首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We demonstrated previously that rat ascites hepatoma MM1 cells require both lysophosphatidic acid (LPA) and fibronectin (FN) for phagokinetic motility and transcellular migration and that these events are regulated through the RhoA-ROCK pathway and tyrosine phosphorylation of proteins including focal adhesion kinase (FAK). Moreover, we reported that palmitoyl-cyclic phosphatidic acid (Pal-cPA), a structural analogue of LPA, inhibits LPA-induced migration of MM1 cells and experimental metastasis of B16 murine melanoma cells. However, the molecular mechanisms of action of Pal-cPA remains to be clarified. To examine this, total cellular lysates after stimulation with LPA or FN were subjected to time-course immunoblot analysis with anti-phophotyrosine and anti-pY397-FAK antibodies. Tyrosine-phosphorylation of FAK especially at Tyr-397 was obviously persistent after stimulation with LPA + FN compared to after stimulation with LPA alone. This persistent phosphorylation was necessary for MM1 cell migration and inhibited by Pal-cPA as by C3 exoenzyme Rho inhibitor. RhoA activity (GTP-bound RhoA) was also measured by the pull down assay using the Rho binding domain of Rhotekin. LPA-induced RhoA-activation of MM1 cells was completely inhibited by Pal-cPA. Moreover, we demonstrated that autophosphorylation of FAK at Tyr-397, downstream of RhoA, contributed to formation of focal adhesions and was critical in LPA-induced MM1 cell migration by developing autophosphorylation-deficient (Y397F) FAK-transfectants. Collectively, Pal-cPA hampered LPA-induced morphological changes and transcellular migration of MM1 cells through downregulating active RhoA and inhibiting its downstream events including autophosphorylation of FAK. Pal-cPA also inhibited endogenous (LPA-independent) activation of RhoA in human fibrosarcoma HT-1080 cells. Pal-cPA may potentially provide a new therapy for the treatment of cancer invasion and metastasis.  相似文献   

2.
Migration of rat ascites hepatoma (MM1) cells, invasion and phagokinetic movement were induced by the combination of lysophosphatidic acid (LPA) and fibronectin (FN). Induction of migratory activity was tightly correlated with morphological change of MM1 cells from spherical or polygonal-shaped cells to fusiform-shaped ones with pseudopodia. MM1 cells were mobile in a fusiform shape, whereas those of a spherical or polygonal shape were not. A small GTPase Rho and one of its downstream effectors ROCK (Rho-associated coiled-coil forming protein kinase), play essential roles in these processes, as evidenced by suppression of migration and morphological change of MM1 cells by Clostridium botulinum C3 exoenzyme, an inhibitor of Rho, or by Y-27632, an inhibitor of ROCK. Y-27632 also suppressed the formation of fusiform-shaped pseudopodia-carrying MM1 cells that was induced by stimulation with the combination of LPA and FN. LPA and FN also evoked the formation of focal adhesions and actin bundles, and tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. The inhibitory effect of Y-27632 on LPA-induced migration and morphological change of MM1 cells was considered to be mediated, at least in part, by impaired formation of focal adhesions and actin bundles. Y-27632 suppressed LPA-induced tyrosine phosphorylation of FAK and paxillin, suggesting that ROCK regulates these molecules and Y-27632 inhibits cellular migration and morphological change, at least in part, through this regulation.  相似文献   

3.
Migration of rat ascites hepatoma (MM1) cells, invasion and phagokinetic movement were induced by the combination of lysophosphatidic acid (LPA) and fibronectin (FN). Induction of migratory activity was tightly correlated with morphological change of MM1 cells from spherical or polygonal-shaped cells to fusiform-shaped ones with pseudopodia. MM1 cells were mobile in a fusiform shape, whereas those of a spherical or polygonal shape were not. A small GTPase Rho and one of its downstream effectors ROCK (Rho-associated coiled-coil forming protein kinase), play essential roles in these processes, as evidenced by suppression of migration and morphological change of MM1 cells by Clostridium botulinum C3 exoenzyme, an inhibitor of Rho, or by Y-27632, an inhibitor of ROCK. Y-27632 also suppressed the formation of fusiform-shaped pseudopodia-carrying MM1 cells that was induced by stimulation with the combination of LPA and FN. LPA and FN also evoked the formation of focal adhesions and actin bundles, and tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. The inhibitory effect of Y-27632 on LPA-induced migration and morphological change of MM1 cells was considered to be mediated, at least in part, by impaired formation of focal adhesions and actin bundles. Y-27632 suppressed LPA-induced tyrosine phosphorylation of FAK and paxillin, suggesting that ROCK regulates these molecules and Y-27632 inhibits cellular migration and morphological change, at least in part, through this regulation.  相似文献   

4.
Insulin-like growth factor-1 (IGF-I) is a growth and survival factor in human multiple myeloma (MM) cells. Here we examine the effect of IGF-I on MM cell adhesion and migration, and define the role of beta1 integrin in these processes. IGF-I increases adhesion of MM.1S and OPM6 MM cells to fibronectin (FN) in a time- and dose-dependent manner, as a consequence of IGF-IR activation. Conversely, blocking anti-beta1 integrin monoclonal antibody, RGD peptide, and cytochalasin D inhibit IGF-I-induced cell adhesion to FN. IGF-I rapidly and transiently induces association of IGF-IR and beta1 integrin, with phosphorylation of IGF-IR, IRS-1, and p85(PI3-K). IGF-I also triggers phosphorylation of AKT and ERK significantly. Both IGF-IR and beta1 integrin colocalize to lipid rafts on the plasma membrane after IGF-I stimulation. In addition, IGF-I triggers polymerization of F-actin, induces phosphorylation of p125(FAK) and paxillin, and enhances beta1 integrin interaction with these focal adhesion proteins. Importantly, using pharmacological inhibitors of phosphatidylinositol 3'-kinase (PI3-K) (LY294002 and wortmannin) and extracellular signal-regulated kinase (PD98059), we demonstrate that IGF-I-induced MM cell adhesion to FN is achieved only when PI3-K/AKT is activated. IGF-I induces a 1.7-2.2 (MM.1S) and 2-2.5-fold (OPM6) increase in migration, whereas blocking anti-IGF-I and anti-beta1 integrin monoclonal antibodies, PI3-K inhibitors, as well as cytochalasin D abrogate IGF-I-induced MM cell transmigration. Finally, IGF-I induces adhesion of CD138+ patient MM cells. Therefore, these studies suggest a role for IGF-I in trafficking and localization of MM cells in the bone marrow microenvironment. Moreover, they define the functional association of IGF-IR and beta1 integrin in mediating MM cell homing, providing the preclinical rationale for novel treatment strategies targeting IGF-I/IGF-IR in MM.  相似文献   

5.
Rho, a member of the small GTP-binding proteins, and one of its downstream effectors ROCK (Rho-associated coiled-coil forming protein kinase) play an important role in the invasion of tumor cells. Lysophosphatidic acid (LPA) activates Rho and ROCK and promotes the organization of stress fibers and focal adhesions. However, the effect of LPA on tumor cell invasion is still controversial. In the present study, human osteosarcoma cells treated with a high concentration of LPA (high LPA) showed considerable formation of stress fibers and focal adhesions compared to the cells treated with a low concentration of LPA (low LPA). C3 (inhibitor of Rho) or Y27632 (an inhibitor of ROCK) inhibited the effects of LPA, indicating that LPA activates the Rho-ROCK pathway in the cells. In addition, Rho activation assay showed that the activation level of Rho can be altered by changing the concentration of LPA. Low LPA stimulated the motility and invasion of the cells, while high LPA reduced both. The disruption of extracellular matrix (ECM) by matrix metalloproteinase 2 (MMP2) is also critical for tumor cell invasion. MMP2 is activated by membranous type-1 MMP (MT1-MMP) and type-2 tissue inhibitor of MMP (TIMP2). High LPA suppressed the activation of MMP2 through down-regulation of MT1-MMP and TIMP2. C3 and Y27632 reversed the suppression of the activation of MMP2 and expression of MT1-MMP and TIMP2, suggesting the involvement of the Rho-ROCK pathway in ECM degradation. Tyrosine phosphorylation of focal adhesion kinase (FAK) was also required for the invasion of tumor cells to occur. Low LPA enhanced the tyrosine phosphorylation of FAK whereas high LPA reduced it. In conclusion, we suggest that Rho has a dual effect on the invasion of osteosarcoma cells by modulating the motility, the ability to degrade ECM and tyrosine phosphorylation of FAK.  相似文献   

6.
Rho, a member of the small GTP-binding proteins, and one of its downstream effectors ROCK (Rho-associated coiled-coil forming protein kinase) play an important role in the invasion of tumor cells. Lysophosphatidic acid (LPA) activates Rho and ROCK and promotes the organization of stress fibers and focal adhesions. However, the effect of LPA on tumor cell invasion is still controversial. In the present study, human osteosarcoma cells treated with a high concentration of LPA (high LPA) showed considerable formation of stress fibers and focal adhesions compared to the cells treated with a low concentration of LPA (low LPA). C3 (inhibitor of Rho) or Y27632 (an inhibitor of ROCK) inhibited the effects of LPA, indicating that LPA activates the Rho-ROCK pathway in the cells. In addition, Rho activation assay showed that the activation level of Rho can be altered by changing the concentration of LPA. Low LPA stimulated the motility and invasion of the cells, while high LPA reduced both. The disruption of extracellular matrix (ECM) by matrix metalloproteinase 2 (MMP2) is also critical for tumor cell invasion. MMP2 is activated by membranous type-1 MMP (MT1-MMP) and type-2 tissue inhibitor of MMP (TIMP2). High LPA suppressed the activation of MMP2 through down-regulation of MT1-MMP and TIMP2. C3 and Y27632 reversed the suppression of the activation of MMP2 and expression of MT1-MMP and TIMP2, suggesting the involvement of the Rho-ROCK pathway in ECM degradation. Tyrosine phosphorylation of focal adhesion kinase (FAK) was also required for the invasion of tumor cells to occur. Low LPA enhanced the tyrosine phosphorylation of FAK whereas high LPA reduced it. In conclusion, we suggest that Rho has a dual effect on the invasion of osteosarcoma cells by modulating the motility, the ability to degrade ECM and tyrosine phosphorylation of FAK.  相似文献   

7.
目的 研究纤维连接蛋白激活paxillin后对人胃癌细胞侵袭力的影响,探讨抑制paxillin影响胃癌细胞侵袭力的机制。方法 以递增浓度的纤维连接蛋白刺激人胃癌细胞株AGS,以免疫沉淀和蛋白质印迹法检测胃癌细胞内paxillin第118位酪氨酸(tyr-118)磷酸化的变化,同时以改良Boyden小室法检测细胞侵袭力变化。设计合成paxillin siRNA并进行效果比较,观察siRNA抑制纤维连接蛋白促胃癌细胞内paxillin tyr-118磷酸化及细胞侵袭力的改变。结果 纤维连接蛋白能促进AGS细胞 paxillin tyr-118磷酸化的增强和胃癌细胞侵袭力(P<0.05),并在一定范围内具有剂量依赖性。siRNA干预后,胃癌细胞内paxillin tyr-118磷酸化及细胞侵袭力均有显著降低(P<0.05)。结论 纤维连接蛋白可有效增强胃癌细胞的侵袭力,paxillin tyr-118磷酸化在此过程中起关键作用,使用paxillin siRNA可以抑制纤维连接蛋白促人胃癌细胞侵袭的作用。  相似文献   

8.
The antiadhesive extracellular matrix molecule tenascin-C abrogates cell spreading on fibronectin through competitive inhibition of syndecan-4, thereby preventing focal adhesion kinase (FAK) activation and triggering enhanced proteolytic degradation of both RhoA and tropomyosin 1 (TM1). Here, we show that simultaneous signaling by lysophosphatidic acid (LPA) and platelet-derived growth factor (PDGF) initiates glioma cell spreading and migration through syndecan-4-independent activation of paxillin and FAK and by stabilizing expression of RhoA, TM1, TM2, and TM3. By using gene silencing methods, we show that paxillin, TM1, TM2, and TM3 are essential for LPA/PDGF-induced cell spreading on a fibronectin/tenascin-C (FN/TN) substratum. LPA/PDGF-induced cell spreading and migration on FN/TN depends on phosphatidylinositol 3-kinase, RhoKinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 but is independent of phospholipase C and Jun kinase. RNA microarray data reveal expression of tenascin-C, PDGFs, LPA, and the respective receptors in several types of cancer, suggesting that the TN/LPA/PDGF axis exists in malignant tumors. These findings may in turn be relevant for diagnostic or therapeutic applications targeting cancer.  相似文献   

9.
Solid cancers must stimulate expansion of the vascular network for continued growth. The process of angiogenesis involves endothelial cell migration so as to reorganize into vessel structures. The extent of cellular motility is regulated in part by the balance between serine/threonine kinases and protein phosphatases. In the present study, we show a decline in the activity of the serine/threonine phosphatase PP-2A in endothelial cells whose motility is stimulated by exposure to medium conditioned by either murine LLC cells or human HNSCC cells. Inhibition of endothelial cell PP-2A pharmacologically by treatment with okadaic acid also stimulated endothelial cell motility. Identification of mechanisms by which PP-2A inhibition might stimulate endothelial cell motility focused on proteins of the focal adhesions. Inhibition of PP-2A caused hyperphosphorylation of the paxillin serine residues and dephosphorylation of its tyrosine residues, dissolution of FAK/Src/paxillin complexes and decreased phosphorylation of the inhibitory Y529 residue of Src, suggesting increased Src activity. Inhibition of Src activity prevented the stimulation of PP-2A-inhibited cell motility. Our results suggest an interrelationship between tumor inhibition of PP-2A, dissolution of focal adhesion complexes and stimulated motility of endothelial cells.  相似文献   

10.
Prolactin (PRL) stimulates the cytoskeletal re-organization and motility of breast cancer cells. During PRL receptor signaling, Vav2 becomes phosphorylated and activated, an event regulated by the serine/threonine kinase Nek3. Given the regulatory role of Vav2, the function of Nek3 in PRL-mediated motility and invasion was examined. Overexpression of Nek3 in Chinese hamster ovary transfectants potentiated cytoskeletal re-organization in response to PRL. In contrast, downregulation of Nek3 expression by small-interfering RNA (siRNA) attenuated PRL-mediated cytoskeletal reorganization, activation of GTPase Rac1, cell migration and invasion of T47D cells. In addition, PRL stimulation induced an interaction between Nek3 and paxillin and significantly increased paxillin serine phosphorylation, whereas Nek3 siRNA-transfected cells showed a marked reduction in paxillin phosphorylation. Analysis of breast tissue microarrays also demonstrated a significant up-regulation of Nek3 expression in malignant versus normal specimens. These data suggest that Nek3 contributes to PRL-mediated breast cancer motility through mechanisms involving Rac1 activation and paxillin phosphorylation.  相似文献   

11.
Prostate cancer remains the most frequently diagnosed malignancy and the second leading cause of cancer mortality among men in the United States. Hormone refractory, metastatic disease has no molecular therapeutics to date and survival is poor. Lysophosphatidic acid (LPA) is a bioactive lipid exhibiting motility, invasive, growth, proliferative and survival effects in multiple cancer cell lineages. Cells express different combinations of LPA‐specific G protein‐coupled receptors, LPA1, LPA2 LPA3, and LPA4 as well as other LPA receptors, which bind LPA and thereby regulate lipid signaling. The role of specific LPA receptors in functional outcomes of lysolipid signaling remains to be fully elucidated in prostate cancer. We hypothesized that LPA can initiate cell migration through specific LPA receptors by activating actin‐associating proteins involved in motility, including the vasodilator‐stimulated phosphoprotein (VASP). In the present study, we demonstrate that LPA‐induced lamellipodia formation in cells is dependent on LPA receptor‐mediated phosphorylation of VASP, demonstrating a previously unknown regulation by LPA. LPA induces phosphorylation of VASP at Ser(157), through protein kinase A (PKA) since the stimulation was abrogated by PKA inhibition. In addition, we found that the effects of LPA‐induced lamellipodia formation and migration were reduced by knockdown of either VASP or LPA receptor expression, suggesting that LPA receptor‐induced VASP phosphorylation is a critical mediator of migration initiation. Thus the LPA2 and LPA3 receptors, in addition to the previously implicated LPA1 receptor, play a role in cellular motility potentially contributing to invasion and metastases. Emerging drugs targeting the LPA pathway may be beneficial for the treatment of metastatic progression in prostate cancer.  相似文献   

12.
Vadlamudi R  Adam L  Talukder A  Mendelsohn J  Kumar R 《Oncogene》1999,18(51):7253-7264
The mechanisms through which heregulin (HRG) regulates the progression of breast cancer cells to a more invasive phenotype are currently unknown. Recently we have shown that HRG treatment of breast cancer cells leads to the formation of lamellipodia/filopodia, and increased cell migration and invasiveness through the phosphatidylinositol 3-kinase (PI-3 kinase). Since the process of cell migration must involve changes in adhesion, we explored the potential HRG regulation of paxillin, a major cytoskeletal phosphoprotein of focal adhesion. We report that HRG stimulation of non-invasive breast cancer cells resulted in stimulation of p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinases (ERK) and PI-3K, and a concurrent unexpected increase in the level of paxillin phosphorylation on serine residue which was sensitive to protein-phosphatase 2b but not to protein tyrosine phosphatase 1. In addition, HRG triggered a rapid redistribution of paxillin to the perinuclear regions from the tyrosine-phosphorylated focal adhesions, and increased cell scattering. There was no effect of HRG on the state of phosphorylation and localization of focal adhesion kinase. The HRG-induced increase in serine phosphorylation of paxillin and cell scattering were selectively inhibited by a specific inhibitor of p38MAPK or a dominant-negative p38MAPK mutant, but not by inhibitors of p42/44MAPK or PI-3 kinase pathways. For the first time our results have shown that HRG, a potent migratory growth factor stimulates serine phosphorylation of paxillin. These findings suggest a role of p38MAPK-dependent signal transduction pathway(s) in serine phosphorylation and disassembly of the paxillin from the focal complexes during HRG-induced cell shape alterations and motility.  相似文献   

13.
Enhanced expression of tenascin-C (TN-C) at the invasive edges of glioblastoma multiforme in close association with vascular sprouts, suggests a role for TN-C in microvascular cell migration. To test this hypothesis, we studied the migration of endothelial cells in vitro. In an aggregate migration assay, bovine retinal endothelial cells (BRECs) and human umbilical vein endothelial cells spread and migrated similarly on TN-C or fibronectin (FN). In contrast, U251 MG glioma cells migrated less on TN-C than on FN. Morphological features of U251 MG glioma cells on TN-C included poor cell spreading and short processes. In contrast, on FN, U251 MG glioma cells spread and exhibited long radial processes. Using a transmembrane migration assay, we observed that BREC adhesion was similar on TN-C or FN, whereas U251 MG glioma cells adhered better to FN than to TN-C. In addition, BRECs migrated more across the membrane toward regions coated with TN-C than FN, and conversely, U251 MG glioma cells migrated more toward FN than TN-C. Migration of endothelial and glioma cells toward TN-C or FN occurred in a dose-dependent manner and was strongly dependent on cell adhesion. In this assay, ultrastructural study revealed the migrating phenotype of the endothelial cells through the micropores of the membrane and their spread morphology on TN-C. Moreover, in situ hybridization revealed specific expression of TN-C in migrating microvascular cells in a cerebral microvascular ring assay. Finally in a phosphorylation assay, TN-C enhanced focal adhesion kinase phosphorylation of BRECs, but not of U251 MG glioma cells, and FN enhanced focal adhesion kinase phosphorylation of both BRECs and U251 MG cells. The expression of TN-C by migrating endothelial cells and the promotion of endothelial cell adhesion and migration by TN-C suggest a potential role for TN-C in pathological angiogenesis.  相似文献   

14.
A new type of antimetastatic peptide derived from fibronectin.   总被引:5,自引:0,他引:5  
PURPOSE: We found previously that fibronectin (FN) has a cryptic functional site (YTIYVIAL sequence within the 14th type III repeat) opposing cell adhesion to extracellular matrix. A 22-mer FN peptide containing this site, termed FNIII14, inhibits beta1 integrin-mediated adhesion without binding to integrins. The present study shows that FNIII14 has the potential to prevent lymphoma cell metastasis. EXPERIMENTAL DESIGN: Antimetastatic effect of FNIII14 has been evaluated through in vitro or in vivo experiments. RESULTS: FNIII14 inhibited the integrin alpha4beta1-mediated B lymphoma Ramos cell adhesion to VCAM-1 on venule endothelial cells, as well as to FN. Murine T lymphoma L5178Y-ML25 cells, which are known to metastasize to liver and spleen, preferentially adhered to vitronectin (VN) and migrated toward VN concentration gradients. FNIII14 abrogated both the integrin alphavbeta3-mediated adhesion and migration of L5178Y-ML25 cells. Inhibition of the alphavbeta3mediated L5178Y-ML25 cell adhesion by FNIII14 was reversed by phenylarsine oxide, a protein tyrosine phosphatase inhibitor. In addition, FNIII14 abrogated the VN-stimulated tyrosine phosphorylation of intracellular signaling proteins, including focal adhesion kinase (p125(FAK)) and paxillin, suggesting that such a diversity of FNIII14 effects might be because of the negative regulation of p125(FAK) and paxillin tyrosine phosphorylation, which has been involved in adhesion signals transduced by different integrins. The in vivo experiment using a murine metastasis model showed that FNIII14 would inhibit liver and spleen metastases of L5178Y-ML25 cells at a dose much lower than that of RGDS. CONCLUSIONS: FNIII14 might be applicable as a new type of antimetastatic agent distinct from integrin-binding peptides.  相似文献   

15.
Malignant astrocytomas are highly invasive neoplasms infiltrating diffusely into regions of normal brain. Whereas the molecular and cellular mechanisms governing astrocytoma invasion remain poorly understood, evidence in other cell systems has implicated a role for the Rho-GTPases in cell motility and invasion. Here, we examine how the inhibition or activation of Rho-kinase (ROCK) affects astrocytoma morphology, motility, and invasion. ROCK was inhibited in astrocytoma cells by using 5 to 100 mumol/L of Y27632 or by expressing the dominant-negative ROCK mutant, RB/PH TT. ROCK activation was achieved by expressing a constitutively active mutant, CAT. ROCK inhibition led to morphologic and cytoskeletal alterations characterized by an increase in the number and length of cell processes, increased membrane ruffling, and collapse of actin stress fibers. Using two-dimensional radial migration and Boyden chamber assays, we show that astrocytoma migration and invasion were increased at least 2-fold by ROCK inhibition. On the contrary, ROCK activation significantly inhibited migration and invasion of astrocytoma cells. Furthermore, using a Rac-GTP pull-down assay, we show that Rac1 is activated as a consequence of ROCK inhibition. Finally, we show that treatment of astrocytoma cells with small interfering RNA duplexes specific for Rac1-reversed stellation, prevented membrane ruffling formation and abrogated the increased motility observed following treatment with Y27632. Our data show that Rac1 plays a major role in astrocytoma morphology, motility, and invasion. These findings warrant further investigation to determine precisely how the modulation of Rac1 and ROCK can be exploited to inhibit glioma invasion.  相似文献   

16.
The expression and implications of gangliosides in human osteosarcomas have not been systematically analyzed. In this study, we showed that gangliosides GD3 and GD2 are highly expressed in the majority of human osteosarcoma cell lines derived from oral cavity regions. Introduction of GD3 synthase cDNA into a GD3/GD2-negative (GD3/GD2-) human osteosarcoma subline resulted in the establishment of GD3/GD2+ transfectant cells. They showed increased cell migration and invasion activities in wound healing and Boyden chamber invasion assays, respectively, compared to the control cells. When treated with serum, GD3/GD2+ cells showed stronger tyrosine phosphorylation of p130Cas, focal adhesion kinase, and paxillin than GD3/GD2- cells. In particular, paxillin underwent much stronger phosphorylation, suggesting its role in cell motility. Furthermore, we tried to dissect the roles of GD3 and GD2 in the malignant properties of the transfectant cells by establishing single ganglioside-expressing cells, that is, either GD3 or GD2. Although GD3/GD2+ cells showed the most malignant properties, GD2+ cells showed almost equivalent levels to GD3/GD2+ cells in invasion and migration activities, and in the intensities of tyrosine phosphorylation of paxillin. Among Src family kinases, Lyn was expressed predominantly, and was involved in the invasion and motility of GD3- and/or GD2-expressing transfectants. Furthermore, it was elucidated by gene silencing that Lyn was located in a different pathway from that of FAK to eventually lead paxillin activation. These results suggested that GD2/GD3 are responsible for the enhancement of the malignant features of osteosarcomas, and might be candidate targets in molecular-targeted therapy.  相似文献   

17.
Although the detailed mechanisms of cell migration remain largely unknown, it is now clear that growth factors and cell adhesion molecules are crucial for this process. We have shown that type I insulin-like growth factor (IGF-I) promotes migration of human colonic tumour cells. Since morphological analysis suggested an involvement of adhesion molecules, we have now examined the role of integrins (cell-matrix adhesion molecules) and E-cadherin/catenins complex (cell-cell adhesion molecules) in the IGF-I-induced migration. Using a monolayer wounding assay, we have determined that, except for alpha2beta1, all of the integrins expressed in HT29-D4 cells are involved in the induced cell migration. Immunofluorescence studies revealed that upon IGF-I stimulation the integrins reorganized at the leading edge of migrating cells. We also demonstrate that E-cadherin is involved in cell migration. A rapid tyrosine phosphorylation of E-cadherin and beta-catenin was detected upon IGF-I stimulation. Tyrosine phosphorylation was associated with reduced membranous expression of E-cadherin and promotion of cell motility, suggesting a regulation of the E-cadherin/catenins complex. This effect can be reversed by incubating cells with tyrosine kinase inhibitors. Taken together, our results suggest that IGF-I promotes colonic cell migration through reorganization of integrin receptors and through modulation of E-cadherin/catenins complex function.  相似文献   

18.
Previously, we reported that phorbol 12-myristate 13-acetate (PMA)-activated protein kinase C (PKC) induced Rac1 activation in A172 glioblastoma cells. In this study, we investigated the mechanism of PMA-activated PKC-induced migration of glioblastoma cells by focusing on Rac1. PMA-induced formation of lamellipodia and focal complexes following migration were blocked by inhibiting Rac1 with small interfering RNA (siRNA), implicating Rac1 in PMA-induced glioblastoma cell migration. PMA-activated PKC induced phosphorylation of c-jun N-terminal kinase (JNK), one of the downstream effectors of Rac1. Immunohistochemical analysis showed that phosphorylated JNK was translocated to paxillin-containing focal complexes upon PMA stimulation and that Rac1 siRNA blocked these phenomena. These results suggest that phosphorylated JNK functions in cell migration and that JNK phosphorylation and translocation are mediated by Rac1. Furthermore, inhibition of Rac1 reduced phosphorylation of paxillin, a focal adhesion component and a downstream effector of JNK, at serine 178 (Ser178). Paxillin phosphorylation at this site has been shown to be involved in cell migration. Immunohistochemical analysis detected phosphorylation of paxillin (Ser178) in focal complexes upon PMA stimulation that was blocked by Rac1 siRNA. SP600125, a JNK inhibitor, also blocked PMA-induced phosphorylation of paxillin and aggregation of phosphorylated paxillin (Ser178) in focal complexes. In conclusion, paxillin is a critical downstream effector of Rac1 that may be involved in PMA-stimulated migration presumably by modulating the integrity of focal complex formation.  相似文献   

19.
Lysophosphatidic acid (LPA) augments proliferation and metastasis of various cancer cells. We recently identified a critical role of the Rho/ROCK pathway for LPA-induced proteolytic enzyme expression and cancer cell progression. In the present study, we elucidate the underlying mechanisms by which LPA induces Rho activation and subsequent cellular invasion, and the reversal of these effects by resveratrol. We observed that both Gi and G13 contribute to LPA-induced EGFR activation. The activated EGFR in turn initiates a Ras/Rho/ROCK signaling cascade, leading to proteolytic enzyme secretion. Further we provide evidence that resveratrol inhibits EGFR phosphorylation and subsequent activation of a Ras/Rho/ROCK signaling. Therefore, we demonstrate a mechanistic cascade of LPA activating EGFR through Gi and G13 thus inducing a Ras/Rho/ROCK signaling for proteolytic enzyme expression and ovarian cancer cell invasion, as well as interference of the cascade by resveratrol through blocking EGFR phosphorylation.  相似文献   

20.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that induces diverse cellular biological effects and interacts with G protein-coupled transmembrane LPA receptors. In the present study, to assess biological roles of LPA receptors in the pathogenesis of tumor cells, each LPA receptor (Lpar1, Lpar2 or Lpar3)-expressing rat neuroblastoma B103 cells (lpa1-1, lpa2-2 or lpa3-3-2 cells, respectively) were used. In cell motility and invasion assay, lpa2-2 and lpa3-3-2 cells showed significant higher intrinsic activity without LPA treatment than LPA receptor-unexpressing AB2-1bf cells. LPA treatment further increased cell motility of these cells, which was suppressed by the pretreatment with inhibitors of Gi, Gq protein, or ROCK. By contrast, lpa1-1 cells markedly decreased intrinsic cell motility and invasion, compared with AB2-1bf cells. Constitutively active mutant Lpar1-expressing cells (lpa1Δ-1) showed significant high motility, comparable with those of lpa2-2 and lpa3-3-2. In soft agar assay, lpa3-3-2 and lpa1Δ-1 cells showed colony formation, but other cells failed. These results suggest that LPA receptors may play different roles in cell proliferation and migration of rat neuroblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号