首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear and mitochondrial (mt) DNA replication occur within two physically separated compartments and on different time scales. Both require a balanced supply of dNTPs. During S phase, dNTPs for nuclear DNA are synthesized de novo from ribonucleotides and by salvage of thymidine in the cytosol. Mitochondria contain specific kinases for salvage of deoxyribonucleosides that may provide a compartmentalized synthesis of dNTPs. Here we investigate the source of intra-mt thymidine phosphates and their relationship to cytosolic pools by isotope-flow experiments with [3H]thymidine in cultured human and mouse cells by using a rapid method for the clean separation of mt and cytosolic dNTPs. In the absence of the cytosolic thymidine kinase, the cells (i) phosphorylate labeled thymidine exclusively by the intra-mt kinase, (ii) export thymidine phosphates rapidly to the cytosol, and (iii) use the labeled dTTP for nuclear DNA synthesis. The specific radioactivity of dTTP is highly diluted, suggesting that cytosolic de novo synthesis is the major source of mt dTTP. In the presence of cytosolic thymidine kinase dilution is 100-fold less, and mitochondria contain dTTP with high specific radioactivity. The rapid mixing of the cytosolic and mt pools was not expected from earlier data. We propose that in proliferating cells dNTPs for mtDNA come largely from import of cytosolic nucleotides, whereas intra-mt salvage of deoxyribonucleosides provides dNTPs in resting cells. Our results are relevant for an understanding of certain genetic mitochondrial diseases.  相似文献   

2.
OBJECTIVE: Reenergization of ischemic cardiomyocytes may be associated with acute necrotic cell death due in part to cytosolic Ca2+ overload and opening of a permeability transition pore (PTP) in mitochondria. It has been suggested that Ca2+ overload during ischemia primes mitochondria for PTP opening during reperfusion. We investigated the ability of mitochondria to uptake Ca2+ during simulated ischemia (SI) and whether this uptake determines PTP opening and cell death upon simulated reperfusion (SR). METHODS: Rat heart mitochondria were submitted to either hypoxia (anoxic chamber) or to SI (respiratory inhibition, substrate depletion and acidosis) and subsequent SR. Mitochondrial Ca2+ uptake was monitored using Ca2+ microelectrodes after exposure to different [Ca2+] up to 25 microM during SI, and PTP opening was assessed by quantification of mitochondrial swelling (changes in absorbance rate at 540 nm) and calcein release. Mitochondrial Ca2+ uptake (Rhod-2 fluorescence) and cytosolic Ca2+ rise (Fura-2 ratio fluorescence) were further investigated in HL-1 cardiac myocytes submitted to SI/SR, and the effect of reducing mitochondrial Ca2+ load (with 25 microM ruthenium red) or blocking PTP opening (with 0.5 microM cyclosporin A) on the rate of cell death was investigated in adult cardiomyocytes exposed to SI/SR. RESULTS: SI induced a progressive dissipation of mitochondrial membrane potential (TMRE fluorescence); however, prior to the completion of depolarization, high levels of Ca2+ uptake were observed in mitochondria. SR induced PTP opening but this phenomenon was not influenced by the magnitude of mitochondrial Ca2+ uptake during previous SI. Blockade of the mitochondrial Ca2+ uniporter during SI in cardiomyocytes attenuated mitochondrial Ca2+ uptake but increased cytosolic Ca2+ overload and cell death upon subsequent SR. CONCLUSION: Mitochondrial Ca2+ uptake during SI buffers cytosolic Ca2+ overload but its magnitude appears not to be an important determinant of PTP opening upon subsequent SR.  相似文献   

3.
Most mitochondrial proteins are encoded in the nucleus and translated in the cytoplasm as larger precursors containing NH2-terminal "leader" peptides, which are strikingly basic in overall amino acid composition. Recent experiments indicate that these leader peptides are both necessary and sufficient to direct post-translational recognition and import of precursors by mitochondria. In this report, we demonstrate a critical role for one or more of the basic arginine residues in the leader peptide of the subunit precursor for the human mitochondrial matrix enzyme, ornithine transcarbamoylase (ornithine carbamoyltransferase, carbamoylphosphate: L-ornithine carbamoyltransferase, EC 2.1.3.3). The distal three of four basic residues, all arginines, in the leader peptide of ornithine transcarbamoylase were replaced at once with charge-neutral glycine residues. The altered ornithine transcarbamoylase precursor failed to be taken up by intact mitochondria in vitro. Moreover, it also failed to be proteolytically cleaved upon incubation with a mitochondrial matrix fraction containing the Zn2+-dependent protease, which normally cleaves the leader peptide.  相似文献   

4.
The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.  相似文献   

5.
Mitochondrial genomes generally encode a minimal set of tRNAs necessary for protein synthesis. However, a number of eukaryotes import tRNAs from the cytoplasm into their mitochondria. For instance, Saccharomyces cerevisiae imports cytoplasmic tRNA(Gln) into the mitochondrion without any added protein factors. Here, we examine the existence of a similar active tRNA import system in mammalian mitochondria. We have used subcellular RNA fractions from rat liver and human cells to perform RT-PCR with oligonucleotide primers specific for nucleus-encoded tRNA(CUG)(Gln) and tRNA(UUG)(Gln) species, and we show that these tRNAs are present in rat and human mitochondria in vivo. Import of in vitro transcribed tRNAs, but not of heterologous RNAs, into isolated mitochondria also demonstrates that this process is tRNA-specific and does not require the addition of cytosolic factors. Although this in vitro system requires ATP, it is resistant to inhibitors of the mitochondrial electrochemical gradient, a key component of protein import. tRNA(Gln) import into mammalian mitochondria proceeds by a mechanism distinct from protein import. We also show that both tRNA(Gln) species and a bacterial pre-tRNA(Asp) can be imported in vitro into mitochondria isolated from myoclonic epilepsy with ragged-red fiber cells if provided with sufficient ATP (2 mM). This work suggests that tRNA import is more widespread than previously thought and may be a universal trait of mitochondria. Mutations in mitochondrial tRNA genes have been associated with human disease; the tRNA import system described here could possibly be exploited for the manipulation of defective mitochondria.  相似文献   

6.
Expression of the subunit precursor of the human mitochondrial matrix enzyme ornithine transcarbamoylase (OTCase; EC 2.1.3.3) was programmed in Saccharomyces cerevisiae from a 2-micron plasmid by using an inducible galactose operon promoter. In the presence of the inducing sugar (galactose), two polypeptides were specifically precipitable with anti-OTCase antiserum: the human OTCase precursor (40 kDa); and the mature OTCase subunit (36 kDa). When yeast cells containing these species were lysed and fractionated, the OTCase precursor was found to be associated with mitochondrial membranes, while the mature subunit was found partly with mitochondrial membranes and partly in the soluble mitochondrial matrix-containing fraction. When OTCase enzymatic activity was assayed in fractions similarly derived from an S. cerevisiae strain devoid of yeast OTCase activity (an arg3 mutant) but expressing human OTCase, activity was detected specifically in the mitochondrial matrix fraction. A mutant human OTCase precursor containing an artificial mutation in the NH2-terminal leader peptide (arginine-23 to glycine) was similarly examined. As was previously observed with mammalian mitochondria, this precursor failed both to reach the matrix compartment and to be proteolytically processed; it also failed to exhibit OTCase enzymatic activity. Presence of OTCase enzymatic activity in an arg3 strain expressing wild-type precursor was utilized to obtain selective growth in a medium devoid of arginine but supplemented with the OTCase substrate ornithine. We conclude that, during evolution, the pathway of mitochondrial import utilized by the human OTCase precursor is conserved between yeast and humans, and that, by using selective growth conditions, it may be possible to examine genetically this pathway in S. cerevisiae.  相似文献   

7.
The amyloid β-peptide (Aβ) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Aβ and accumulation of Aβ has been detected in mitochondria. Because Aβ is not likely to be produced locally in mitochondria, we decided to investigate the mechanisms for mitochondrial Aβ uptake. Our results from rat mitochondria show that Aβ is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane potential. Subfractionation studies following the import experiments revealed Aβ association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Aβ to mitochondrial cristae. A similar distribution pattern of Aβ in mitochondria was shown by immunoelectron microscopy in human cortical brain biopsies obtained from living subjects with normal pressure hydrocephalus. Thus, we present a unique import mechanism for Aβ in mitochondria and demonstrate both in vitro and in vivo that Aβ is located to the mitochondrial cristae. Importantly, we also show that extracellulary applied Aβ can be internalized by human neuroblastoma cells and can colocalize with mitochondrial markers. Together, these results provide further insight into the mitochondrial uptake of Aβ, a peptide considered to be of major significance in Alzheimer's disease.  相似文献   

8.
Mitochondrial ferritin: a new player in iron metabolism   总被引:10,自引:0,他引:10  
Mitochondrial ferritin (MtF) is a novel H-type ferritin encoded by an intronless gene on chromosome 5q23.1. The protein is synthesized as a precursor of about 30 kDa that is targeted to mitochondria by a leader sequence of 60 amino acids. This leader is proteolytically removed inside the mitochondria and the resulting 22 kDa subunit forms typical ferritin shells. These shells have ferroxidase activity and are therefore likely to sequester potentially harmful free iron. However, this may be a limited function since MtF has a very restricted tissue expression. High amounts are found in testis but only very low levels are found in iron storage organs. The levels of MtF appear to correlate more with mitochondrial abundance than with iron metabolism. MtF does not seem to be an obligatory intermediate in transfer of free iron to heme and other iron compounds in mitochondria. However, its level increases dramatically in sideroblastic anemia when heme synthesis is disrupted. This increased synthesis does not appear to involve the classical translational control since MtF mRNA lacks an apparent iron response element. In transfected HeLa cells added iron is incorporated as quickly into MtF as into cytosolic ferritin. In addition, increased levels of MtF cause a redistribution of iron from cytosol to mitochondria and this effect is enhanced by iron chelation. Thus high levels of MtF result in an iron deficient phenotype in cytosol with decreased expression of ferritin and increased expression of transferrin receptor. This avidity for iron may explain why MtF levels are maintained at low levels in most normal cells. The regulation of MtF expression and possible therapeutic applications of MtF in neurological disorders involving increased iron deposition are topics for future research.  相似文献   

9.
线粒体是一种动态的细胞器,通过响应各种代谢和环境的信号,分裂和融合改变其形态和结构,从而维持细胞的正常功能.它们短暂而快速的形态变化对于细胞周期、免疫、凋亡和线粒体质量控制等许多复杂的细胞过程至关重要.线粒体自噬与线粒体质量控制密切相关,通过将受损的功能障碍的线粒体转运到溶酶体进行降解,促进心肌细胞受损线粒体的更新,并...  相似文献   

10.
We analyzed cytosolic 5'-(3')-nucleotidase (dNT-1) mRNA expression by quantitative polymerase chain reaction at diagnosis in leukemic blasts from 114 patients with acute myeloid leukemia (AML) treated with ara-C. Our results show that low dNT-1 mRNA expression in leukemic blasts at diagnosis is correlated with a worse clinical outcome and suggest that this enzyme may have a role in sensitivity to ara-C in AML patients.  相似文献   

11.
Dividing cultured cells contain much larger pools of the four dNTPs than resting cells. In both cases the sizes of the individual pools are only moderately different. The same applies to mitochondrial (mt) pools of cultured cells. Song et al. [Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK (2005) Proc Natl Acad Sci USA 102:4990-4995] reported that mt pools of rat tissues instead are highly asymmetric, with the dGTP pool in some cases being several-hundred-fold larger than the dTTP pool, and suggested that the asymmetry contributes to increased mutagenesis during mt DNA replication. We have now investigated this discrepancy and determined the size of each dNTP pool in mouse liver mitochondria. We found large variations in pool sizes that closely followed variations in the ATP pool and depended on the length of time spent in the preparation of mitochondria. The proportion between dNTPs was in all cases without major asymmetries and similar to those found earlier in cultured resting cells. We also investigated the import and export of thymidine phosphates in mouse liver mitochondria and provide evidence for a rapid, highly selective, and saturable import of dTMP, not depending on a functional respiratory chain. At nM external dTMP the nucleotide is concentrated 100-fold inside the mt matrix. Export of thymidine phosphates was much slower and possibly occurred at the level of dTDP.  相似文献   

12.
Aims/hypothesis Mitochondrial DNA (mtDNA) mutations cause several diseases, including mitochondrial inherited diabetes and deafness (MIDD), typically associated with the mtDNA A3243G point mutation on tRNALeu gene. The common hypothesis to explain the link between the genotype and the phenotype is that the mutation might impair mitochondrial metabolism expressly required for beta cell functions. However, this assumption has not yet been tested.Methods We used clonal osteosarcoma cytosolic hybrid cells (namely cybrids) harbouring mitochondria derived from MIDD patients and containing either exclusively wild-type or mutated (A3243G) mtDNA. According to the importance of mitochondrial metabolism in beta cells, we studied the impact of the mutation on key parameters by comparing stimulation of these cybrids by the main insulin secretagogue glucose and the mitochondrial substrate pyruvate.Results Compared with control mtDNA from the same patient, the A3243G mutation markedly modified metabolic pathways leading to a high glycolytic rate (2.8-fold increase), increased lactate production (2.5-fold), and reduced glucose oxidation (−83%). We also observed impaired NADH responses (−56%), negligible mitochondrial membrane potential, and reduced, only transient ATP generation. Moreover, cybrid cells carrying patient-derived mutant mtDNA exhibited deranged cell calcium handling with increased cytosolic loads (1.4-fold higher), and elevated reactive oxygen species (2.6-fold increase) under glucose deprivation.Conclusions/interpretation The present study demonstrates that the mtDNA A3243G mutation impairs crucial metabolic events required for proper cell functions, such as coupling of glucose recognition to insulin secretion.  相似文献   

13.
The TRM1 gene of Saccharomyces cerevisiae is necessary for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNAs. The DNA sequence of the TRM1 locus and the 5' ends of mRNAs expressed from this gene have been determined. The majority of the 5' ends map within a large open reading frame between two in-frame ATGs at positions +1 and +49. A small fraction of the 5' ends are located upstream of the first ATG. Both AUGs of the TRM1 mRNAs are used to initiate translation, and two forms of N2,N2-dimethylguanosine-specific tRNA methyltransferase, which differ by an amino-terminal extension of 16 amino acids, are made. Mitochondrial tRNAs are modified when the initiation of translation is limited to one or the other of the AUGs, suggesting that the amino-terminal extension is not necessary for import of the protein into mitochondria. Mitochondrial targeting information must, therefore, be located in a region of N2,N2-dimethylguanosine-specific tRNA methyltransferase that is found in both forms of the enzyme.  相似文献   

14.
In spite of the fact that a DNA helicase is clearly required for the predominantly leading-strand synthesis occurring during mammalian mtDNA replication, no such activity has heretofore been identified. We report the characterization of a mammalian mitochondrial DNA helicase isolated from bovine brain tissue. The sucrose gradient-purified mitochondria in which the activity was detected had less than 1 part in 2500 nuclear contamination according to Western blot analysis using nuclear- and mitochondrial-specific probes. Mitochondrial protein fractionation by DEAE-Sephacel chromatography yielded a DNA helicase activity dependent upon hydrolysis of ATP or dATP but not other NTPs or dNTPs. The mitochondrial helicase unwound 15- and 20-base oligonucleotides but was unable to unwind 32-base or longer oligonucleotides, and the polarity of the unwinding is 3'-to-5' with respect to the single-stranded portion of the partial duplex DNA substrate. This direction of unwinding would place the bovine mitochondrial helicase on the template strand ahead of DNA polymerase gamma during mtDNA replication, a situation analogous to that of the Rep helicase of Escherichia coli during leading-strand DNA synthesis of certain bacteriophages.  相似文献   

15.
Mitochondrial Ca(2+) signal activates metabolism by boosting pyridine nucleotide reduction and ATP synthesis or, if Ca(2+) sequestration is supraphysiological, may even lead to apoptosis. Although the molecular background of mitochondrial Ca(2+) uptake has recently been elucidated, the regulation of Ca(2+) handling is still not properly clarified. In human adrenocortical H295R cells we found a regulatory mechanism involving p38 MAPK and novel-type PKC isoforms. Upon stimulation with angiotensin II (AII) these kinases are activated typically prior to the release of Ca(2+) and - most probably by reducing the Ca(2+) permeation through the outer mitochondrial membrane - attenuate mitochondrial Ca(2+) uptake in a feed-forward manner. The biologic significance of the kinase-mediated reduction of mitochondrial Ca(2+) signal is also reflected by the attenuation of AII-mediated aldosterone secretion. As another feed-forward mechanism, we found in HEK-293T and H295R cells that Ca(2+) signal evoked either by IP(3) or by voltage-gated influx is accompanied by a concomitant cytosolic Mg(2+) signal. In permeabilized HEK-293T cells Mg(2+) was found to be a potent inhibitor of mitochondrial Ca(2+) uptake in the physiologic [Mg(2+)] and [Ca(2+)] range. Thus, these inhibitory mechanisms may serve not only as protection against mitochondrial Ca(2+) overload and subsequent apoptosis but also have the potential to substantially alter physiological responses.  相似文献   

16.
In plants, as in most eukaryotic cells, import of nuclear-encoded cytosolic tRNAs is an essential process for mitochondrial biogenesis. Despite its broad occurrence, the mechanisms governing RNA transport into mitochondria are far less understood than protein import. This article demonstrates by Northwestern and gel-shift experiments that the plant mitochondrial voltage-dependent anion channel (VDAC) protein interacts with tRNA in vitro. It shows also that this porin, known to play a key role in metabolite transport, is a major component of the channel involved in the tRNA translocation step through the plant mitochondrial outer membrane, as supported by inhibition of tRNA import into isolated mitochondria by VDAC antibodies and Ruthenium red. However VDAC is not a tRNA receptor on the outer membrane. Rather, two major components from the TOM (translocase of the outer mitochondrial membrane) complex, namely TOM20 and TOM40, are important for tRNA binding at the surface of mitochondria, suggesting that they are also involved in tRNA import. Finally, we show that proteins and tRNAs are translocated into plant mitochondria by different pathways. Together, these findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNA import pathway has evolved by recruiting multifunctional proteins.  相似文献   

17.
心脏作为哺乳动物能量消耗最高的器官之一,其在围生期发育过程中需要完成从无氧糖酵解到脂肪酸氧化的能量代谢转换,期间心肌细胞线粒体发育迅速,以满足心脏对能量的需要。近年来研究发现线粒体质量控制在围生期心脏发育成熟过程中发挥重要作用。线粒体质量控制包括线粒体生物合成、线粒体融合/分裂以及线粒体自噬等过程,通过维持线粒体结构及功能的完整来保证细胞功能及代谢的正常。本文就哺乳类动物心脏发育过程中线粒体质量控制系统的变化及其在心脏发育中的作用进行综述。  相似文献   

18.
Import of most nucleus-encoded preproteins into mitochondria is mediated by N-terminal presequences and requires a membrane potential and ATP hydrolysis. Little is known about the chemical nature and localization of other mitochondrial targeting signals or of the mechanisms by which they facilitate membrane passage. Mitochondrial heme lyases lack N-terminal targeting information. These proteins are localized in the intermembrane space and are essential for the covalent attachment of heme to c type cytochromes. For import of heme lyases, the translocase of the mitochondrial outer membrane complex is both necessary and sufficient. Here, we report the identification of the targeting signal of mitochondrial heme lyases in the third quarter of these proteins. The targeting sequence is highly conserved among all known heme lyases. Its chemical character is hydrophilic because of a large fraction of both positively and negatively charged amino acid residues. These features clearly distinguish this signal from classical presequences. When inserted into a cytosolic protein, the targeting sequence directs the fusion protein into the intermembrane space, even in the absence of a membrane potential or ATP hydrolysis. The heme lyase targeting sequence represents the first topogenic signal for energy-independent transport into the intermembrane space and harbors two types of information. It assures accurate recognition and translocation by the translocase of the mitochondrial outer membrane complex, and it is responsible for driving the import reaction by undergoing high-affinity interactions with components of the intermembrane space.  相似文献   

19.
The cytoplasmic precursor of mitochondrial ornithine transcarbamylase (carbamoyl-phosphate:L-ornithine carbamoyltransferase, EC 2.1.3.2) contains an amino-terminal leader peptide of 32 amino acids. Secondary structure and helical-wheel analyses predict that the extreme amino-terminal domain (residues 1-15) forms an alpha-helix. To test this thesis, leucine residues at positions 2, 5, 8, and 9 were systematically replaced by either helix-breaking glycine residues or by helix-preserving alanine residues. Triple substitutions of glycine for leucine in positions 2, 5, and 9 or 5, 8, and 9 abolished the uptake of the rat precursor by intact mitochondria, whereas similar alanine substitutions had much less effect. Theoretical computations predicted that the decreased helical stability of the Gly-5,8,9 substitution could be significantly increased by replacing a serine in position with phenylalanine. The introduction of Phe-3, indeed, restored the mitochondrial uptake of the mutant precursor. These results lend strong support to the hypothesis that an alpha-helix is present at the leader's amino terminus during the import of the precursor by mitochondria. Although the precursors with the triply-substituted leaders were impaired with respect to import, they were still cleaved readily by a protease found in a mitochondrial matrix fraction. Substitution of glycine or alanine for all four leucine residues, however, rendered the leader uncleavable at the carboxyl-terminal cleavage site. These results suggest that the structure of the amino-terminal domain is important for recognition of the carboxyl-terminal cleavage sites by the matrix proteases.  相似文献   

20.
We applied a combined proteomic and metabolomic approach to obtain novel mechanistic insights in PKC?-mediated cardioprotection. Mitochondrial and cytosolic proteins from control and transgenic hearts with constitutively active or dominant negative PKC? were analyzed using difference in-gel electrophoresis (DIGE). Among the differentially expressed proteins were creatine kinase, pyruvate kinase, lactate dehydrogenase, and the cytosolic isoforms of aspartate amino transferase and malate dehydrogenase, the two enzymatic components of the malate aspartate shuttle, which are required for the import of reducing equivalents from glycolysis across the inner mitochondrial membrane. These enzymatic changes appeared to be dependent on PKC? activity, as they were not observed in mice expressing inactive PKC?. High-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy confirmed a pronounced effect of PKC? activity on cardiac glucose and energy metabolism: normoxic hearts with constitutively active PKC? had significantly lower concentrations of glucose, lactate, glutamine and creatine, but higher levels of choline, glutamate and total adenosine nucleotides. Moreover, the depletion of cardiac energy metabolites was slower during ischemia/reperfusion injury and glucose metabolism recovered faster upon reperfusion in transgenic hearts with active PKC?. Notably, inhibition of PKC? resulted in compensatory phosphorylation and mitochondrial translocation of PKCδ. Taken together, our findings are the first evidence that PKC? activity modulates cardiac glucose metabolism and provide a possible explanation for the synergistic effect of PKCδ and PKC? in cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号