首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-intensity focused ultrasound (HIFU) induces thermal lesions by increasing the tissue temperature in a tight focal region. The main ultrasound imaging techniques currently used to monitor HIFU treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation and elastography-based methods. The present study was carried out on ex vivo animal tissue samples, in which backscattered radiofrequency (RF) signals were acquired in real time at time instances before, during and after HIFU treatment. The manifold learning algorithm, a non-linear dimensionality reduction method, was applied to RF signals which construct B-mode images to detect the HIFU-induced changes among the image frames obtained during HIFU treatment. In this approach, the embedded non-linear information in the region of interest of sequential images is represented in a 2-D manifold with the Isomap algorithm, and each image is depicted as a point on the reconstructed manifold. Four distinct regions are chosen in the manifold corresponding to the four phases of HIFU treatment (before HIFU treatment, during HIFU treatment, immediately after HIFU treatment and 10-min after HIFU treatment). It was found that disorganization of the points is achieved by increasing the acoustic power, and if the thermal lesion has been formed, the regions of points related to pre- and post-HIFU significantly differ. Moreover, the manifold embedding was repeated on 2-D moving windows in RF data envelopes related to pre- and post-HIFU exposure data frames. It was concluded that if mean values of the points related to pre- and post-exposure frames in the reconstructed manifold are estimated, and if the Euclidean distance between these two mean values is calculated and the sliding window is moved and this procedure is repeated for the whole image, a new image based on the Euclidean distance can be formed in which the HIFU thermal lesion is detectable.  相似文献   

2.
Osteonecrosis of the femoral head is a common disease that can result in complex hip replacement. To evaluate potential treatments, a model that consistently creates osteonecrosis is needed. We studied and demonstrated the possibility of developing an osteonecrosis model using high-intensity focused ultrasound (HIFU) on canine femora in vitro. To achieve these goals, the temperature in the medullary cavity of the femoral head was measured. A phenomenological model was developed to fit the measured temperature variations with the HIFU parameters for similar HIFU experiments on femoral heads. The average temperature discrepancy between model and measured values was less than 0.83°C. Histology confirmed that the temperature in the medullary cavity can be elevated to a level at which an acute thermal injury is created. HIFU has the potential to be used in a non-invasive model of osteonecrosis.  相似文献   

3.
This study considers the temperature-dependent thermal parameters (specific heat capacity, thermal diffusivity and thermal conductivity) used when predicting the temperature rise of tissue exposed to high-intensity focused ultrasound (HIFU). Numerical analysis was performed using the Khokhlov–Zabolotskaya–Kuznetsov equation coupled with a bioheat transfer function. The thermal parameters were set as the functions of temperature using experimental data. The results revealed that, for liver tissue exposed to HIFU with a focal intensity of 3000 W/cm2 for 10 s, the predicted focal temperature rise was 23% lower and the thermal lesion area 41% smaller than those predicted without considering the temperature dependence. The prediction was validated by experimental observations on thermal lesions visualized in a tissue-mimicking phantom. The present results suggest that temperature-dependent thermal parameters should be considered in the prediction of HIFU-induced temperature rise to avoid lowering ultrasonic output settings for HIFU surgery. The aim of the present study was to investigate how significantly the temperature dependence of the thermal parameters affects the thermal dose imposed on the tissue by a typical clinical HIFU device. A numerical simulation was performed using a thermo-acoustic algorithm coupling the non-linear Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation (Meaney et al. 1998; Filonenko and Khokhlova 2001) and a bio-heat transfer (BHT) equation (Pennes 1948). Thermal parameters of liver tissue were modeled in the present study as functions of temperature and were incorporated into the BHT equation to compensate for the variations in thermal parameters with temperature. Experimental validation was achieved by comparing the predictions with the thermal lesions formed in the tissue-mimicking phantoms.  相似文献   

4.
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young’s modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young’s modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.  相似文献   

5.
Because tumors are much larger in size compared with the beam width of high-intensity focused ultrasound (HIFU), raster scanning throughout the entire target is conventionally performed for HIFU thermal ablation. Thermal diffusion affects the temperature elevation and the consequent lesion formation. As a result, the lesion will grow continuously over the course of HIFU therapy. The purpose of this study was to investigate the influence of scanning pathways on the overall thermal lesion. Two new scanning pathways, spiral scanning from the center to the outside and spiral scanning from the outside to the center, were proposed with the same HIFU parameters (power and exposure time) for each treatment spot. The lesions produced in the gel phantom and bovine liver were compared with those using raster scanning. Although more uniform lesions can be achieved using the new scanning pathways, the produced lesion areas (27.5 ± 12.3 mm2 and 65.2 ± 9.6 mm2, respectively) in the gel phantom are significantly smaller (p < 0.05) than those using raster scanning (92.9 ± 11.8 mm2). Furthermore, the lesion patterns in the gel phantom and bovine liver were similar to the simulations using temperature and thermal dose-threshold models, respectively. Thermal diffusion, the scanning pathway and the biophysical aspects of the target all play important roles in HIFU lesion production. By selecting the appropriate scanning pathway and varying the parameters as ablation progresses, HIFU therapy can achieve uniform lesions while minimizing the total delivered energy and treatment time.  相似文献   

6.
High-intensity focused ultrasound (HIFU) is rapidly gaining acceptance as a non-invasive method for soft tissue tumor ablation, but improvements in the methods of treatment delivery, planning and monitoring are still required. Backscatter temperature imaging (BTI) uses ultrasound to visualize heating-induced echo strain and may be used to indicate the position of the HIFU focal region using low-power “sub-lesioning” exposure. The technique may also provide a quantitative tool for assessing the efficacy of treatment delivery if apparent strain measurements can be related to the underlying temperature rise. To obtain temperature estimates from strain measurements, the relationship between these variables has to be either measured or otherwise assumed from previous calibrations in similar tissues. This article describes experimental measurements aimed at deriving the relationship between temperature rise and apparent strain in the laboratory environment using both ex vivo bovine liver tissue samples and normothermically perfused porcine livers. A BTI algorithm was applied to radiofrequency ultrasound echo data acquired from a clinical ultrasound scanner (Z.One, Zonare Medical Systems, Mountain View, CA, USA) where the imaging probe was aligned with the focal region of a HIFU transducer. Temperature measurements were obtained using needle thermocouples implanted in the liver tissue. A series of “non-ablative” HIFU exposures giving peak temperatures below 10°C were made in three separate ex vivo bovine livers, yielding an average strain/temperature coefficient of 0.126 ± 0.088 percentage strain per degree Celsius. In the perfused porcine livers at a starting temperature of 38°C (normal body temperature) the strain/temperature coefficients were found to be 0.040 ± 0.029 percentage strain per degree Celsius. The uncertainty in these results is directly linked to the precision of the strain measurement, as well as the naturally occurring variance between different tissue samples, indicating that BTI may lack the accuracy required to be implemented successfully in practice as a quantitative treatment planning technique at a sub-lesioning exposure level. This is because, to be of use in treatment planning, temperature-rise estimates may require an accuracy greater (<10%) than that offered by BTI measurement. BTI may, however, still play a role in ensuring the correct positioning of the focal region and as a treatment monitoring modality capable of detecting an increased rate of heating in tissue after HIFU ablation.  相似文献   

7.
The present work considers the ultrasonic properties of porcine liver tissue in vitro measured during heating concomitant with thermal coagulation followed by natural cooling, so as to provide information about changes in the ultrasonic properties of the tissue after thermal coagulation. The excised liver samples were heated in a degassed water bath up to 75°C and naturally cooled down to 30°C. The tissue was observed to begin thermally coagulating at temperatures lower than 75°C. The ultrasonic parameters considered include the speed of sound, the attenuation coefficient, the backscatter coefficient and the nonlinear parameter of B/A. They were more sensitive to temperature when heating than during natural cooling. All of the parameters were shown to rise significantly on completion of the heating-cooling cycle. At 35°C after thermal coagulation, the B/A value was increased by 96%, the attenuation and backscatter coefficients were increased by 50%∼68% and 33%∼37%, respectively, in the typical frequency ranges of 3 MHz∼5 MHz used for ultrasonic imaging and the speed of sound was increased by 1.4%. The results of this study added to the evidence that tissue characterization, in particular, based on the B/A could be valuable for ultrasonically imaging the thermal lesions following high-intensity focused ultrasound (HIFU) surgery.  相似文献   

8.
In this paper, we report on a study that investigated the feasibility of reliably visualizing high-intensity focused ultrasound (HIFU) lesion boundaries using axial-shear strain elastograms (ASSE). The HIFU-induced lesion cases used in the present work were selected from data acquired in a previous study. The samples consisted of excised canine livers with thermal lesions produced by a magnetic resonance-compatible HIFU system (GE Medical System, Milwaukee, WI, USA) and were cast in a gelatin block for the elastographic experiment. Both single and multiple HIFU-lesion samples were investigated. For each of the single-lesion samples, the lesion boundaries were determined independently from the axial strain elastogram (ASE) and ASSE at various iso-intensity contour thresholds (from -2 dB to -6 dB), and the area of the enclosed lesion was computed. For samples with multiple lesions, the corresponding ASSE was analyzed for identifying any unique axial-shear strain zones of interest. We further performed finite element modeling (FEM) of simple two-inclusion cases to verify whether the in vitro ASSE obtained were reasonable. The results show that the estimation of the lesion area using ASSE is less sensitive to iso-intensity threshold selection, making this method more robust compared with the ASE-based method. For multiple lesion cases, it was shown that ASSE enables high-contrast visualization of a “thin” untreated region in between multiple fully-treated HIFU-lesions. This contrast visualization was also noticed in the FEM predictions. In summary, the results demonstrate that it is feasible to reliably visualize HIFU lesion boundaries using ASSE. (E-mail: Arun.K.Thittai@uth.tmc.edu)  相似文献   

9.
Extracorporeal high-intensity focused ultrasound (HIFU) can be used to ablate tissue noninvasively by delivering focused ultrasound energy from an external source. HIFU for clinical treatment of pancreatic cancer has been reported; however, systematic evaluation of the safety and efficacy of pancreatic ablation with HIFU has not been performed. The objectives of this in vivo study are as follows: (1) assess the safety and feasibility of targeting and ablating pancreatic tissue using the FEP-BY02 HIFU system (Yuande Bio-Medical Engineering, Beijing, China); (2) evaluate a method for estimating in situ acoustic treatment energy in an in vivo setting; and (3) identify the optimal treatment parameters that result in safe and effective ablation of the pancreas. The pancreata of 12 common swine were treated in vivo. Prior to therapy, blood was drawn for laboratory analysis. Animals were then treated with extracorporeal HIFU at three different acoustic treatment energies (750, 1000 and 1250 J). Endoscopy was performed prior to and immediately following HIFU therapy to assess for gastric injury. Blood was drawn after completion of the treatment and on days 2 and 7 following treatment to assess for biochemical evidence of pancreatitis. Animals were then euthanized 7 d following treatment and a necropsy was performed to assess for unintended injury and to obtain pancreatic tissue for histology to assess efficacy of HIFU ablation. Histologic scoring of pancreatic tissue changes was performed by a pathologist blinded to the treatment energy delivered. The degree of ablation identified on histology correlated with the treatment energy. No collateral tissue damage was seen at treatment energies of 750 and 1000 J. At 1250 J, thermal injury to the abdominal muscles and gastric ulcers were observed. There were no premature deaths, serious illnesses, skin burns or evidence of pancreatitis on biochemical analysis. HIFU treatment of the pancreas is feasible, safe and can be used to ablate tissue noninvasively. A clinical trial in humans examining the use of extracorporeal HIFU for palliation of pain related to pancreatic cancer is planned. (E-mail: jooha@u.washington.edu)  相似文献   

10.
Boiling histotripsy is a non-invasive, cavitation-based ultrasonic technique which uses a number of millisecond pulses to mechanically fractionate tissue. Though a number of studies have demonstrated the efficacy of boiling histotripsy for fractionation of solid tumours, treatment monitoring by cavitation measurement is not well studied because of the limited understanding of the dynamics of bubbles induced by boiling histotripsy. The main objectives of this work are to (a) extract qualitative and quantitative features of bubbles excited by shockwaves and (b) distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion in the liver. A numerical bubble model based on the Gilmore equation accounting for heat and mass transfer (gas and water vapour) was developed to investigate the dynamics of a single bubble in tissue exposed to different High Intensity Focused Ultrasound fields as a function of temperature variation in the fluid. Furthermore, ex vivo liver experiments were performed with a passive cavitation detection system to obtain acoustic emissions. The numerical simulations showed that the asymmetry in a shockwave and water vapour transport are the key parameters which lead the bubble to undergo rectified growth at a boiling temperature of 100°C. The onset of rectified radial bubble motion manifested itself as (a) an increase in the radiated pressure and (b) the sudden appearance of higher order multiple harmonics in the corresponding spectrogram. Examining the frequency spectra produced by the thermal ablation and the boiling histotripsy exposures, it was observed that higher order multiple harmonics as well as higher levels of broadband emissions occurred during the boiling histotripsy insonation. These unique features in the emitted acoustic signals were consistent with the experimental measurements. These features can, therefore, be used to monitor (a) the different types of acoustic cavitation activity for either a thermal ablation or a mechanical fractionation process and (b) the onset of the formation of a boiling bubble at the focus in the course of HIFU exposure.  相似文献   

11.
Quantitative ultrasound techniques can be used to retrieve cortical bone quality. The aim of this study was to investigate the anatomic variations in speed of sound (SOS) in the radial direction of cortical bone tissue. SOS measurements were realized in 17 human cortical bone samples with a 3.5-MHz transverse transmission device. The radial dependence of SOS was investigated in a direction perpendicular to the periosteum. For each sample, bone porosity was measured using an X-ray micro-computed tomography device. The mean SOS was 3586 ± 255 m/s. For 16 of 17 specimens, similar radial variations in SOS were observed. In the periosteal region, SOS first decreased in the direction of the endosteum and reached a minimum value approximately in the middle of the cortical bone. SOS then increased, moving to the endosteal region. A significant negative correlation was obtained between SOS and porosity (R = –0.54, p = 0.02).  相似文献   

12.
基于二维超声图像纹理分析判断HIFU凝固性坏死   总被引:3,自引:1,他引:2  
目的 探讨在高强度聚焦超声(HIFU)治疗中,利用二维超声监控图像在多分辨率下的纹理参数,对HIFU所致凝固性坏死组织进行评价,提高对凝固性坏死判断的敏感度.方法 在相同声强、功率和深度条件下,选用点打的方式辐照新鲜离体牛肝,采集辐照前以及辐照后即刻、1 min、2 min和3 min的二维声像图和灰度图像,利用小波变换提取二维超声图像在多分辨率下的纹理参数,建立支撑矢量机(SVM),对样本进行分析判断.结果 多分辨率下的纹理参数比灰度对HIFU凝固性坏死的判断敏感度要高,且差异有统计学意义(P<0.05).结论 利用多分辨率下的纹理参数来评价HIFU凝固性坏死的方法是可行的,且敏感度高于灰度对凝固性坏死的评价.  相似文献   

13.

Background   

High-intensity focused ultrasound (HIFU) is a promising treatment method for many common cancers, including prostate cancer. Magnetic resonance image (MRI) guidance of HIFU permits targeting and monitoring of therapy. A prototype MRI-compatible positioning device that navigates a HIFU transducer was designed, fabricated and tested.

Materials and methods   

The positioning device has two PC-controlled and one manually driven stage that allow endorectal access to the prostate. The positioning device was constructed using a 3-D rapid prototype manufacturing device. Software was developed that controls the motion of the positioning device and enables activation of a HIFU transducer. In vitro testing of the system was performed in a 1.5T MRI scanner using ex vivo turkey tissue. Optical encoders were employed to enhance the accuracy of this positioning device.

Result   

The positioning device was successfully tested for MRI compatibility. The movement error of the positioning device is approximately 20 \(\upmu \) m. The robot has the ability to accurately move the transducer for creation of discrete and overlapping lesions.

Conclusion   

An MRI-compatible HIFU positioning system was developed that has the ability to create thermal lesions with MRI guidance for endorectal treatment of prostate cancer.  相似文献   

14.
We previously developed an ultrasonic elastography imaging system that may provide a simple and cost-effective solution to monitor high-intensity focused ultrasound (HIFU) treatments. The objective of this clinical study was to evaluate the reliability of our system in assessing the volume of HIFU lesions in the prostate, using a comparison with magnetic resonance imaging (MRI). Elastograms were obtained in 20 patients after HIFU treatment for prostate cancer and gadolinium-enhanced T1- and T2-weighted MRI was performed. Lesion boundaries were manually outlined and the volume was calculated. A statistically significant correlation of rho = 0.62 (p = 0.022) was found between elastographic and MRI measurements of lesion volume, with elastographic measurements that generally underestimated the volume measured in MRI. Some basic physics (hypoechoic areas) and instrumentation (frame rate and band width) issues that were detrimental to image quality in vivo are reported, along with propositions to improve the technique. Because of these issues and, although good correspondence between elastographic and MRI measurements was found in some patients, elastographic measurements were unable to predict MRI measurements in a single individual. Nevertheless, the results confirmed the potential of elastography for monitoring HIFU treatment of the prostate. Further investigation will be conducted using better suited ultrasound equipment and performing real-time elastogram calculations.  相似文献   

15.
High-intensity focused ultrasound (HIFU) is a non-invasive tool that can be used for targeted thermal ablation treatments. Currently, HIFU is clinically approved for treatment of uterine fibroids, various cancers, and certain brain applications. However, for brain applications such as essential tremors, HIFU can only be used to treat limited areas confined to the center of the brain because of geometrical limitations (shape of the transducer and skull). A major obstacle to advancing this technology is the inability to treat non-central brain locations without causing damage to the skin and/or skull. Previous research has indicated that cavitation-induced bubbles or microbubble contrast agents can be used to enhance HIFU treatments by increasing ablation regions and shortening acoustic exposures at lower acoustic pressures. However, little research has been done to explore the interplay between microbubble concentration and pressure amplitude on HIFU treatments. We developed an in vitro experimental setup to study lesion formation at three different acoustic pressures and three microbubble concentrations. Real-time ultrasound imaging was integrated to monitor initial microbubble concentration and subsequent behavior during the HIFU treatments. Depending on the pressure used for the HIFU treatment, there was an optimal concentration of microbubbles that led to enhanced heating in the focal area. If the concentration of microbubbles was too high, the treatment was detrimentally affected because of non-linear attenuation by the pre-focal microbubbles. Additionally, the real-time ultrasound imaging provided a reliable method to monitor microbubble activity during the HIFU treatments, which is important for translation to in vivo HIFU applications with microbubbles.  相似文献   

16.
Thermal dose is the most generally accepted concept for estimating temperature-related tissue damage thresholds in high-intensity focused ultrasound (HIFU) procedures. However, another approach based on the intensity-time product I tm = D has been used, where D is a tissue-dependent damage threshold, I is the spatial-peak, temporal-average intensity and t is time. In this study, these two approaches were compared analytically by substituting a well-known soft-tissue solution for temperature vs. time into the thermal dose equation. From power law fits of I vs. t, m was found to fall between about 0.3 and 0.8. In terms of the intensity required for cell death for a given exposure time, the standard deviation of the error between the full thermal-dose formulation and the I tm = D prediction based upon the power-law fit was less than 5% for focal beam diameters up to 3 mm. Thus, for the practical range of HIFU parameters examined, the intensity-time product relationship is equivalent to the thermal dose formulation. (E-mail: gerald.harris@fda.hhs.gov)  相似文献   

17.
Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. (E-mail: ajay.anand@philips.com).  相似文献   

18.
目的 探讨基于超声图像处理的HIFU所致组织损伤的自动检测方法。方法 针对HIFU辐照后新鲜离体猪肉声像图中的ROI,通过搜索灰度极大区域自动定位图像中的所有亮斑,结合数学形态学、连通域标记和Canny边缘检测算法提取测试对象的边缘轮廓;根据亮斑中心至边缘轮廓的欧式距离去除边缘附近的亮斑噪声,获取HIFU损伤候选区;而后提取候选区特征参数,并结合支持向量机(SVM)识别HIFU损伤。结果 最大灰度值和矩形度两个特征参数的识别率分别为86.25%和93.33%。选用识别率更高的矩形度,可正确识别单处、多处HIFU损伤或无HIFU损伤的图像。结论 采用此法可直接分析HIFU辐照后超声声像图而自动检测HIFU损伤,无需依靠图像配准技术,可减少手动定位带来的误差。  相似文献   

19.
Axial strain elastograms (ASEs) have been found to help visualize sonographically invisible thermal lesions. However, in most studies involving high-intensity focused ultrasound (HIFU)-induced thermal lesions, elastography imaging was performed separately later, after the lesion was formed. In this article, the feasibility of monitoring, in real time, tissue elasticity variation during HIFU treatment and immediately thereafter is explored using quasi-static elastography. Further, in addition to ASEs, we also explore the use of simultaneously acquired axial-shear strain elastograms (ASSEs) for HIFU lesion visualization. Experiments were performed on commercial porcine liver samples in vitro. The HIFU experiments were conducted at two applied acoustic power settings, 35 and 20 W. The experimental setup allowed us to interrupt the HIFU pulse momentarily several different times during treatment to perform elastographic compression and data acquisition. At the end of the experiments, the samples were cut along the imaging plane and photographed to compare size and location of the formed lesion with those visualized on ASEs and ASSEs. Single-lesion and multiple-lesion experiments were performed to assess the contribution of ASEs and ASSEs to lesion visualization and treatment monitoring tasks. At both power settings, ASEs and ASSEs provided accurate location information during HIFU treatment. At the low-power setting case, ASEs and ASSEs provide accurate lesion size in real-time monitoring. Lesion appearance in ASEs and ASSEs was affected by the cavitation bubbles produced at the high-power setting. The results further indicate that the cavitation bubbles influence lesion appearance more in ASEs than in ASSEs. Both ASEs and ASSEs provided accurate size information after a waiting period that allowed the cavitation bubbles to disappear. The results indicate that ASSEs not only improve lesion visualization and size measurement of a single lesion, but, under certain conditions, also help to identify untreated gaps between adjacent lesions with high contrast.  相似文献   

20.
The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号