首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beales IL  Calam J 《Gut》1998,43(2):176-181
BACKGROUND: The mechanisms underlying the suppression of somatostatin dependent reflexes in Helicobacter pylori infection are not fully determined. The H pylori product N alpha-methylhistamine and inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha) may be responsible for the alterations in somatostatin release. AIMS: To examine the effect of N alpha-methylhistamine on somatostatin release from cultured somatostatin-secreting D-cells. METHODS: Rabbit fundic D-cells were obtained by collagenase-EDTA digestion and enriched by centrifugal elutriation and cultured for 40 hours. The effects of N alpha-methylhistamine on somatostatin release soon after stimulation (two hours) and after more prolonged exposure (24 hours) were assessed. RESULTS: N alpha-Methylhistamine (1 nM-1 microM) had no effect on basal or carbachol or adrenaline stimulated release over two hours. Similarly with prolonged exposure no effect on somatostatin cell content or release was identified. In contrast, TNF-alpha (24 hours) led to a dose dependent fall in both somatostatin content and release. CONCLUSIONS: N alpha-Methylhistamine had no direct inhibitory effects on D-cells, but TNF-alpha both significantly reduced the cellular content and inhibited release. Inflammatory cytokines, rather than N alpha-methylhistamine, are therefore likely to be responsible for directly inhibiting D-cell function in H pylori infection.  相似文献   

2.
Nitric oxide negatively regulates mammalian adult neurogenesis   总被引:18,自引:0,他引:18  
Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.  相似文献   

3.
The action of excitatory amino acid agonists on endogenous somatostatin release was examined in primary cultures of rat diencephalic neurons. Increasing concentrations of glutamate stimulated somatostatin release in a dose-dependent manner. Since this effect was decreased by Mg2+, all experiments were performed in Mg2+-free media. We found that excitatory amino acid agonists evoked somatostatin release in the following order of potency: quisqualate greater than glutamate = N-methyl-D-aspartate (NMDA) greater than kainate, as calculated from the dose-response curves. The increase in somatostatin release elicited by glutamate or NMDA was selectively antagonized by DL-2-amino-5-phosphonovaleric acid and by thyenyl-phencyclidine, two specific antagonists of NMDA receptors. The NMDA effect was strongly inhibited: in a competitive manner by APV and in a noncompetitive manner by TCP with IC50 of 90 microM and 0.2 microM, respectively. Glutamate-induced somatostatin release was not blocked by tetrodotoxin (1 microM) suggesting that tetrodotoxin-sensitive sodium-dependent action potentials are not involved in this effect. Our data suggest the presence of functionally active excitatory amino acid receptors in somatostatinergic neurons. Glutamate seems to exert its stimulatory action on somatostatin release essentially through NMDA type receptor sites.  相似文献   

4.
The GTPase dynamin regulates endocytic vesicle budding from the plasma membrane, but the molecular mechanisms involved remain incompletely understood. We report that dynamin, which interacts with NO synthase, is S-nitrosylated at a single cysteine residue (C607) after stimulation of the beta(2) adrenergic receptor. S-nitrosylation increases dynamin self-assembly and GTPase activity and facilitates its redistribution to the membrane. A mutant protein bearing a C607A substitution does not self-assemble properly or increase its enzymatic activity in response to NO. In NO-generating cells, expression of dynamin C607A, like the GTPase-deficient dominant-negative K44A dynamin, inhibits both beta(2) adrenergic receptor internalization and bacterial invasion. Furthermore, exogenous or endogenously produced NO enhances internalization of both beta(2) adrenergic and epidermal growth factor receptors. Thus, NO regulates endocytic vesicle budding by S-nitrosylation of dynamin. Collectively, our data suggest a general NO-dependent mechanism by which the trafficking of receptors may be regulated and raise the idea that pathogenic microbes and viruses may induce S-nitrosylation of dynamin to facilitate cellular entry.  相似文献   

5.
Nitric oxide (NO), formed by conversion of arginine to citrulline and NO by NO synthase, mediates relaxation of vascular smooth muscle. NO synthase has been demonstrated by immunocytochemical methods in neurons in various parts of the central nervous system including the hypothalamus. The latter finding suggested to us that NO might play a role in controlling the release of hypothalamic peptides. We have previously shown that norepinephrine mediates the release of luteinizing hormone-releasing hormone (LHRH) from LHRH terminals in the median eminence into the hypophyseal portal veins, which transport LHRH to the anterior pituitary gland to trigger release of luteinizing hormone from gonadotrophs. LHRH release from these terminals requires increased release of prostaglandin E2 (PGE2). PGE2 activates adenylate cyclase to produce cAMP, and then cAMP induces the exocytosis of LHRH secretory granules. In view of the evidence above and because of the developing evidence for the importance of NO in the central nervous system, it occurred to us that NO might be involved in this process. Consequently, we evaluated the role of NO in the release of PGE2 from medial basal hypothalamic fragments. As previously reported, norepinephrine (10 microM) increased PGE2 release from the hypothalamic fragments. The inhibitor of NO synthase NG-monomethyl-L-arginine (NMMA, 300 microM) blocked the stimulation of PGE2 release induced by norepinephrine but had no effect on the basal release of PGE2. Sodium nitroprusside (100 microM), which liberates NO, also elevated PGE2 release from the hypothalamic fragments. This elevation was not affected by NMMA, presumably because NMMA blocks enzymatic generation of NO but does not alter NO liberated by nitroprusside. When the NO liberated by nitroprusside was inactivated by hemoglobin (2 micrograms/ml), the effect of nitroprusside on PGE2 release was completely inhibited. Neither NMMA nor hemoglobin altered the basal release of PGE2, which indicates that NO is not responsible for basal PGE2 release. Addition of L-arginine (10 microM to 1 mM), the substrate for NO synthase, had no effect on basal PGE2 production. These results indicate that NO synthase is not activated in unstimulated hypothalamic fragments in vitro. The results suggest that norepinephrine activates NO synthase leading to the production of NO, which subsequently activates cyclooxygenase and results in the production of PGE2. PGE2 then activates adenylate cyclase leading to generation of increased cAMP, which induces exocytosis of secretory granules of LHRH and other neuropeptides released by PGE2. The indication that NO is essential to norepinephrine-induced release of PGE2 from hypothalamic fragments provides insight into the mechanism of LHRH release and the results open the possibility that the importance of NO to neuronal functions may be widespread in the nervous system.  相似文献   

6.
Nitric oxide is continually synthesised in the respiratory epithelium and is upregulated in response to infection or inflammation. Primary ciliary dyskinesia (PCD) is characterised by recurrent sinopulmonary infections due to impaired mucociliary clearance. Despite chronic infections, nasal nitric oxide in such patients is markedly reduced and is used as a screening test for this condition. These low levels were first described >15 yrs ago but the underlying mechanisms have yet to be fully elucidated. We review epithelial nitric oxide synthesis, release and measurement in the upper airways with particular reference to PCD. The key hypotheses that have been proposed to explain the low nitric oxide levels in this condition are explored and the potential benefits of augmenting airway nitric oxide levels are considered. Further work in these patients clarifying both whether the respiratory epithelium is able to biosynthesise normal levels of nitric oxide and the role played by abnormalities in the anatomy of the paranasal sinuses is essential. While nitric oxide augmentation is unlikely to be beneficial in common PCD phenotypes, it has potential in the treatment of secondary dyskinesias and may also improve treatment of bacterial infections, particularly where biofilms are implicated.  相似文献   

7.
Nitric oxide synthase in gastric mucosa.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

8.
The effect of adrenergic agonists and antagonists on the secretion of gastric somatostatin-like immunoreactivity (SLI) and gastrin was investigated in an isolated, vascularly perfused rat stomach preparation. Two- to six-fold increases in SLI secretion induced by isoproterenol, epinephrine, and norepinephrine were completely abolished by propranolol but were not influenced by phentolamine. Propranolol did not alter glucagon- and DB-cAMP-induced stimulation of SLI release. Experiments in which the beta 2-agonist salbutamol and the beta 1- and beta 2-blockers practolol and H35/25 were used showed that both subtypes of beta receptors are involved. Gastrin secretion revealed only minor changes in dose-response studies with a wide range of isoproterenol concentrations (2 X 10(-8) to 1.5 X 10(-4) M). The results obtained in this study suggest that in rats 1) the SLI response to adrenergic agonism is predominantly mediated by beta receptors; 2) both beta 1- and beta 2-adrenergic receptors are involved; 3) under in vitro conditions, adrenergic agonism is a weak stimulus for gastrin secretion.  相似文献   

9.
Summary The effect of calcium on somatostatin secretion was investigated in the isolated, perfused canine pancreas preparation and compared with those of acetylcholine, glucose, isoproterenol and arginine. Calcium (5 mmol/l) stimulated somatostatin release in a typical biphasic response pattern being about 5 times as potent as acetylcholine (1 mol/l), arginine (5 mmol/l), and isoproterenol (2 ng/ml) while the release of insulin and glucagon in response to calcium and the other secretagogues were of the same magnitude. Somatostatin release increased progressively when perfusate calcium was increased step-wise from 0 through 1.25 and 2.5 to 5.0 mmol/l. Calcium stimulated the secretion of somatostatin in the absence of glucose. The stimulatory effect of calcium was, however, modulated by the glucose concentration being about twice as large at 200 mg/100 ml as at 25 mg/100 ml glucose in the perfusion medium.  相似文献   

10.
目的 观察砷暴露对大鼠原代星形胶质细胞(astrocyte,AST)分泌胶质细胞源性递质的影响,探讨砷对学习记忆功能损伤的作用机制.方法 出生1~3 d的Wistar大鼠仔鼠,取双侧大脑半球,经处理获得原代培养脑AST,并通过胶质纤维酸性蛋白免疫荧光染色鉴定.AST分别在含0.0、2.5、5.0、10.0μmol/L亚砷酸钠的培养液中培养24h,荧光双波长分光光度计法检测细胞内游离钙离子浓度([Ca2+]i);高效液相色谱(HPLC)法检测细胞培养液谷氨酸、D-丝氨酸、甘氨酸和γ-氨基丁酸含量.结果 胶质纤维酸性蛋白免疫荧光染色,AST纯度>95%.不同浓度砷暴露组间AST内[Ca2+]i比较差异有统计学意义(F=20.030,P<0.05),其中10.0 μmol/L砷暴露组AST内[Ca2+]i[(263.27±14.80)nmol/L]明显高于0.0、2.5、5.0μmol/L砷暴露组[(204.24±27.21)、(214.49±21.85)、(232.74±23.14)nmol/L,P均<0.05].不同浓度砷暴露组间AST分泌的D-丝氨酸、甘氨酸和γ-氨基丁酸比较差异均有统计学意义(F值分别为26.599、33.539、5.599,P均<0.05),其中2.5、5.0、10.0 μmol/L砷暴露组AST分泌的D-丝氨酸[(21.580±1.313)、(21.936±1.539)、(23.401±1.648)μmol/L]、甘氨酸[(26.353±2.449)、(29.711±1.530)、(29.234±2.057)μmol/L]和γ-氨基丁酸[(27.277±3.421)、(30.213±2.098)、(29.364±2.588) μmol/L]均高于0.0 μmol/L砷暴露组[(16.017±1.046)、(16.763±3.007)、(22.736±4.139) μmol/L,P均<0.05].结论 砷暴露可引起原代AST分泌胶质细胞源性递质增加,可能会损伤学习记忆功能.  相似文献   

11.
12.
13.
Does gastric acid release plasma somatostatin in man?   总被引:1,自引:0,他引:1       下载免费PDF全文
M R Lucey  J A Wass  P D Fairclough  M O'Hare  P Kwasowski  E Penman  J Webb    L H Rees 《Gut》1984,25(11):1217-1220
Food and insulin hypoglycaemia raise plasma concentrations of somatostatin. Both also stimulate gastric acid secretion but it is not clear whether gastric acid itself has any effect on somatostatin secretion. We, therefore, studied the effect on plasma concentrations of somatostatin of infusion of 0.1 N HC1 into the stomach and duodenum of healthy subjects. Plasma somatostatin did not rise with a small dose of HC1 given intragastrically (15 mmol) or intraduodenally (4 mmol). After an intraduodenal infusion of 60 mmol HC1 over 30 minutes, sufficient to reduce intraluminal pH to 2, plasma somatostatin rose moderately in five subjects from a mean value (+/- SEM) of 32 +/- 3 pg/ml to a peak at 10 minutes of 54 +/- 11 pg/ml. It is concluded that: (a) intragastric acid infusions do not release circulating somatostatin in man; and (b) that intraduodenal acidification albeit at grossly supraphysiological doses is a moderate stimulus of plasma somatostatin release. Therefore, gastric acid is unlikely to be a major factor mediating postprandial plasma somatostatin release in man.  相似文献   

14.
OBJECTIVE: Biologic effects of nitric oxide (NO) have been shown to increase under hypoxic conditions. Because the oxygen tension in joint cavities of patients with arthritis is fairly low, biologic effects of NO would be expected to be significantly large in these compartments. This study was undertaken to investigate the effects of NO on the energy metabolism and functions of articular chondrocytes under different oxygen tension conditions. METHODS: Articular chondrocytes from rabbits were cultured under various oxygen concentrations in the presence or absence of NO and NOC18, an NO donor. Cellular respiration was measured using a Clark-type oxygen electrode. Levels of ATP in the cells were determined according to the luciferin-luciferase method. Cellular synthesis of proteoglycans was determined by measuring the incorporation of radioactivity (derived from 35S-labeled SO4) into glycosaminoglycans. Expression of stress-related proteins was evaluated by Western blotting analysis using specific antibodies. RESULTS: Respiration and ATP synthesis of cultured chondrocytes were inhibited by NO, particularly under low oxygen concentrations. The presence of either NO or specific inhibitors of mitochondrial electron transport suppressed the synthesis of proteoglycans without affecting cell viability. When exposed to NO, cellular levels of heat-shock protein 70 (hsp70) and heme oxygenase 1 (HO-1) increased markedly. The presence of inhibitors of mitochondrial electron transport also increased cellular levels of hsp70 and HO-1. CONCLUSION: These results suggest that NO generated in the joint might inhibit energy metabolism and the synthesis of proteoglycans of chondrocytes, thereby modulating pathophysiologic processes occurring in patients with arthritis.  相似文献   

15.
16.
AIMS: Vascular calcification often occurs with advancing age, atherosclerosis, and metabolic disorders such as diabetes mellitus and end-stage renal disease. Vascular calcification is associated with cardiovascular events and increased mortality. Nitric oxide (NO) is crucial for maintaining vascular function, but little is known about how NO affects vascular calcification. The aim of this study was to examine the effect of NO on vascular calcification. METHODS AND RESULTS: In this study, we examined the inhibitory effects of NO on calcification of murine vascular smooth muscle cells (VSMCs) in vitro. We measured calcium concentration, alizarin red staining, and alkaline phosphatase activity to examine the effect of NO on calcification of VSMCs and differentiation of VSMCs into osteoblastic cells. We also determined gene expression and levels of phosphorylation of Smad2/3 by RT-PCR and western blotting. NO inhibited calcification of VSMCs and differentiation of VSMCs into osteoblastic cells. An inhibitor of cyclic guanosine monophosphate (cGMP)-dependent protein kinase restored the inhibition by NO of osteoblastic differentiation and calcification of VSMCs. NO inhibited transforming growth factor-beta (TGF-beta)-induced phosphorylation of Smad2/3 and expression of TGF-beta-induced genes such as plasminogen activator inhibitor-1. In addition, NO inhibited expression of the TGF-beta receptor ALK5. CONCLUSION: Our data show that NO prevents differentiation of VSMCs into osteoblastic cells by inhibiting TGF-beta signalling through a cGMP-dependent pathway. Our findings suggest that NO may play a beneficial role in atherogenesis in part by limiting vascular calcification.  相似文献   

17.
《Pancreatology》2003,3(4):329-335
Background/Aims: The role of nitric oxide (NO) in bacterial translocation (BT) associated with acute pancreatitis is controversial. We investigated the effects of the NO synthase substrate, L-arginine, and the NO synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on BT in caerulein-induced acute pancreatitis in rats. Methods: Acute pancreatitis was induced by subcutaneous injections of caerulein (12 μg/kg) at 6-hour intervals for 2 days. Subcutaneous injections of L-arginine (100 mg/kg) or L-NAME (10 mg/kg) were administered once daily for 2 days. At 48 h, pancreatic injury and BT to the mesenteric lymph nodes (MLN), liver, and peritoneum were assessed. Results: Compared with controls, rats that received caerulein injections alone had increased BT to the MLN and pancreatic inflammatory changes. L-Arginine significantly reduced the inflammation and BT caused by caerulein. L-NAME did not significantly alter pancreatic inflammation. Although caerulein + L-NAME-treated rats had increased BT to the peritoneum, MLN, and liver compared with controls, rates of BT did not significantly differ between caerulein alone- and caerulein + L-NAME-treated rats. Conclusion: In acute edematous pancreatitis, BT is increased and is regulated by NO. NO substrates limit BT and pancreatic inflammation associated with acute pancreatitis, probably by their bactericidal actions and ability to improve pancreatic blood flow.  相似文献   

18.
Both ghrelin and somatostatin (SST) inhibit glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells, but how these independent actions are regulated has been unclear. The mechanism must accommodate noncanonical ghrelin receptor (GHS-R1a)–G-protein coupling to Gαi/o instead of Gαq11 and dependence on energy balance. Here we present evidence for an equilibrium model of receptor heteromerization that fulfills these criteria. We show that GHS-R1a coupling to Gαi/o rather than Gαq11 requires interactions between GHS-R1a and SST receptor subtype 5 (SST5) and that in the absence of SST5 ghrelin enhances GSIS. At concentrations of GHS-R1a and SST5 expressed in islets, time-resolved FRET and bioluminescence resonance energy transfer assays illustrate constitutive formation of GHS-R1a:SST5 heteromers in which ghrelin, but not SST, suppresses GSIS and cAMP accumulation. GHS-R1a–G-protein coupling and the formation of GHS-R1a:SST5 heteromers is dependent on the ratio of ghrelin to SST. A high ratio enhances heteromer formation and Gαi/o coupling, whereas a low ratio destabilizes heteromer conformation, restoring GHS-R1a–Gαq11 coupling. The [ghrelin]/[SST] ratio is dependent on energy balance: Ghrelin levels peak during acute fasting, whereas postprandially ghrelin is at a nadir, and islet SST concentrations increase. Hence, under conditions of low energy balance our model predicts that endogenous ghrelin rather than SST establishes inhibitory tone on the β-cell. Collectively, our data are consistent with physiologically relevant GHS-R1a:SST5 heteromerization that explains differential regulation of islet function by ghrelin and SST. These findings reinforce the concept that signaling by the G-protein receptor is dynamic and dependent on protomer interactions and physiological context.  相似文献   

19.
We have previously reported that flushing associated with a gastric carcinoid tumor can be provoked by pentagastrin and inhibited by either somatostatin or combined histamine H1- and H2-receptor blockade. In this report, the effects of pentagastrin and somatostatin on histamine release in a patient with a metastatic gastric carcinoid tumor were examined. Small doses of intravenous pentagastrin (0.1-0.4 micrograms) produced a dose-dependent increase in the level of circulating plasma histamine. Graded infusions of somatostatin suppressed both basal and pentagastrin-stimulated plasma histamine levels in a dose-dependent fashion. A close correlation was found between circulating plasma histamine levels and attendant changes in blood pressure and pulse rate. This study documents that pentagastrin directly evokes the release of histamine from this patient's gastric carcinoid tumor and that the release of histamine is inhibited by somatostatin. In addition, this study provides additional evidence that the primary mediator of the flushing in this patient with foregut carcinoid syndrome is histamine.  相似文献   

20.
Nitric oxide (NO), a highly reactive free radical, has been identified as a neurotransmitter in the central and peripheral nervous system. NO synthase (NOS) is the enzyme responsible for NO production from L-arginine and plays an important role in regulating the release of several hypothalamic peptides. In the pituitary, NO was found to increase growth hormone (GH) secretion in several in vitro and in vivomodels. However, its role in human GH regulation is unknown. The aim of this study was to investigate the regulatory effects of NO on human GH and prolactin secretion using primary cell cultures of human fetal pituitaries and cultured hormone-secreting adenomas. Incubation of the human fetal pituitaries (21-24 wk gestation) in the presence of sodium nitroprusside (SNP; 1 mM), a NO donor, for 4 h resulted in a 50-75% increase in GH secretion, similar to the stimulatory effect evoked by growth hormone-releasing hormone (GHRH) (10 nM). However, fetal PRL secretion was not affected by SNP. GH release was also stimulated (40-70% increase) by SNP in 60% of the cultured GH-secreting adenomas studied. SNP-induced GH release was inhibited in both fetal and adenomatous cells by PTI0, a NO scavenger. The addition of cGMP (0.1-1 mM), the second messenger of multiple NO actions, enhanced fetal and adenomatous GH secretion by 55-95%. Neuronal NOS (nNOS) was expressed in normal (fetal and adult) human pituitary tissues and in GH-secreting adenomas. Examination of its functional expression using L-arginine (1 microM) yielded a 35% increase in GH release from cultured GH-secreting adenoma. This response was blocked by a NOS inhibitor with high selectivity for the neuronal enzyme and by a guanylyl cyclase inhibitor. In conclusion, NO stimulates human GH in cultured fetal pituitaries and GH-secreting adenomas. Cyclic GMP is probably involved in this hormonal regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号