首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The RecA protein of Escherichia coli forms a nucleoprotein filament that promotes homologous recognition and subsequent strand exchange between a single strand and duplex DNA via a three-stranded intermediate. Recognition of homology within three-stranded nucleoprotein complexes, which is probably central to genetic recombination, is not well understood as compared with the mutual recognition of complementary single strands by Watson-Crick base pairing. Using oligonucleotides, we examined the determinants of homologous recognition within RecA nucleoprotein filaments. Filaments that contained a single strand of DNA recognized homology not only in a complementary oligonucleotide but also in an identical oligonucleotide, whether their respective sugar-phosphate backbones were antiparallel or parallel, and a filament that contained duplex DNA showed the same polymorphic versatility in the recognition of homology. Recognition of self by a filament that contains a single strand reveals that RecA filaments can recognize homology via non-Watson-Crick hydrogen bonds. Recognition of multiple forms of the same sequence by duplex DNA in the filament shows that it primarily senses base-sequence homology, and suggests that recognition can be accomplished prior to the establishment of new Watson-Crick base pairs in heteroduplex products. However, unlike the initial recognition of homology, strand exchange is stereospecific, requiring the proper antiparallel orientation of complementary strands.  相似文献   

2.
Conditions that favor the complete coating of single-stranded DNA by RecA protein promote the association of these presynaptic filaments with naked double-stranded DNA to form large nucleoprotein networks before homologous pairing occurs. These RecA nucleoprotein networks sequester virtually all of the DNA in the reaction mixture. Conditions that are suboptimal for the formation of the RecA presynaptic filament rendered both the formation of RecA-DNA networks and the subsequent formation of joint molecules sensitive to inhibition by excess ATP or by pyrophosphate when these were added during synapsis. The rate of homologous pairing was directly related to the degree of inhibition of network formation. Various multivalent cations added during synapsis restored both the formation of networks and the pairing of homologous molecules. These observations support the view that the nucleoprotein network is a synaptic intermediate by means of which RecA protein facilitates the conjunction of DNA molecules and the subsequent processive search for homology. Inhibition by multivalent anions and restoration by multivalent cations suggests in addition, that negative charge repulsion inhibits the binding of naked duplex DNA to presynaptic filaments.  相似文献   

3.
Human Dmc1 protein, a meiosis-specific homolog of Escherichia coli RecA protein, has previously been shown to promote DNA homologous pairing and strand-exchange reactions that are qualitatively similar to those of RecA protein and Rad51. Human and yeast Rad51 proteins each form a nucleoprotein filament that is very similar to the filament formed by RecA protein. However, recent studies failed to find a similar filament made by Dmc1 but showed instead that this protein forms octameric rings and stacks of rings. These observations stimulated further efforts to elucidate the mechanism by which Dmc1 promotes the recognition of homology. Dmc1, purified to a state in which nuclease and helicase activities were undetectable, promoted homologous pairing and strand exchange as measured by fluorescence resonance energy transfer (FRET). Observations on the intermediates and products, which can be distinguished by FRET assays, provided direct evidence of a three-stranded synaptic intermediate. The effects of helix stability and mismatched base pairs on the recognition of homology revealed further that human Dmc1, like human Rad51, requires the preferential breathing of A small middle dotT base pairs for recognition of homology. We conclude that Dmc1, like human Rad51 and E. coli RecA protein, promotes homologous pairing and strand exchange by a "synaptic pathway" involving a three-stranded nucleoprotein intermediate, rather than by a "helicase pathway" involving the separation and reannealing of DNA strands.  相似文献   

4.
Stable three-stranded DNA made by RecA protein.   总被引:15,自引:8,他引:15       下载免费PDF全文
When RecA protein, in the form of a nucleoprotein filament containing circular single-stranded DNA (plus strand only), reacts with homologous linear duplex DNA, a directional transfer ensues of a strand from the duplex DNA to the nucleoprotein filament, resulting in the displacement of the linear plus strand in the 5' to 3' direction. The initial homologous synapsis, however, can occur at either end of the duplex DNA, or anywhere in between, and when homology is restricted to different regions of the duplex DNA, the joint molecules that form in each region show striking differences in stability upon deproteinization: distal joints greater than proximal joints much greater than medial joints. In the deproteinized distal joints, which are thermostable, 2000 nucleotide residues of the circular plus strand are resistant to P1 nuclease; both strands of the original duplex DNA remain resistant to P1 nuclease, and the potentially displaceable linear plus strand, which has a 3' homologous end, remains resistant to Escherichia coli exonuclease I. These observations suggest that RecA protein promotes homologous pairing and strand exchange via long three-stranded DNA intermediates and, moreover, that, once formed, such triplex structures in natural DNA are stable even when RecA protein has been removed.  相似文献   

5.
In the presence of ATP, recA protein forms a presynaptic complex with single-stranded DNA that is an obligatory intermediate in homologous pairing. Presynaptic complexes of recA protein and circular single strands that are active in forming joint molecules can be isolated by gel filtration. These isolated active complexes are nucleoprotein filaments with the following characteristics: (i) a contour length that is at least 1.5 times that of the corresponding duplex DNA molecule, (ii) an ordered structure visualized by negative staining as a striated filament with a repeat distance of 9.0 nm and a width of 9.3 nm, (iii) approximately 8 molecules of recA protein and 20 nucleotide residues per striation. The widened spacing between bases in the nucleoprotein filament means that the initial matching of complementary sequences must involve intertwining of the filament and duplex DNA, unwinding of the latter, or some combination of both to equalize the spacing between nascent base pairs. These experiments support the concept that recA protein first forms a filament with single-stranded DNA, which in turn binds to duplex DNA to mediate both homologous pairing and subsequent strand exchange.  相似文献   

6.
To understand the molecular basis of gene targeting, we have studied interactions of nucleoprotein filaments comprised of single-stranded DNA and RecA protein with chromatin templates reconstituted from linear duplex DNA and histones. We observed that for the chromatin templates with histone/DNA mass ratios of 0.8 and 1.6, the efficiency of homologous pairing was indistinguishable from that of naked duplex DNA but strand exchange was repressed. In contrast, the chromatin templates with a histone/DNA mass ratio of 9.0 supported neither homologous pairing nor strand exchange. The addition of histone H1, in stoichiometric amounts, to chromatin templates quells homologous pairing. The pairing of chromatin templates with nucleoprotein filaments of RecA protein-single-stranded DNA proceeded without the production of detectable networks of DNA, suggesting that coaggregates are unlikely to be the intermediates in homologous pairing. The application of these observations to strategies for gene targeting and their implications for models of genetic recombination are discussed.  相似文献   

7.
Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.  相似文献   

8.
Previous studies have shown that the helical RecA nucleoprotein filament formed on a circular single strand of DNA causes the progressive, directional transfer of a complementary strand from naked linear duplex DNA to the nucleoprotein filament, even when the duplex contains a sizable heterologous insertion. Since RecA protein lacks demonstrable helicase activity, the mechanism by which it pushes strand exchange through long heterologous inserts has been a quandary. In the present study, a linear duplex substrate with an insertion of 110 base pairs in its middle yielded the expected products, whereas much less of the heteroduplex product was seen when the insertion was located at either end of the duplex substrate or 160 base pairs from the far end of the duplex substrate. In an ongoing reaction of the substrate with an insertion in its middle, P1 nuclease cleaved intermediates from the point of the insertion to various distal sites. Acting on a duplex substrate that contained a single nick located in the complementary strand just beyond the insertion, RecA protein formed joint molecules but failed to complete strand exchange. These data show that negative torsional stress is generated by distant homologous interactions that occur beyond the heterologous insertion and that such stress is essential for unwinding a heterologous insertion that otherwise halts strand exchange.  相似文献   

9.
RecA nucleoprotein filaments found homologous targets even when the latter was mixed with 200,000 times as much heterologous duplex DNA. By contrast, mixing of the single-stranded probe with only 100 times as much heterologous single strands markedly reduced the rate of finding homologous duplex molecules. Titration of the reaction with different proportions of homologous single-stranded DNA distinguished a condition under which the search for homology itself was rate limiting from a condition under which some later step was limiting. Less than 1 min was required to scan 6.4 kilobase pairs of duplex DNA for homology to a RecA-coated single strand of the same size, but these experiments revealed that rapid searching by RecA nucleoprotein filaments was largely confined to neighboring duplex molecules. These observations provide guidelines for the use of RecA protein in locating rare sequences in complex mixtures of duplex DNA, and we describe a simple protocol by which rare sequences can be rapidly enriched at least a thousandfold.  相似文献   

10.
The nucleoprotein filament formed on a circular single strand by Escherichia coli RecA protein in vitro can pair with homologous duplex DNA even when the latter lacks a free homologous end, but subsequent progression of the reaction through strand exchange requires an end in at least one strand of the duplex DNA. We purified from E. coli an endonuclease activity that cleaves the outgoing strand of duplex DNA at the junction of homologous and heterologous sequences in three-stranded RecA-recombination intermediates. This endonuclease activity also cleaves specifically at the junctions of duplex and single-stranded regions in synthetic double-stranded oligonucleotides whose central portion consists of unpaired heterologous sequences. These activities are consistent with a role in recombination and repair of DNA.  相似文献   

11.
The RecA protein of Escherichia coli is important for genetic recombination in vivo and can promote synapsis and strand exchange in vitro. The DNA pairing and strand exchange reactions have been well characterized in reactions with circular single strands and linear duplexes, but little is known about these two processes using substrates more characteristic of those likely to exist in the cell. Single-stranded linear DNAs were prepared by separating strands of duplex molecules or by cleaving single-stranded circles at a unique restriction site created by annealing a short defined oligonucleotide to the circle. Analysis by gel electrophoresis and electron microscopy revealed that, in the presence of RecA and single-stranded binding proteins, a free 3' homologous end is essential for stable joint molecule formation between linear single-stranded and circular duplex DNA.  相似文献   

12.
RecA is a 38-kDa protein from Escherichia coli that polymerizes on single-stranded DNA, forming a nucleoprotein filament that pairs with homologous duplex DNA and carries out strand exchange in vitro. To observe the effects of mismatches on the kinetics of the RecA-catalyzed recombination reaction, we used assays based upon fluorescence energy transfer that can differentiate between the pairing and strand displacement phases. Oligonucleotide sequences that produced 2–14% mismatches in the heteroduplex product of strand exchange were tested, as well as completely homologous and heterologous sequences. The equilibrium constant for pairing decreased as the number of mismatches increased, which appeared to result from both a decrease in the rate of formation and an increase in the rate of dissociation of the intermediates. In addition, the rate of strand displacement decreased with increasing numbers of mismatches, roughly in proportion to the number of mismatches. The equilibrium constant for pairing and the rate constant for strand displacement both decreased 6-fold as the heterology increased to 14%. These results suggest that discrimination of homology from heterology occurs during both pairing and strand exchange.  相似文献   

13.
Whereas complementary strands of DNA recognize one another by forming Watson-Crick base pairs, the way in which RecA protein enables a single strand to recognize homology in duplex DNA has remained unknown. Recent experiments, however, have shown that a single plus strand in the RecA filament can recognize an identical plus strand via bonds that, by definition, are non-Watson-Crick. In experiments reported here, base substitutions had the same qualitative and quantitative effects on the pairing of two identical strands in the RecA filament as on the recognition of duplex DNA by a third strand, indicating that similar non-Watson-Crick interactions govern both reactions.  相似文献   

14.
The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound to the RecA protein primary site. We conclude that the specificity reflects an intrinsic property of the secondary site of RecA protein rather than an interaction between DNa molecules within nucleoprotein filament--i.e., self-recognition. The secondary DNA binding site displays a higher affinity for ssDNA than for double-stranded DNA, and the binding of ssDNA to the secondary site strongly inhibits DNA strand exchange. We suggest that the secondary binding site has a dual role in DNA strand exchange. During the homology search, it binds double-stranded DNA weakly; upon finding local homology, this site binds, with higher affinity, the ssDNA strand that is displaced during DNA strand exchange. These characteristics facilitate homologous pairing, promote stabilization of the newly formed heteroduplex DNA, and contribute to the directionality of DNA strand exchange.  相似文献   

15.
Eukaryotic homologs of Escherichia coli Rec-A protein have been shown to form nucleoprotein filaments with single-stranded DNA that recognize homologous sequences in duplex DNA. Several recent reports in four widely diverse species have demonstrated the association of RecA homologs with meiotic prophase chromatin. The current immunocytological study on mouse spermatocytes and oocytes shows that a eukaryotic homolog, Rad5l, associates with a subset of chromatin sites as early as premeiotic S phase, hours before either the appearance of precursors of synaptonemal complexes or the initiation of synapsis. When homologous chromosomes do begin to pair, the Rad5l-associated sequences are sites of initial contact between homologues and of localized DNA synthesis. Distribution of Rad5l foci on the chromatin of fully synapsed bivalents at early pachynema corresponds to an R-band pattern of mitotic chromosomes. R-bands are known to be preferred sites of both synaptic initiation and recombination. The time course of appearance of Rad51 association with chromatin, its distribution, and its interaction with other Rad5l-associated sequences suggests that it plays an important role preselection of sequences and synaptic initiation.  相似文献   

16.
In reactions catalyzed by the RecA protein of Escherichia coli, synapsis between two DNA molecules is believed to occur even in the absence of free homologous DNA ends and to involve a metastable interaction termed paranemic joining. We have used electron microscopic methods to visualize synapse formation between supertwisted M13 double-stranded DNA (dsDNA) and linear M13 mp7 single-stranded DNA (ssDNA) with non-M13 sequences at its ends. These non-M13 sequences block strand invasion and make this pairing equivalent to the joining of two fully circular molecules. We observed a high frequency of joining when the ssDNA was initially assembled into presynaptic filaments with RecA protein. Cleavage of the dsDNA in the joined complexes by Hpa I revealed that the joint was at a site of homology. In these joints, the dsDNA entered the presynaptic filament over a length of 360 +/- 80 base pairs, not visibly altering its ultrastructure, and then dissociated from the filament. Although the dsDNA in the complexes appeared topologically relaxed, deproteinization released supertwisted dsDNA, indicating that the dsDNA was unwound by 34 degrees per base pair in the paranemic joint. When supertwisted M13 dsDNA was paired with circular M13 ssDNA, similar joints were observed and both DNA circles appeared topologically relaxed.  相似文献   

17.
Homologs of Escherichia coli RecA recombination protein, which have been found throughout the living kingdom, promote homologous pairing and strand exchange. The nucleoprotein filament, within which strand exchange occurs, has been conserved through evolution, but conservation of the polarity of exchange and the significance of that directionality has not been settled. Using oligonucleotides as substrates, and assays based on fluorescence resonance energy transfer (FRET), we distinguished the biased formation of homologous joints at either end of duplex DNA from the subsequent directionality of strand exchange. As with E. coli RecA protein, the homologous Rad51 proteins from both Homo sapiens (HsRad51) and Saccharomyces cerevisiae (ScRad51) propagated DNA strand exchange preferentially in the 5′ to 3′ direction. The data suggest that 5′ to 3′ polarity is a conserved intrinsic property of recombination filaments.  相似文献   

18.
The process of DNA strand exchange during general genetic recombination is initiated within protein-stabilized synaptic filaments containing homologous regions of interacting DNA molecules. The RecA protein in bacteria and its analogs in eukaryotic organisms start this process by forming helical filamentous complexes on single-stranded or partially single-stranded DNA molecules. These complexes then progressively bind homologous double-stranded DNA molecules so that homologous regions of single- and double-stranded DNA molecules become aligned in register while presumably winding around common axis. The topological assay presented herein allows us to conclude that in synaptic complexes containing homologous single- and double-stranded DNA molecules, all three DNA strands have a helicity of approximately 19 nt per turn.  相似文献   

19.
Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the "active" and "inactive" states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.  相似文献   

20.
The Escherichia coli RecF, RecO, and RecR proteins were analyzed for their effect on RecA-mediated pairing of single-stranded circular DNA and homologous linear duplex DNA substrates. As shown by other workers, joint molecule formation by RecA was inhibited by E. coli single-stranded DNA binding protein (SSB) when it was added to single-stranded DNA before RecA. This inhibitory effect was overcome by the addition of RecO and RecR or RecF, RecO, and RecR. Both the rate and extent of joint molecule formation were restored to the maximal level observed when SSB was added after RecA. RecF, RecO, and RecR proteins had no effect on the conversion of joint molecules to final products and only appeared to stimulate an early step in the pairing reaction. The stimulatory effect of RecF, RecO, and RecR was not seen without SSB or when SSB was added after RecA. RecF protein by itself inhibited reactions in mixtures containing RecA and SSB, and this inhibition was overcome by the addition of RecO and RecR. These data suggest that RecO and RecR, and possibly RecF, help RecA overcome inhibition by SSB and utilize SSB-single-stranded-DNA complexes as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号