首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The present study aimed to acquire more information on aging-related alterations, using proteomic and genomic analyses of hippocampus from young (8 months) and old (27 months) rats. In the old rats, the proteomic analysis identified changes in proteins related to the iron-mediated oxidative stress (OS) pathway, including reduction in antioxidant enzymes (e.g., peroxiredoxin, cytochrome c oxidase) and induction of ferritin. Furthermore, the neurofilament light peptide, associated with neurodegenerative processes, was enhanced and binding/ chaperone proteins were altered in old vs. young rats. At the genes levels, significant molecular changes related to neurodegeneration were identified in aged rat hippocampus. Thus, the effects of the potent neuroprotective compounds, the anti-Parkinson drug, rasagiline and the anti-Alzheimer drug, ladostigil (1 mg/kg, for 30 days) on gene expression in the hippocampus were further investigated. Both drugs reversed the effect of aging on the expression of various mitochondrial and key regulator genes involved in neurodegeneration, cell survival, synaptogenesis, oxidation, and metabolism. These results support the hypothesis that OS and mitochondrial dysfunction may play a pivotal role in aging and age-associated neurodegenerative diseases, and can serve as potential clinical targets for future therapy.  相似文献   

3.
Adenylyl cyclase (AC) subtypes have been implicated in memory processes and synaptic plasticity. In the present study, the effects of aging and learning on Ca2+/calmodulin-stimulable AC1, Ca2+-insensitive AC2 and Ca2+/calcineurin-inhibited AC9 mRNA level were compared in the dorsal hippocampus of young-adult and aged C57BL/6 mice using in situ hybridization. Both AC1 and AC9 mRNA expression were downregulated in aged hippocampus, whereas AC2 mRNA remained unchanged, suggesting differential sensitivities to the aging process. We next examined AC mRNA expression in the hippocampus after spatial learning in the Morris water maze. Acquisition of the spatial task was associated with an increase of AC1 and AC9 mRNA levels in both young-adult and aged groups, suggesting that Ca2+-sensitive ACs are oppositely regulated by aging and learning. However, aged-trained mice had reduced AC1 and AC9, but greater AC2, mRNA levels relative to young-trained mice and age-related learning impairments were correlated with reduced AC1 expression in area CA1. We suggest that reduced levels of hippocampal AC1 mRNA may greatly contribute to age-related defects in spatial memory.  相似文献   

4.
Impaired function of the central nervous system (CNS) in aged animals is associated with increased susceptibility to the development of many neurodegenerative diseases. Age-related functional deterioration in brain is consistent with the free radical theory of aging that predicts, among other things, that free radical reactions with and damage to biomolecules, such as proteins and membrane lipid bilayers, leads to loss of neurons and subsequently diminished cognition. These oxidatively modified biomolecules are believed to contribute to the decreased antioxidant content, mitochondrial dysfunction, and impaired plasticity in aged brains. Treatment of rodents with L-acetylcarnitine (LAC; gamma-trimethyl-beta-acetylbutyrobetaine) can improve these functional losses. Although it is well established that administration of LAC can decrease protein oxidation in aged brains, it is not clear which proteins are decreased in their level of oxidation in the brains of aged rats treated with LAC. The current study used a parallel redox proteomics approach to identify the proteins that are oxidized in aged rat cortex and hippocampus of aged rats. Moreover, those proteins that are reduced in oxidation status were identified in aged brains from rats treated in vivo with LAC. The findings are discussed in reference to brain aging and age-related cognitive impairment.  相似文献   

5.
Deficit in synaptic plasticity in the hippocampus frequently occurs during normal aging. Although the protein level and calcium permeability of AMPARs alter with aging, the alteration of AMPARs and their regulatory proteins during aging are far from understanding. Dynamics of GluR2 subunit are dependent on the function of protein interacting with Cα kinase 1 (PICK1), PKCα and calcineurin (CaN). Here, we firstly show that the expression of PICK1 and CaN B decreased significantly in the hippocampus of old rats compared to that of young and adult rats. The decrease was accompanied by a reduction of GluR2 and PKCα and an increase in CaN A. Next, we found that in young and adult rats, the distribution of PICK1 and GluR2 diffused in the cytoplasm of hippocampal neurons, but closely around perinuclear in the hippocampal neurons of old rats. These results suggest that the expression of GluR2, PICK1, PKCα and CaN B significant decreased in the hippocampus and these alterations may lead to altered distribution of GluR2 and PICK1 during aging.  相似文献   

6.
7.
目的: 观察正常Wistar大鼠发育及老化过程中海马神经元磷酸化的细胞周期相关蛋白的表达,探讨这一过程中海马神经元的细胞周期的变化以及磷酸化细胞周期相关蛋白在其中的调控作用。方法:采用免疫荧光方法观察不同发育时期(1天、11天、1月、3月、15月) 磷酸化周期素依赖激酶2(CDK2)、磷酸化细胞分裂周期激酶2(CDC2)、磷酸化视网膜母细胞瘤(Rb)蛋白表达的规律,并应用Western blotting方法测定不同阶段大鼠海马内磷酸化CDK2、磷酸化CDC2、磷酸化Rb的含量。结果:在各年龄组中神经元特异性核蛋白(NeuN)阳性细胞数量随着年龄增加而逐渐减少,提示神经元数量随年龄的增加而逐渐减少。磷酸化CDK2、磷酸化Rb阳性细胞的数量随着年龄增加而逐渐增多,老年组增加明显,与其它各组间有显著差异,磷酸化CDC2阳性细胞在各年龄组神经元中表达量均较低;蛋白定量亦提示老年组磷酸化CDK2、磷酸化Rb的含量较其它组明显增高。结论:海马神经元数量随年龄增加逐渐减少,而其中磷酸化CDK2和磷酸化Rb却随年龄的增长逐渐增多,提示老化过程中部分神经元再次进入细胞周期,说明磷酸化细胞周期相关蛋白可能参与了这一过程中海马神经元的凋亡。  相似文献   

8.
Metallothionein (MT)-III is a metal binding protein, called growth inhibitory factor, and is mainly expressed in the central nervous system. Since MT-III decreases in the brain of Alzheimer's disease (AD), a growing interest has been focused on its relationship to neurodegenerative diseases. To clarify age-related changes in the MT-III expression and its inducibility against oxidative stress, we analyzed the expression of MT-III and its mRNA in the brain of lipopolysaccharide (LPS)-treated aged rats. In the frontal cortex, basal expression of MT-III mRNA was significantly increased with aging, while it was observed no induction of MT-III mRNA against LPS administration in the aged rat brain. MT-III immunopositive cells were increased in the frontal, parietal and piriform cortices, hypothalamus and amygdaloid nucleus with aging. The LPS treatment induced MT-III expression in the brain of young-adult rats, but not in the aged rat brain. Furthermore, the MT-III induction with LPS treatment was mainly observed in oligodendrocyte and microglia. In the present study, we showed that inducibility of brain MT-III against oxidative stress may be reduced with aging. Since it has been reported that MT-III has neuroprotective roles as an antioxidant, present results suggest that MT-III is closely related to the neurodegeneration in the aged animals.  相似文献   

9.
Neophobia is an innate response that can be defined as the reluctance to consume novel-tasting substances. The differential effect of previous aversive and nonaversive taste memory on a subsequent neophobic response was studied in young-adult (Experiment 1) and aged rats (Experiment 2). Surprising, a previous nonaversive taste experience eliminated the subsequent neophobic response to a solution of 1% sodium chloride (NaCl) in young-adult and aged rats. This result is interpreted as a generalization of the previous safe taste memory and the emotional responses that might be induced when a new taste is presented. However, a differential effect associated with aging was found for a previous aversive taste memory induced with a low dose of lithium chloride (0.15 M; 1% b.w.). While in young-adult rats this aversive taste memory did not change the neophobic response to an NaCl solution, in aged rats this memory potentiated the subsequent neophobic response to NaCl. This result is interpreted as an increase in the generalization of aversive taste memory and the emotional responses associated with aging.  相似文献   

10.
The START domain-containing 6 (StarD6) was originally reported to play a role during male germ cell maturation. We have since reported on StarD6 in the developing hypothyroid rat brain. Therefore, we investigated qualitative and quantitative changes of StarD6 in the aging rat brain and testes of male Sprague-Dawley rats. Serum testosterone levels decreased with aging and total protein levels of StarD6 in the testes decreased. While the immunolocalization of StarD6 in the spermatocytes decreased, cytoplasmic localization appeared in the aged testes. Compared with young rats, aged rats showed decreased StarD6 in the cerebrum and cerebellum without changes in immunolocalization in the cortical neurons of the cerebral cortex and Purkinje cells of the cerebellar cortex. Aged rats also showed increases in StarD6 in the hippocampus with changes in its immunolocalization from the Stratum pyramidale to the Stratum radiatum and Stratum lacunosum-moleculare. Taken together, StarD6 decreased with aging in the testes, which implies that StarD6 might play a role in impaired spermatogenesis in the aged rat. StarD6 decreased in the cerebrum and the cerebellum, but slightly increased in the hippocampus, which suggests that StarD6 might also play a role for neurosteroidogenesis in the hippocampus of aged rats.  相似文献   

11.
The main purpose of this study was to evaluate the effect of aging on plasma and free corticosterone (CORT) levels in the brain in basal conditions and in response to an acute stressor. Microdialysis experiments were performed in the hippocampus (HC) and the prefrontal cortex (PFC) of young adult (6 months) and aged (24 months) male Wistar rats. Basal free levels of CORT in the HC and the PFC were higher in aged animals. Restraint stress increased plasma CORT and free CORT levels in the HC and the PFC both in young and aged animals. However, while the increase of plasma CORT was higher in aged rats compared with young rats, the increases of free CORT in the HC and the PFC were not different between these two groups of rats. These results suggest that the changes produced by aging in the brain may be related to the enhanced basal levels of free CORT and not to the CORT increases in response to stress.  相似文献   

12.
The effects of aging on ethanol inhibition of zoxazolamine metabolism in vitro and in vivo were studied in female Fischer 344 rats aged 4, 14 and 26 months. Zoxazolamine hydroxylase activity in freshly-isolated liver microsomes decreased significantly with age (1.88 +/- 0.32, 1.49 +/- 0.30 and 0.74 +/- 0.18 nmol/min per mg protein in young-adult, middle-aged and old rats, respectively). A substantial inhibition of zoxazolamine hydroxylation occurred in the presence of 40 mM ethanol. The extent of inhibition was the same in microsomes from all three age groups. The effect of aging on the duration of zoxazolamine paralysis in vivo reflected the effect of aging on zoxazolamine metabolism in vitro. Mean duration of paralysis following a standard 50 mg/kg dose of zoxazolamine increased significantly as a function of aging (0.5, 2.9 and 4.7 h in young-adult, middle-aged and old rats, respectively). Administration of ethanol (1.2 g/kg) 10 min before zoxazolamine treatment prolonged the duration of zoxazolamine paralysis in young-adult and middle-aged rats by about 2 to 2.5 h, but ethanol pretreatment did not affect paralysis time in old rats. Thus, the inhibitory effect of ethanol on zoxazolamine metabolism in vivo appeared to be attenuated in old age.  相似文献   

13.
Changes in sleep-wake states and nitric oxide release were examined in aged rats versus young-adult ones. Sleep-wake recordings and nitric oxide measurements were taken from animals chronically equipped with polygraphic and voltametric electrodes. Animals were examined in baseline conditions and in response to a 24-hour paradoxical sleep deprivation. In aged rats, basal amount of paradoxical sleep is decreased during the light phase versus young-adult animals. After paradoxical sleep deprivation, a paradoxical sleep rebound occurs with an amount and intensity that are less marked in aged animals than in young-adult rats. The amplitude of the circadian distribution for wakefulness, slow-wave sleep and paradoxical sleep amounts is reduced with age. Finally, delta-slow-wave sleep and theta-paradoxical sleep power spectra are attenuated either in baseline conditions or after paradoxical sleep deprivation in aged animals. It is also reported that cortical nitric oxide release exhibits a circadian rhythm with higher amplitude in aged rats than in young-adult ones. However, after paradoxical sleep deprivation, a limited overproduction of nitric oxide is obtained compared with young-adult ones. These results, evidencing the dynamics of the nitric oxide changes occurring in relation to the sleep-wake cycle, point out the homeostatic paradoxical sleep regulation as an age-dependent process in which the nitric oxide molecule is possibly involved.  相似文献   

14.
Interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) concentrations were measured in livers of young-adult and old rats administered carbon tetrachloride or vehicle. IL-1beta levels were higher and IL-6 levels were lower in old rats than in young-adult rats. Carbon tetrachloride treatment increased IL-1beta and decreased TNF-alpha and IL-6. The elevation in IL-1beta was diminished by aging. These results indicate that the increase in carbon tetrachloride hepatotoxicity that occurs in old age could be related to a dysregulation of inflammatory cytokines.  相似文献   

15.
Aging is thought to be a risk factor to develop vulnerability of the neuroendocrine system, including the hypothalamic-pituitary–adrenal (HPA) axis, and dysregulation of this axis characterized by dexamethasone (DEX)-mediated negative feedback resistance is sometimes observed in elderly humans and animals. However, the influence of aging on the feedback system including an involvement of the brain is not fully understood. In the present study, we examined the suppressive effects of DEX by the systemic injection or the intracranial infusion into the prefrontal cortex (PFC), hippocampus, and hypothalamus on circulating corticosterone levels, and compared between young (3-month-old) and aged (24-month-old) rats. Moreover, we examined expression levels of glucocorticoid receptors (GRs) and their translocation from the cytoplasm to the nucleus using immunohistochemical and Western immunoblot techniques in the pituitary in addition to three brain regions. When DEX was injected systemically, the suppressive response was significantly enhanced in aged rats, compared with young rats. When DEX was infused into three brain regions, the suppressive response to DEX was abolished in aged rats. The immunohistochemical analysis revealed that the number of GR positive cells in the PFC, hippocampus, and hypothalamus was decreased, but that in the pituitary was increased, in aged rats, compared with young rats. The Western immunoblot analysis confirmed these results. Thus, basal expression levels of GRs in three brain regions were decreased, but those in the pituitary were increased, in aged rats. After the injection or infusion of DEX, the translocation of GRs in three brain regions was reduced, but that in the pituitary was enhanced, in aged rats. These results suggest that aging in rats enhances the feedback ability at the systemic level, which mainly involves the pituitary, but it attenuates the ability in the brain. These mechanisms may underlie the vulnerable neuroendocrine systems associated with aging.  相似文献   

16.
目的 研究老年大鼠大脑皮质、海马、小脑皮质和松果体β-肾上腺素能受体的变化.方法 选用老年(20个月)和青年(3个月)SD大白鼠,以放射配基受体结合分析法测定大鼠大脑皮质、海马、小脑皮质和松果体β受体密度、比较2个年龄组上述脑区β受体含量变化及松果体β受体日夜周期变化.结果 与青年组比较,老年组大脑皮质、海马β受体含量明显降低(P<0.01),小脑皮质β受体含量变化不明显(P>0.05),松果体β受体含量在青年组白天明显高于夜间,而老年组变化不明显.结论 衰老时大鼠大脑皮质和海马β受体含量减少,松果体β受体含量的日夜周期改变消失.  相似文献   

17.
Previous studies have shown that inhibition of the Ca(2+)-/calmodulin-dependent protein phosphatase calcineurin (CN) blocks L-type voltage sensitive Ca(2+) channel (L-VSCC) activity in cultured hippocampal neurons. However, it is not known whether CN contributes to the increase in hippocampal L-VSCC activity that occurs with aging in at least some mammalian species. It is also unclear whether CN's necessary role in VSCC activity is simply permissive or is directly enhancing. To resolve these questions, we used partially dissociated hippocampal "zipper" slices to conduct cell-attached patch recording and RT-PCR on largely intact single neurons from young-adult, mid-aged, and aged rats. Further, we tested for direct CN enhancement of L-VSCCs using virally mediated infection of cultured neurons with an activated form of CN. Similar to previous work, L-VSCC activity was elevated in CA1 neurons of mid-aged and aged rats relative to young adults. The CN inhibitor, FK-506 (5muM) completely blocked the aging-related increase in VSCC activity, reducing the activity level in aged rat neurons to that in younger rat neurons. However, aging was not associated with an increase in neuronal CN mRNA expression, nor was CN expression correlated with VSCC activity. Delivery of activated CN to primary hippocampal cultures induced an increase in neuronal L-VSCC activity but did not elevate L-VSCC protein levels. Together, the results provide the first evidence that CN activity, but not increased expression, plays a selective and necessary role in the aging-related increase in available L-VSCCs, possibly by direct activation. Thus, these studies point to altered CN function as a novel and potentially key factor in aging-dependent neuronal Ca(2+) dysregulation.  相似文献   

18.
There is evidence of structural and functional deterioration in the brain, including the prefrontal cortex (PFC) and hippocampus, during the normal aging process in animals and humans. Extracellular matrix-associated glycoproteins, such as chondroitin sulfate proteoglycans (CSPGs), are involved in not only maintaining the structures and functions of adult neurons, but also regulating the proliferation, migration, and neurite outgrowth of neural stem cells in the brain. On the other hand, a herbal medicine, yokukansan (YKS), is used in a variety of clinical situations for treating symptoms associated with age-related neurodegenerative disorders such as Alzheimer's disease, but its pharmacological properties have not been fully understood. The present study was designed to clarify the influence of aging and the improving effects of YKS on the expression of aggrecan, a major molecule of CSPGs, and on the proliferation and migration of neural stem/progenitor cells identified by bromodeoxyuridine (BrdU) incorporation in the PFC and hippocampus including the dentate gyrus. Aged rats (24 months old) showed a significant increase in aggrecan expression throughout the PFC and in the hippocampus particularly in the CA3 subfield, but not the dentate gyrus compared to young rats (5 months old), evaluated by the immunohistochemical method. YKS treatment decreased the age-related increase in aggrecan expression as well as normal expression in young rats. Aged rats also showed a decreased number of BrdU-labeled cells in the PFC and hippocampus, and these decreases were improved by YKS treatment, which also increased the numbers in young rats. These results suggest that aging influences the microenvironment for adult and immature neurons in the brain, which may affect the proliferation and migration of neural stem/progenitor cells, and YKS has pharmacological potency for these age-related events. These findings help to understand the physiology and pathology of the aged brain and provide an anti-aging strategy for the brain.  相似文献   

19.
Research in aging laboratory animals has characterized physiological and cellular alterations in medial temporal lobe structures, particularly the hippocampus, that are central to age-related memory deficits. The current study compares molecular alterations across hippocampal subregions in a rat model that closely mirrors individual differences in neurocognitive features of aging humans, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gyrus subregions, we have distinguished between genes and pathways related to chronological age and those associated with impaired or preserved cognitive outcomes in healthy aged Long-Evans rats. The CA3 profile exhibited the most prominent gene expression differences related to cognitive status and of the three subregions, best distinguished preserved from impaired function among the aged animals. Within this profile differential expression of synaptic plasticity and neurodegenerative disease-related genes suggests recruitment of adaptive mechanisms to maintain function and structural integrity in aged unimpaired rats that does not occur in aged impaired animals.  相似文献   

20.
The actin cytoskeleton plays a critical role in the cellular morphological changes. Its organization is essential for neurite extension and synaptogenesis under the processes of neuronal development. Recently, neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin-homologous protein (WAVE) have been identified as key molecules, which specifically participate in regulation of actin cytoskeleton through small GTPases. The functions of these factors have been investigated using cultured cells; however, in vivo developmental changes in these factors are not fully understood. In this study, we examined the expression levels and distributions of N-WASP, WAVE and their related proteins in the rat cerebral cortex and hippocampus during postnatal development. Protein levels of these factors were progressively increased during development, and actin was accumulated in membranous fractions. Immunoreactivities for these factors were widely but differentially observed in entire brain. In the developing brain, N-WASP and WAVE seemed to exist in the synapse-rich areas, such as stratum radiatum of hippocampal CA1 subfield. A similar tendency in the distributions of these factors was observed in the mature brain. Taken together, N-WASP, WAVE and their related proteins may participate in normal brain development and synaptic plasticity by regulating the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号