+5G>A and c.1214-2A>G). The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified in some of the patients, along with the silent mutations c.972A>G and c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient and, together with genotype information, used to predict the expected clinical severity of each patient.  相似文献   

7.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

8.
We describe nine novel mutations and polymorphisms occurring on the major allele of the human alanine:glyoxylate aminotransferase gene in patients with primary hyperoxaluria type 1, an autosomal recessive disease resulting from a deficiency of the liver peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT; EC 2.6.1.44). The PH1 mutations include two small frameshift mutations, 327delG and 117_118insCA, a large deletion spanning exon 9 and portions of the flanking introns, a splice junction mutation, IVS6+5G>C, and two missense mutations, G161R and S218L. Expression studies of the two missense mutations indicated very little enzymatic activity associated with either of them. Three polymorphisms in the coding sequence were also identified, I279T, A280V, and T235T. Expression studies of I279T and A280V suggested essentially normal AGT activity. I279T, found in two cases, was located on a 33_34insC allele. A280V and T235T were both located on the same allele as IVS6+5G>C. We have also identified recurrences of previously reported rare mutations, 33delC, IVS7-1G>C, and IVS4-1G>A. Five of the six novel PH1 mutations occurred in a compound heterozygous state with either of two common PH1 mutations, G170R or 33_34insC. S218L was apparently homozygous in two individuals. These findings contribute to our overall picture of heterogeneity of mutations in PH1 and the AGT major allele.  相似文献   

9.
Isolated methylmalonic acidemia (MMA) is a genetically heterogeneous organic acid disorder caused by either deficiency of the enzyme methylmalonyl-CoA mutase (MCM), or a defect in the biosynthesis of its cofactor, adenosyl-cobalamin (AdoCbl). Herein, we report and review the genotypes and phenotypes of 14 Thai patients with isolated MMA. Between 1997 and 2011, we identified 6 mut patients, 2 cblA patients, and 6 cblB patients. The mut and cblB patients had relatively severe phenotypes compared to relatively mild phenotypes of the cblA patients. The MUT and MMAB genotypes were also correlated to the severity of the phenotypes. Three mutations in the MUT gene: c.788G>T (p.G263V), c.809_812dupGGGC (p.D272Gfs*2), and c.1426C>T (p.Q476*); one mutation in the MMAA gene: c.292A>G (p.R98G); and three mutations in the MMAB gene: c.682delG (p.A228Pfs*2), c.435delC (p.F145Lfs*69), and c.585-1G>A, have not been previously reported. RT-PCR analysis of a common intron 6 polymorphism (c.520-159C>T) of the MMAB gene revealed that it correlates to deep intronic exonization leading to premature termination of the open reading frame. This could decrease the ATP:cobalamin adenosyltransferase (ATR) activity resulting in abnormal phenotypes if found in a compound heterozygous state with a null mutation. We confirm the genotype-phenotype correlation of isolated MMA in the study population, and identified a new molecular basis of the cblB disorder.  相似文献   

10.
Deficiency of the muscle isozyme of glycogen phosphorylase is causative of McArdle disease or Glycogen storage disease type V (GSD-V), the most common autosomal recessive disorder of glycogen metabolism. The typical clinical presentation is characterized by exercise intolerance with cramps, and recurrent myoglobinuria. To date, 46 mutations in the PYGM gene have been detected in GSD-V patients. We report the mutational spectrum in 68 Italian patients. We identified 30 different mutations in the PYGM gene, including 19 mutations that have not been reported previously. The novel mutations include: eight missense mutations (c.475G>A, p.G159R; c.689C>G, p.P230R; c.1094C>T, p.A365E; c.1151C>A, p.A384D; c.1182C>T, p.R428C; c.1471C>T, p.R491C; c.2444A>C, p.D815A; c.2477G>C, p.W826S), two nonsense mutations (c.1475G>A, p.W492X; c.1627A>T, p.K543X), five splice site mutations (c.855 +1G>C; c.1092 +1G>A; c. 1093-1G>T; c.1239 +1G>A; c.2380 +1G>A), and four deletions (c.715_717delGTC, p.V239del; c.304delA, p.N102DfsX4; c.1970_2177del, p.V657_G726; c.2113_2114delGG, p.G705RfsX16). Whereas we confirmed lack of direct correlation between the clinical phenotype and the genotype, we also found that the so-called 'common mutation' (p.R50X) accounted for about 43% of alleles in our cohort and that no population-related mutations are clearly identified in Italian patients.  相似文献   

11.
12.
Hereditary nonpolyposis colorectal cancer (HNPCC) is one of the most common hereditary cancer-susceptibility syndromes. Germline mutations in mismatch repair genes are associated with the clinical phenotype of HNPCC. We report ten novel germline mutations, three in MSH2 and seven in MLH1. All but one mutation have been found in families fulfilling criteria of the Bethesda guidelines; four of them additionally fulfilled the Amsterdam criteria I or II. Eight mutations were considered pathogenic and predictive diagnostics in healthy family members at risk shall be undertaken; these include five frameshift mutations leading to premature stop codons, in MSH2: c.1672delT (p.S558Xfs) and c.2466_2467delTG (p.C822X) and in MLH1: c.1023delG (p.R341Xfs), c.1127_1128dupAT (p.K377Xfs) and c.1310delC (p.P437Xfs); three mutations leading to splice aberrations, in MSH2: c.1661G>C (r.1511_1661del) and in MLH1: c.677+3A>C (r.589_677del) and c.1990-2A>G predicted to result in a splice site defect. The remaining two mutations are unclassified variants with assumed pathogenicity: one missense mutation in the highly conserved ATPase domain of MLH1 (c.122A>G [p.D41G]) and one in-frame insertion of twelve nucleotides in MLH1 (c.2155_2156insATGTGTTCCACA [p.I719delinsNVFHI]). These two mutations were not found in 102 alleles of healthy control individuals. The corresponding tumors from all patients showed a high level of microsatellite instability (MSI-H). Immunohistochemistry (IHC) revealed complete loss of expression of the affected protein in the tumor cells from all but three patients. The tumors from the patients with the mutations c.1127_1128dupAT and c.1990-2A>G showed a reduction of expression of the MLH1-protein, rather than complete loss. In the tumor from the patient with the missense mutation c.122A>G [p.D41G] a normal expression of the proteins coded by MLH1 and MSH2 was noticed.  相似文献   

13.
Hereditary myeloperoxidase (MPO) deficiency (MPOD) is the most common neutrophil biochemical defect, and is characterized by a lack of peroxidase activity. In order to extend the epidemiological studies on hereditary MPOD in Italy, a population screening was carried out to detect mutations in the MPO gene. Of approximately 40,000 individuals analyzed, seven partial and eight total MPO-deficient subjects were identified. The genetic characterization of the subjects showed the presence of three already-known mutations (c.752T>C, c.1705C>T, and c.1566_1579del14) and six novel mutations: four missense mutations (c.995C>T, c.1112A>G, c.1715T>G, and c.1927T>C), then a deletion of an adenine within exon 3 (c.325delA) and a mutation within the 3' splice site of intron 11 (c.2031-2A>C). The novel missense mutations cause the substitution of the residues p.A332V, p.D371G, p.L572W, and p.W643R, respectively, and the potential structural changes are discussed. The c.325delA deletion causes a shift of the reading frame with the occurrence of a premature stop codon within the propeptide. Then, considering the difficulty in obtaining bone marrow samples from MPO-deficient subjects to study MPO mRNA splicing in vivo, we set up an eukaryotic expression system to investigate how the c.2031-2A>C mutation alters the MPO pre-mRNA splicing. The activation of a cryptic 3' splice site located 109nt upstream of the authentic 3' splice site was observed. The 109nt-insertion causes a shift in the reading frame that should lead to the generation of an abnormal MPO precursor lacking the enzymatic activity.  相似文献   

14.
To better characterize Niemann-Pick type C (NPC) in Spain and improve genetic counselling, molecular analyses were carried out in 40 unrelated Spanish patients. The search identified 70/80 alleles (88%) involving 38 different NPC1 mutations, 26 of which are described for the first time. No patient with NPC2 mutations was identified. The novel NPC1 mutations include 14 amino acid substitutions [R372W (c.1114C>T), P434L (c.1301C>T), C479Y (c.1436G>A), K576R (c.1727G>A), V727F (c.2179G>T), M754K (c.2261T>A), S865L (c.2594C>T), A926T (c.2776G>A), D948H (c.2842G>C), V959E (c.2876T>A), T1036K (c.3107C>A), T1066N (c.3197C>A), N1156I (c.3467A>T) and F1224L (c.3672C>G)], four stop codon [W260X (c.780G>A), S425X (c.1274C>A), C645X (c.1935T>A) and R1059X (c.3175C>T)], two donor splice-site mutations [IVS7+1G>A (g.31432G>A) and IVS21+2insG (g.51871insG)], one in-frame mutation [N961_F966delinsS (c.2882del16bpins1bp)] and five frameshift mutations [V299fsX8 (c.895insT), A558fsX11 (c.1673insG), C778fsX10 (c.2334insT), G993fsX3 (c.2973_78delG) and F1221fsX20 (c.3662delT)]. We also identified three novel changes [V562V (c.1686G>A), A580A (c.1740C>G) and A1187A (c.3561G>T)] in three independent NPC patients and five polymorphisms that have been described previously. The combination of these polymorphisms gave rise to the establishment of different haplotypes. Linkage disequilibrium was detected between mutations C177Y and G993fsX3 and specific haplotypes, suggesting a unique origin for these mutations. In contrast, I1061T mutation showed at least two different origins. The most prevalent mutations in Spanish patients were I1061T, Q775P, C177Y and P1007A (10, 7, 7 and 5% of alleles, respectively). Our data in homozygous patients indicate that the Q775P mutation correlates with a severe infantile neurological form and the C177Y mutation with a late infantile clinical phenotype.  相似文献   

15.
16.
Eighteen unrelated pyruvate kinase (PK)-deficient Indian patients were identified in the past 4 years with varied clinical phenotypes ranging from a mild chronic haemolytic anaemia to a severe transfusion-dependent disorder. We identified 17 different mutations in the PKLR gene among the 36 mutated alleles. Ten novel mutations were identified: 427G>A, 499C>A, 1072G>A, 1180G>T, 1216G>A, 1220A>G, 644delG, IVS5 (+20) C>A, IVS9 (+44) C>T, and IVS9 (+93) A>C. A severe syndrome was commonly associated with some mutations, 992A>G, 1436G>A, 1220A>G, 644delG and IVS9 (+93) A>C, in the PKLR gene. Molecular graphics analysis of human red blood cell PK (RPK), based on the crystal structure of human PK, shows that mutations located near the substrate or fructose 1,6-diphosphate binding site may change the conformation of the active site, resulting in very low PK activity and severe clinical symptoms. The mutations target distinct regions of RPK structure, including domain interfaces and catalytic and allosteric sites. In particular, the 1216G>A and 1219G>A mutations significantly affect the interdomain interaction because they are located near the catalytic site in the A/B interface domains. The most frequent mutations in the Indian population appear to be 1436G>A (19.44%), followed by 1456C>T (16.66%) and 992A>G (16.66%). This is the first study to correlate the clinical profile with the molecular defects causing PK deficiency from India where 10 novel mutations that produce non-spherocytic haemolytic anaemia were identified.  相似文献   

17.
The most common form of autosomal recessive (AR) hereditary inclusion-body myopathy (HIBM), originally described in Persian-Jewish families, is characterized by onset in early adult life with weakness and atrophy of distal lower limb muscles, which progress proximally and relatively spare the quadriceps. AR HIBM is associated with mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene (GNE) on chromosome 9p12-13. In the present study we have identified seven novel GNE mutations in patients from five unrelated Italian families with clinical and pathologic features indicative of AR HIBM. Four were missense mutations (c.1556A>G [p.N519S], c.79C>T [p.P27S], c.1798G>A [p.A600T] and c.616G>A [p.G206S]), two consisted in a single-base deletion (c.616delG [p.G206fsX4] and c.1130delT [p.I377fsX16]) and one in an intronic single-base insertion (c.1070+2dupT). These latter findings further extend the type of GNE mutations associated with HIBM. Furthermore, in one patient we also identified the c.737G>A [p.R246Q] missense mutation that corresponds to the one previously reported in a family from the Bahamas. Interestingly, in two of our families distinct mutations affected nucleotide c.616 in exon 3 (c.616delG and c.616G>A). The possibility of specific portions of the gene being more prone to mutations remains to be elucidated.  相似文献   

18.
Alagille syndrome (AGS) is an autosomal dominant disorder with developmental abnormalities of the liver, heart, eyes, vertebrae, and face. Mutations in the JAG1 (Jagged 1) gene, coding a ligand in the evolutionarily conserved Notch signaling pathway, are responsible for AGS. Here we present sixteen different JAG1 gene mutations, among them twelve novel, not described previously. Seven frameshift: c. 172_178del7 (p.Ala58fs), c.509delT (p.Leu170fs), c.1197delG (p.Val399fs), c.1485_1486delCT (p.Pro495fs), c.1809_1810insTGGG (p.Lys604fs), c.2122_2125delCAGT (p.Gln708fs), c.2753delT (p.Ile918fs); five nonsense: c.383G>A (p.Trp128X), c.496C>T (p.Glu166X), c.841C>T (p.Gln281X), c.1207C>T (p.Gln403X), c.1603C>T (p.Gln535X); two splice site: c.388-1G>C, c.3048+1_3048+2insG and two missense mutations: c.359T>A (p.Ile120Asn), c.560G>A (p.Cys187Tyr) were found. Forty percent of the changes were identified in exons 2 and 4, the remaining mutations are distributed along the entire coding sequence of the gene. Seventy-five percent of the mutations lead to creation of premature termination codons. Family studies revealed that the specific mutations were inherited in 3 out of 11 investigated cases. No correlation between genotype and phenotype was observed.  相似文献   

19.
Objective: To perform genetic analysis for 7 patients with Waardenburg syndrome. Methods: Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with Polyphen2 software. Results: Seven mutations, including c. 649-651delAGA (p. R217del), c. 72delG (p. G24fs), c. 185T>C (p. M62T), c. 118C>T (p. Q40X), c. 422T>C (p. L141P), c. 640C>T (p. R214X) and c. 28G>T (p. G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c. 72delG, c. 185T>C, c. 118C>T and c. 128G>T) and one SOX10 gene mutation (c. 422T>C) were not reported previously. Three non-synonymous SNPs (c. 185T>C, c. 128G>T and c. 422T>C) were predicted as harmful. Conclusion: Genetic mutations have been detected in all patients with Waardenburg syndrome. © 2016, West China University of Medical Sciences. All rights reserved.  相似文献   

20.
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号