首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ex vivo receptor occupancy measurements were performed in order to study the effects of the serotonin reuptake inhibitors fluoxetine and citalopram on serotonin 5-HT(2C) receptors. To determine the degree of 5-HT(2C) receptor occupancy, [(3)H]mesulergine binding in brain sections containing rat choroid plexus was measured at various time-points after drug injection. For comparison, [(3)H]ketanserin binding to frontal cortex 5-HT(2A) receptors was measured. Fluoxetine treatments (10 and 20 mg/kg) resulted in 5-HT(2C) receptor occupancy of up to 25 and 43%, respectively. Fluoxetine (20 mg/kg) caused a persistent effect: at the 24 h time-point, 23% of 5-HT(2C) receptors were still occupied. Citalopram treatment did not result in marked 5-HT(2C) receptor occupancy. Neither drug caused significant 5-HT(2A) receptor occupancy. In conclusion, the results demonstrate pharmacodynamic differences between fluoxetine and citalopram at the level of 5-HT(2C) receptors. These findings provide evidence that direct occupancy of 5-HT(2C) receptors may contribute to the mechanism of action of fluoxetine.  相似文献   

2.
Summary 1) 5-HT (5-hydroxytryptamine, serotonin) induces inositol phosphate production in a pig choroid plexus preparation. This effect has been pharmacologically characterized and the data compared to those obtained from radioligand binding studies performed with [3H]mesulergine to 5-HT1C sites in pig choroid plexus membranes. 2) The rank order of potency of agonists stimulating inositol phosphate production was: -methyl-5-HT > 1-methyl-5-HT > DOI > bufotenine = SKF 83566 = 5-HT > 5-MeO-DMT > 5-MeOT = RU 24969> SCH 23390> 5-CT. 8-OH-DPAT was virtually devoid of activity at 100 mol/l. 3) The increase in inositol phosphate production induced by 5-HT and other agonists was surmountably antagonised by mesulergine, ketanserin and spiperone with pKB values of 8.7, 6.7 and 5.3, respectively. 4) The rank order of potency of antagonists was: metergoline > mesulergine > LY 53857 > ritanserin > methiothepin > mianserin > cyproheptadine > pirenperone > cinanserin > ketanserin > spiperone. The following antagonists were virtually devoid of activity at 100 mol/l; pindolol, 21-009 and yohimbine. 5) The results obtained both with agonists and antagonists strongly support the view that 5-HT1C receptors mediate agonist induced production of inositol phosphates in pig choroid plexus. This is illustrated by the close similarity between 5-HT1C binding and stimulation of inositol phospholipid turnover in this preparation. 6) The present data also show that compounds believed to be selective for dopamine D1 receptors (SKF 83566, SCH 23390) or 5-HT2 receptors (DOI, -methyl-5-HT, LY 53857, ritanserin, cyproheptadine) also interact with 5-HT1C receptors. 7) A case can be made for the 5-HT1C receptor, with its similarities to the 5-HT2 receptor in terms of pharmacology and second messenger coupling, being a 5-HT2 receptor subtype.These data have been presented in part at the Spring Meeting of the German Pharmacological Society, March 1987 (Hoyer et al. 1987) Send offprint requests to D. Hoyer at the above address  相似文献   

3.
Previous studies conducted in our laboratory have shown that acute administration of the selective serotonin re-uptake inhibitor (SSRI), citalopram, potentiates the stimulus effects of the phenethylamine hallucinogen [-]-2,5-dimethoxy-4-methylamphetamine (DOM) in the rat while neither substituting for the DOM stimulus when administered alone nor altering brain levels of DOM. The present investigation was designed to determine the mechanism by which citalopram acts on DOM-induced stimulus control. To that end, we tested the following hypotheses: (a) citalopram blocks the transport of DOM by the serotonin transporter, (b) citalopram acts via the 5-HT(1A) receptor, and (c) citalopram acts via the 5-HT(2C) receptor. Hypothesis (a) was rejected on the basis of equilibrium saturation studies of [3H]citalopram binding, which revealed no significant affinity of DOM for the 5-HT transporter of rat brain membranes. Hypotheses (b) and (c) were tested in a group of 20 rats in which stimulus control was established with DOM (0.6 mg/kg; 75 min pretreatment time). A two-lever, fixed ratio 10 (FR10), positively reinforced task with saline controls was employed. Hypothesis (b), a role for the 5-HT(1A) receptor, was rejected on the basis of an absence of antagonism of the effects of citalopram on DOM by the selective 5-HT(1A) receptor antagonist, WAY-100635. In contrast, Hypothesis (c), a role for the 5-HT(2C) receptor, gained support from the observation of significant antagonism of the effects of citalopram on DOM by the selective 5-HT(2C) receptor antagonist, SB-242084.  相似文献   

4.
Summary The effects of several antagonists, known to interact with 5-HT2 receptors (ritanserin, LY 53857, ICI 169,369, methysergide, mesulergine and ketanserin), were tested against 5-HT-stimulated production of inositol phosphate in pig choroid plexus, a 5-HT1C receptor model. These antagonists produced dextral shifts of the concentration response curve to 5-HT in a parallel manner, without depressing significantly the maximal response. The following pA2 values (in parentheses) were obtained: mesulergine (8.88), methysergide (8.85), LY 53857 (8.69), ritanserin (8.69), ICI 169,369 (7.86), and ketanserin (6.57). These pA2 values were in good agreement with the pKD values determined in radioligand binding studies performed in pig choroid plexus with [3H]mesulergine. The present data demonstrate that several drugs described as 5-HT2 receptor selective antagonists (e.g. ritanserin, LY 53857 and ICI 169,369) are also potent, competitive and surmountable antagonists at 5-HT1C receptors. Thus, the results provide further evidence for the pharmacological similarity of 5-HT1C and 5-HT2 receptors. However, in contrast to the situation described with methysergide, ritanserin and LY 53857 in several 5-HT2 receptor models, none of these antagonists acted in a non-competitive or unsurmountable fashion at 5-HT1C receptors. These results suggest, but do not firmly rule out, that at least in the presence of the drugs tested in the present study, 5-HT1C receptors in the choroid plexus do not undergo an allosteric modulation; these findings are apparently in contrast to a model proposed previously for 5-HT2 receptors (Kaumann and Frenken 1985, Naunyn-Schmiedeberg's Arch Pharmacol 328: 295–300) Send offprint requests to P. Schoeffter at the above address  相似文献   

5.
The 5-HT receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) produced dose-dependent increases in plasma adrenocorticotropin (ACTH) in the male rat by activation of 5-HT1A and 5-HT2 receptors respectively. The ACTH response to DOI was enhanced by repeated administration of electroconvulsive shock (five over 10 days) but abolished by the tricyclic antidepressant, amitriptyline (20 mg/kg for 14 days). In contrast 21 days lithium treatment failed to alter DOI-induced ACTH release. Neither repeated electroconvulsive shock, nor amitriptyline, nor lithium altered the ACTH response to 8-OH-DPAT. These data are consistent with results from ligand binding and behavioural studies which suggest that the sensitivity of brain 5-HT2 receptors is increased by repeated electroconvulsive shock but attenuated by tricyclic antidepressant treatment. In contrast, our data suggest that the antidepressant treatments studied do not alter the sensitivity of the 5-HT1A receptors involved in ACTH release.  相似文献   

6.
In slices from immature rat spinal cord, both 5-hydroxytryptamine (5-HT) and the 5-HT2A/C receptor agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and alpha-methyl-5-HT (alpha-Me-5-HT) stimulate phosphoinositide (PI) hydrolysis. PI breakdown is also increased by the 5-HT3 receptor agonist 2-Me-5-HT but not by phenylbiguanide. The effect of either 5-HT or DOI is blocked by selective 5-HT2A receptor antagonists such as spiperone and ketanserin and more markedly by mixed 5-HT2 receptor antagonists, such as ritanserin, methysergide and mesulergine, with higher affinity at the 2C subtype. The effect of 2-Me-5-HT is blocked by 5-HT2 and not by 5-HT3 receptor antagonists, indicating that 5-HT3 receptors do not directly or indirectly take part in PI hydrolysis in the spinal cord. Moreover, lesion with neonatal capsaicin of thin primary afferents to the dorsal spinal cord enhances inositol phosphate formation stimulated by 5-HT or DOI but not by 2-Me-5-HT. This lesion also increases 5-HT2A and 5-HT2C receptor density. After neonatal injection of 5,7-dihydroxytryptamine, which results in a marked loss of 5-HT content in the cord, 5-HT and 5-HT2 receptor agonists also enhance PI breakdown without a concomitant change in receptor number. The results suggest that the 5-HT-stimulated PI response in the rat spinal cord is associated only with the 5-HT2 receptor class, in particular with the 5-HT2C subtype.  相似文献   

7.
The role of 5-HT2A-mediated stimulation of phosphoinositide hydrolysis in the discriminative effects of hallucinogens was investigated in PC12 cells stably expressing the rat 5-HT2A receptor (PC12-5-HT2A cells). The hallucinogenic compounds, D-lysergic acid diethylamide (LSD), (-)2,5-dimethoxy-4-methylamphetamine (DOM), psilocybin, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (MDMT) and N,N-diethyltryptamine (DET), all caused a concentration-dependent increase in the generation of [3H]inositol phosphates. The nonhallucinogenic compounds, 6-fluoro-N,N-diethyltryptamine (6-F-DET), lisuride and quipazine, also displayed significant efficacy in stimulating phosphoinositide hydrolysis, while 2-bromo-lysergic acid diethylamide (BOL), which is not a hallucinogen, did not alter inositol phosphate generation. The beta-carbolines, harmaline and harmane, also did not alter phosphoinositide hydrolysis. Comparison of these results with previous drug discrimination studies indicated the apparent lack of correlation between the degree of substitution in LSD- and DOM-trained animals and efficacy in stimulating phosphoinositide hydrolysis. The present study indicates that 5-HT2A-mediated stimulation of phosphoinositide hydrolysis does not appear to be the sole critical signaling mechanism involved in the discriminative effects of hallucinogens.  相似文献   

8.
1. 5-Hydroxytryptamine (5-HT) has been shown to induce contraction of tracheal smooth muscle. However, the mechanisms of action of 5-HT are not known. We therefore investigated the effects of 5-HT on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and its regulation in canine cultured tracheal smooth muscle cells (TSMCs) labelled with [3H]-inositol. 5-HT-induced inositol phosphates (IPs) accumulation was time- and dose-dependent with a half-maximal response (EC50) and a maximal response at 0.38 +/- 0.05 and 10 microM, respectively. 2. Ketanserin and mianserin (10 and 100 nM), 5-HT2 receptor antagonists, were equipotent in blocking the 5-HT-induced IPs accumulation with pKB values of 8.46 and 8.21, respectively. In contrast, the dose-response curves of 5-HT-induced IPs accumulation were not shifted until the concentrations of NAN-190 and metoclopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased up to 10 microM. 3. Pretreatment of TSMCs with pertussis toxin or cholera toxin did not inhibit the 5-HT-induced IPs accumulation, but partially inhibited the AlF(4-)-induced IPs response. 4. Stimulation of IPs accumulation by 5-HT required the presence of external Ca2+ and was blocked by EGTA. The addition of Ca2+ (3-620 nM) to digitonin-permeabilized TSMCs directly stimulated IPs accumulation. A further Ca(2+)-dependent increase in IPs accumulation was obtained by inclusion of either guanosine 5'-O-(3-thiotriphoshate) (GTP gamma S) or 5-HT. The combination of GTP gamma S and 5-HT elicited an additive effect on IPs accumulation. 5. Treatment with phorbol 12-myristate 13-acetate (PMA, 1 microM, 30 min) abolished the 5-HT-induced IPs accumulation. The concentrations of PMA that gave a half-maximal and maximal inhibition of 5-HT-induced IPs accumulation were 2.2 +/- 0.4 nM and 1 microM, n = 3, respectively. The protein kinase C (PKC) activator, 4 alpha-phorbol 12,13-didecanoate, at 1 microM, did not influence this response. The inhibitory effect of PMA was reversed by staurosporine, a PKC inhibitor, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. 6. The site of this inhibition was further investigated by examining the effect of PMA on AlF(4-)-induced IPs accumulation in canine TSMCs. AlF(4-)-stimulated IPs accumulation was inhibited by PMA treatment, suggesting that the effect of PMA is distal to the 5-HT receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The purpose of the present study was to analyze the influence of stress (24-h cold exposure) on presynaptic 5-HT1A receptors, and on postsynaptic 5-HT1A, 5-HT1C and 5-HT2 receptors. Cold exposure for 24 h affected neither pargyline-induced decreases in 5-hydroxyindoleacetic acid (5-HIAA) levels in midbrain and rest of brain, nor plasma glucose and corticosterone levels. Treatment with the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.5-1 mg/kg), 3-5 h after the end of cold exposure triggered less intense flat body posture and forepaw treading in cold-exposed rats than in controls. On the other hand, 15- and 30-min plasma glucose responses to 8-OH-DPAT (0.25-0.5 mg/kg, 3-5 h after cold) or to the alpha 2-adrenoceptor agonist, clonidine (0.025 mg/kg), were not affected by cold, while the 15-min, but not the 30 min, plasma corticosterone response to 8-OH-DPAT was slightly amplified in cold-exposed rats. Cold exposure affected neither the inhibitory effect of 8-OH-DPAT (0.25-0.5 mg/kg, 3-5 h after cold) on midbrain 5-HIAA levels, nor the hypothermic effect of 8-OH-DPAT (0.5-1 mg/kg, 3-5 h after cold). Lastly, the hypoactivity elicited by the 5-HT1C receptor agonist, m-chlorophenyl-piperazine (1.5-3 mg/kg, 3-5 h after cold), or head shakes elicited by the 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1-2 mg/kg, 3-5 h after cold), were of similar intensities in control and in cold-exposed rats.  相似文献   

10.
The activation of phosphoinositide turnover in rat cerebral cortex and choroid plexus is triggered by the stimulation of 5-HT2 and 5-HT1C receptors, respectively. To characterize the 5-HT receptor subtype mediating the activation of phosphoinositide turnover in the hippocampus, the potency of several 5-HT agonists and antagonists on total [3H]inositol phosphate formation has been compared in the hippocampus, cerebral cortex and choroid plexus of immature rats. 5-HT, alpha-methyl-5-HT, quipazine, MK-212, mCPP (m-chlorophenylpiperazine) and TFMPP (m-trifluoromethylphenylpiperazine) are less potent and efficient in stimulating phosphoinositide turnover in the hippocampus and cerebral cortex than in the choroid plexus. However, for a number of 5-HT receptor antagonists (ketanserin, spiperone, ritanserin, pizotifen, cyproheptadine, mesulergine, mianserin, methiothepin, methysergide) there is a good correlation (r = 0.82) between their antagonistic potency in the hippocampus and choroid plexus while such correlation is not observed for the hippocampus and cerebral cortex. The specific 5-HT2 receptor antagonist spiperone only partially antagonizes (37% inhibition at 1 microM) the stimulation by 5-HT of phosphoinositide turnover in the hippocampus. These results suggest that in the immature rat hippocampus the activation of phosphoinositide turnover by 5-HT is mainly mediated by the 5-HT1C receptor subtype.  相似文献   

11.
1. Fozard & Gray (1989) proposed that migraine is mediated by stimulation of 5-HT1C receptors. We have examined the interaction of two effective anti-migraine agents, ergotamine and dihydroergotamine (DHE), with these receptors. Binding (inhibition of labelling by [3H]-mesulergine) and agonist activity (phosphoinositide hydrolysis) were measured in piglet choroid plexus, a tissue rich in 5-HT1C receptors. 2. The pKD for [3H]-mesulergine binding was 8.4. Ergotamine and DHE both inhibited [3H]-mesulergine binding with a pKD of 7.1. This was similar to the potency of m-chlorophenylpiperazine (m-CPP) (pKD 7.4) and rather less than that of 5-hydroxytryptamine (5-HT) (pKD 8.1). 3. Both ergotamine and DHE were full agonists (pEC50S 7.5 and 7.6 respectively) with potencies similar to that of 5-HT (pEC50 7.7) and greater than that of m-CPP (pEC50 7.1). Mesulergine 10(-7) M produced near-parallel rightward shifts of the concentration-response curves for all these agents of 1.8-2.2 log units, consistent with an action of the agonists at the same receptor. 4. There was no effect of prazosin, spiperone, mepyramine or atropine on the phosphoinositide hydrolysis induced by ergotamine, ruling out an action via alpha 1-adrenoceptors, 5-HT2, histamine H1, or muscarinic receptors. 5. It is concluded that, together with 5-HT, ergotamine and DHE are the most potent 5-HT1C agonists reported so far. These findings do not support the theory that 5-HT1C receptor activation causes migraine.  相似文献   

12.
5-Methoxy-N,N-dimethyltryptamine (5-McODMT) and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) facilitate motoneuron excitability through 5-HT1C/5-HT2 receptors in rats. Using spinal cord slices prepared from adult rals, we recorded unitary cell discharges, evoked by local stimulation of the adjacent site, extracellularly in the motor nuclei of the ventral horn. 5-MeODMT, DOI, 5-hydroxytryptamme (5-HT), 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) and tandospirone facilitated the probability of firing in the motor nuclei, with 5-MeODMT and DOI being the most potent. The effect of 5-MeODMT was significantly suppressed by ketanserin (a 5-HT2 receptor-selective antagonist), spinerone (a 5-HT1A/5-HT2 receptor antagonist) and cyproheptadine (a 5-HT1A/5-HT2 receptor antagonist), but not by 3-tropanyl-3,5-dichlorobenzoate (MDL 72222, a 5-HT3 receptor-selective antagonist) or pindolol (a 5-HT1A/5-HT1B receptor antagonist). This suggests that 5-HT2 and/or 5-HT1C receptors are involved in the facilitatory effects of 5-HT receptor agonists on the synaptic activity of ventral horn cells.  相似文献   

13.
The pharmacology of several commonly described 5-hydroxytryptamine (5-HT)(2C) receptor agonists was investigated in vivo and in vitro at rat 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptors. The 5-HT(2C) receptor agonist, (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate (Ro 60-0175), did not induce a significant head-twitch response when given alone, yet when administered to rats subsequent to an acute challenge with the selective 5-HT(2C) receptor antagonist, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy) pyridin-3-yl carbomyl] indoline (SB-242084), a robust head-twitch response was observed which was blocked by the selective 5-HT(2A) receptor antagonists R(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl-ethyl)]-4-piperidine-methanol (MDL 100907) or ketanserin. The preferential 5-HT(2C) receptor agonists Ro 60-0175, 6-chloro-2-[1-piperazinyl]-pyrazine HCl (MK-212), 1-(3-chlorophenyl)piperazine hydrochloride (mCPP), 1-(3-trifluoromethylphenyl)piperazine hydrochloride (TFMPP), and (S)-3-[(2,3-dihydro-5-methoxy-1H-inden-4-yl)oxy]-pyrollidine HCl (ORG-37684), the 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), the 5-HT(2B) receptor agonist 1-[5-thienylmethoxy-1-1H-3-indoyl] propan-2-amine hydrochloride (BW-723C86), and nor-D-fenfluramine were administered to rats subsequent to an acute challenge of SB-242084. Under such conditions, each agonist, with the exception of BW-723C86, induced a dose-dependent increase in the incidence of head twitches. The pharmacology of the same agonists was determined at cloned rat 5-HT(2) receptors using a fluorometric imaging plate reader (FLIPR). Both the in vivo and in vitro data suggest that for some ligands, previous reports have overestimated their in vivo selectivity for the 5-HT(2C) receptor.  相似文献   

14.
1. In the present study, the ability of the 5-hydroxytryptamine, receptor (5-HT4 receptor) to modulate the release of 5-HT in the hippocampus of freely-moving rats was investigated by the in vivo microdialysis technique. 2. The 5-HT4 receptor agonist, renzapride (1.0-100 microM, administered via the microdialysis probe) increased extracellular hippocampal levels of 5-HT in concentration-dependent manner (approximately 200% maximal increase). The ability of renzapride (100 microM, administered via the microdialysis probe) to elevate extracellular levels of 5-HT remained in the presence of the selective 5-HT reuptake blocker, paroxetine (1.0 microM, administered via the microdialysis probe). Furthermore, another 5-HT4 receptor agonist 5-methoxytryptamine (5-MeOT; 10 microM, administered via the microdialysis probe, in the presence of the non-5-HT4 5-HT receptor antagonists pindolol (10 microM) and methysergide (10 microM)) maximally elevated extracellular levels of 5-HT by approximately 450% in the rat hippocampus. The elevation of extracellular 5-HT levels induced by either renzapride (100 microM) or 5-MeOT (10 microM) was completely prevented by combined administration of the selective 5-HT4 receptor antagonist, GR113808 (100 nM, administered via the microdialysis probe). GR113808 (100 nM, administered via the microdialysis probe) administered alone, however, reduced extracellular hippocampal 5-HT levels by some 60%. 3. Systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT (0.1 mg kg-1, s.c.) reduced extracellular levels of 5-HT in the rat hippocampus by approximately 40%. Prior administration of 8-OH-DPAT (0.1 mg kg-1, s.c.), with an associated reduction of extracellular hippocampal 5-HT levels by approximately 40-50%, however, failed to prevent a subsequent elevation of extracellular levels of 5-HT induced by renzapride (100 microM, administered via the microdialysis probe). 4. Systemic administration of the 5-HT4 receptor agonist, renzapride (0.25 and 1.0 mg kg-1, i.p.) increased extracellular levels of 5-HT in the hippocampus in a dose-dependent manner. The higher dose of renzapride increasing extracellular 5-HT levels by some 200%. The selective 5-HT4 receptor antagonist, GR125487D (1.0-100 micrograms kg-1, i.p.) caused a dose-dependent reduction in extracellular levels of 5-HT in the hippocampus (maximally approximately 80% reduction). Prior administration of GR125487D (10 micrograms kg-1, i.p.) prevented the elevation of extracellular levels of 5-HT induced by renzapride (1.0 mg kg-1, i.p.). 5. In conclusion, the present study provides evidence that activation of the 5-HT4 receptor facilitates 5-HT release in the rat hippocampus in vivo.  相似文献   

15.
The effect in rats of chronic treatment with two specific 5-HT reuptake inhibitors (SSRI) with antidepressant properties, citalopram (10 mg/kg, i.p. twice a day for 14 days, one day washout) and fluoxetine (15 mg/kg, p.o. twice a day for 21 days, 7 days washout), was evaluated on some mechanisms involved in central 5-HT neurotransmission. No adaptive modifications of brain 5-HT uptake (sites) were found by measuring functional [3H]5-HT uptake and [3H]citalopram binding in cortical and hippocampal synaptosomes, and by [3H]citalopram binding autoradiography in the raphe nuclei (5-HT cell bodies) and the ventral tegmental area (5-HT axonal pathway). Chronic treatments had no effect on presynaptic 5-HT1B autoreceptors, functionally evaluated by measuring 5-HT1B-mediated inhibition of depolarization-induced [3H]5-HT release from cortical and hippocampal synaptosomes. Chronic citalopram or fluoxetine did not significantly affect the binding of [3H]BRL-43694 to 5-HT3 receptors in the rat brain cortex. Citalopram had no effect on [125I]SB-207710 binding to 5-HT4 receptors, measured by autoradiography in the substantia nigra. Negative results, such as those reported in the present study, could be due to a number of variables including the animal species, the treatment schedule or the brain areas considered, thus explaining the differences from some previous reports of significant effects of SSRI. However, our negative data are in agreement with many other published studies, suggesting that adaptive modifications of brain 5-HT transporters, terminal 5-HT1B receptors, 5-HT3 and 5-HT4 receptors may not be a general effect induced by all SSRI. Received: 9 December 1996 / Accepted: 1 March 1997  相似文献   

16.
Rationale Food intake and energy expenditure are the two main determinants of body weight. Given that 5-HT2C receptor agonists are reported to have effects on both energy expenditure and food intake, this strongly suggests that 5-HT2C receptor agonists have excellent potential for development as antiobesitiy drugs. One important issue in antiobesity drug development is whether the effects of the compound are maintained during chronic drug treatment.Objectives The purpose of the present study was to investigate the effect of repeated oral administration of three 5-HT2C receptor agonists, m-chlorophenylpiperazine (mCPP), d(S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine (RO60-0175) and (S)-2-(7-ethyl-1H-furo[2,3-g]indazol-1-yl)-1-methylethylamine (YM348), on food intake and energy expenditure in rats.Results In the food intake study, mCPP, RO60-0175 and YM348 decreased food intake in a dose-dependent manner on day 1 of administration. On day 14 of repeated administration, the hypophagic effect of YM348 was lost and that of mCPP was reduced. In contrast, the hypophagic effect of RO60-0175 was maintained even after repeated administration. The hypophagic effects of all agonists were significantly inhibited by a 5-HT2C receptor antagonist, SB242084. In contrast to the hypophagic effects, no drug tolerance developed with respect to the hyperthermic effects of mCPP, RO60-0175, and YM348. The hyperthermic effects of these drugs were also inhibited by SB242084.Conclusions Together, the difference between compounds in their hypophagic effects and the similarity in their hyperthermic effects suggest a diversity in agonists in 5-HT2C receptor-mediated weight control in rats.  相似文献   

17.
Pharmacological manipulation of the 5-hydroxytryptamine (5-HT; serotonin) system has long been associated with a regulation of feeding behaviour, however, the initial part of this article reviews evidence that central 5-HT systems similarly modulate reward-related behaviours, particularly drug reward. The second part of this article considers what we believe to be strong emerging pharmacological and genetic evidence that many of these effects are mediated through 5-HT2C receptor signalling mechanisms. Finally, we consider the potential for selective 5-HT2C agonists as therapies for substance abuse disorders and the medical implications for different 5-HT2C receptor isoforms generated by RNA editing.  相似文献   

18.
1. Bovine tracheal smooth muscle cells were established in culture to study agonist-induced phosphoinositide (PI) hydrolysis in this tissue. 2. Bradykinin (0.1 nM-10 microM) evoked a concentration-dependent increase (log EC50 (M) = -9.4 +/- 0.2; n = 8) in the accumulation of total [3H]-inositol phosphates in cultured tracheal smooth muscle cells whereas the selective B1 receptor agonist des-Arg9-bradykinin (10 microM) was significantly less effective (16% of bradykinin maximal response; relative potency = 0.2 with respect to bradykinin = 100). 3. The bradykinin-induced increase in PI hydrolysis was unaffected by the B1 receptor antagonist des-Arg9[Leu8]-bradykinin (1 nM-1 microM) but showed marked attenuation in the presence of the B2 receptor antagonists D-Arg,[Hyp3,D-Phe7]-bradykinin (10 nM-10 microM) or D-Arg[Hyp3,Thi5,8,D-Phe7]-bradykinin (10 nM-10 microM). The estimated KB values obtained for these two compounds, assuming competitive antagonism, were 40 +/- 14 nM and 8.6 +/- 2.8 nM for D-Arg,[Hyp3,D-Phe7]-bradykinin and D-Arg[Hyp3,Thi5,8,D-Phe7]-bradykinin respectively. 4. We conclude that bradykinin B2 receptors are expressed in cultured bovine tracheal smooth muscle cells and are coupled to PI hydrolysis mechanisms.  相似文献   

19.
In rats lightly restrained in plastic cylinders, subcutaneous administration of the selective, high efficacy 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), induced spontaneous tail-flicks, that is, tail-flicks in the absence of extraneous stimulation. The putative 5-HT1B receptor agonist, CGS 12066B, the mixed 5-HT1B/1C receptor agonists, 1-((3-(trifluoromethyl)phenyl]piperazine (TFMPP) and 1-(3-chlorophenyl)piperazine (mCPP), the 5-HT1C/2 receptor agonist, [+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and the 5-HT1B/1C/2 receptor agonist, quipazine, did not, in contrast, elicit tail-flicks when applied alone. However, TFMPP, mCPP, DOI and quipazine, but not CGS 12066B, each potentiated the action of 8-OH-DPAT. Further, in the presence of TFMPP, mCPP and DOI, the dose-response curve for the induction of tail-flicks by 8-OH-DPAT was both steeper and shifted to the left. Tail-flicks induced by another high efficacy 5-HT1A receptor agonist, lisuride, were also enhanced by TFMPP, mCPP and DOI. The 5-HT1A receptor partial agonists, buspirone and (+/-)-flesinoxan, evoked tail-flicks only in the presence of TFMPP, mCPP or DOI. The mixed 5-HT1C/2 receptor antagonists, ritanserin and ICI 169,369, did not modify the action of 8-OH-DPAT alone but abolished the potentiation of 8-OH-DPAT-induced tail-flicks by DOI and TFMPP. Further, the selective 5-HT1A receptor antagonist, BMY 7378, blocked tail-flicks induced by both 8-OH-DPAT alone and 8-OH-DPAT plus DOI or TFMPP. A common property of those drugs potentiating 8-OH-DPAT-induced tail-flicks is an agonist action at 5-HT1C receptors and the data indicate that it is this mechanism which underlies the facilitation of tail-flicks.  相似文献   

20.
This study examined the effects of chlorpheniramine, citalopram and fluoxetine on 5-hydroxytryptamine (5-HT)-induced contraction and 5-HT uptake in rat thoracic aortic rings in vitro. Chlorpheniramine and citalopram markedly potentiated 5-HT-induced contraction. Potentiation by fluoxetine was less pronounced. Chlorpheniramine (0.01-1 microM) and citalopram (0.1-1 microM) induced concentration-dependent parallel shifts to the left of the 5-HT concentration-response curves. The potentiation by chlorpheniramine was selective as chlorpheniramine (1 microM) did not potentiate phenylephrine-induced contraction. The potentiation did not depend upon the presence of endothelium, and was not related to H1 receptor antagonism as diphenhydramine and pyrilamine (1 microM) did not similarly enhance 5-HT-induced contractions. Whereas cocaine (1-10 microM) similarly potentiated 5-HT-induced contraction, imipramine (1-10 microM) inhibited, rather than enhanced, contraction elicited by 5-HT. In the presence of 10 microM cocaine, maximally effective concentrations of chlorpheniramine (1 microM) or citalopram (100 nM) did not induce any additional potentiation of 5-HT-induced contraction. Cooling (4 degrees C) markedly inhibited uptake of [3H]5-HT in rings with and without endothelium. Although less marked, imipramine (10 microM), cocaine (1 microM), chlorpheniramine (1 microM) and citalopram (100 nM) inhibited [3H]5-HT uptake in endothelium-intact and endothelium-denuded rings. Fluoxetine also inhibited [3H]5-HT uptake, but the inhibition was only statistically significant in endothelium-intact rings. The monoamine oxidase (MAO) inhibitor, pargyline (10-100 microM), did not significantly affect 5-HT-induced contraction. The results demonstrate that chlorpheniramine, citalopram and to a lesser extent, fluoxetine potentiate 5-HT-induced contraction in rat aorta in which neuronal 5-HT uptake is negligible. The data are consistent with inhibition of non-neuronal 5-HT uptake as at least one mechanism responsible for potentiation of 5-HT-induced contraction in rat aorta by chlorpheniramine, citalopram and fluoxetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号