首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nociceptin/orphanin FQ modulates human T cell function in vitro   总被引:5,自引:0,他引:5  
Although nociceptin/orphanin FQ (N/OFQ) and its receptor (ORL-1) are widely distributed throughout the immune system, its role has yet to be elucidated. This study shows that N/OFQ (10(-14)-10(-12) M) modulates T cell activation by up-regulating activation marker expression, e.g. CD28, leading to enhanced proliferation and modulation of TNFalpha secretion. However, on re-stimulated T cells N/OFQ causes inhibition of proliferation, which could be linked with N/OFQ up-regulating CTLA-4 expression. We have also shown that some of these effects are partly prostaglandin-dependent and that N/OFQ induces prostaglandin synthesis. This report suggests that N/OFQ could exert a key modulatory role in human T cell functions.  相似文献   

2.
The presence of pairs of basic amino acids within the orphanin FQ/Nociceptin (OFQ/N) sequence has raised the possibility that truncated versions of the peptide might be physiologically important. OFQ/N(1-11) is pharmacologically active in mice, despite its poor affinity in binding assays (K(i) > 250 nM) for the OFQ/N receptor. Using an analog of OFQ/N(1-11), [(125)I][Tyr(10)]OFQ/N(1-11), we identified a high-affinity binding site (K(D) 234 pM; B(max) 43 fmol/mg protein) with a selectivity profile distinct from the OFQ/N receptor and all the traditional opioid receptors. This site had very high affinity for OFQ/N and its related peptides. The most striking differences between the new site and the OFQ/N receptor previously observed in brain were seen with traditional opioids. Dynorphin A analogs and alpha-neoendorphin competed with [(125)I][Tyr(10)]OFQ/N(1-11) binding in mouse brain with K(i) values below 10 nM, while naloxone benzoylhydrazone (K(i) 3.9 nM) labeled the [(125)I][Tyr(10)]OFQ/N(1-11) binding site as potently as many traditional opioid receptors. Several other opioids, including fentanyl, (-)cyclazocine, levallorphan, naltrindole, and diprenorphine, also displayed moderate affinities for this site. Finally, the [(125)I][Tyr(10)]OFQ/N(1-11) site had a unique regional distribution consistent with a distinct receptor. Thus, [(125)I][Tyr(10)]OFQ/N(1-11) labels a novel site in brain with a selectivity profile intermediate between that of either opioid or OFQ/N receptors.  相似文献   

3.
Western blots using an antibody which recognizes the orphanin FQ/nociceptin (OFQ/N) receptor reveals a band at approximately 69 kD in several cell lines, including the Raji human B cell lymphoma cell line. RT-PCR confirms the presence of this receptor in the Raji cells. Binding studies revealed a high affinity [(125)I][Tyr(14)]OFQ/N site in the Raji cells. The affinity of [(125)I][Tyr(14)]OFQ/N in the Raji cells (K(D) 68.4 pM) was similar to that in the transfected receptor (K(D) 36.7 pM). Its selectivity profile also was quite similar. OFQ/N competed binding quite potently (K(i) 65 pM), as did [Tyr(14)]OFQ/N (K(i) 33 pM). Traditional opioids displayed no appreciable affinity for the binding at any concentration examined, with the exception of naloxone benzoylhydrazone, which had only a very modest affinity. The receptors in the Raji cells were functionally active. OFQ/N inhibited forskolin-stimulated cyclase by 72% with an IC(50) value of approximately 1 nM.  相似文献   

4.
5.
Nociceptin/orphanin FQ (N/OFQ) is an endogenous ligand of the ORL1 receptor. N/OFQ, when administered centrally, stimulates feeding in a fashion similar to other opioids. Intracerebroventricular administration of N/OFQ induces changes in c-Fos immunoreactivity in several feeding-related brain sites. A synthetic pseudopeptide, [Phe(1)iota(CH(2)-NH)Gly(2)]-nociceptin(1-13)-NH(2) (hereafter: [FG]N/OFQ(1-13)NH(2)), has been labeled both as an ORL1 agonist and antagonist. The present study was designed to examine the influence of [FG]N/OFQ(1-13)NH(2) on food intake in rats. We also evaluated c-Fos immunoreactivity in those areas of the brain which have been shown to exhibit altered c-Fos expression upon N/OFQ administration. We found that [FG]N/OFQ(1-13)NH(2) increases food consumption in satiated rats. This effect is short-lasting and can be reversed by the opioid antagonist naloxone. Co-administration of [FG]N/OFQ(1-13)NH(2) does not affect orexigenic response to N/OFQ. Intracerebroventricularly-injected [FG]N/OFQ(1-13)NH(2) induces c-Fos expression in the nucleus of the solitary tract, hypothalamic paraventricular and supraoptic nuclei, central nucleus of amygdala, lateral septal and lateral habenular nuclei-brain areas that have been shown to be activated by N/OFQ. These results support the hypothesis that [FG]N/OFQ(1-13)NH(2) acts as an agonist of ORL1 receptor in vivo.  相似文献   

6.
Ma F  Xie H  Dong ZQ  Wang YQ  Wu GC 《Brain research》2003,988(1-2):189-192
Nocistatin and nociceptin/orphanin FQ (N/OFQ) are two neuropeptides derived from the same precursor protein, prepronociceptin (ppOFQ), and exhibit different effects on spinal neurotransmission. Nocistatin does not bind to nociceptin/orphanin FQ peptide receptor (NOP), but intrathecal (i.t.) nocistatin has been reported to block the analgesic effect of i.t. N/OFQ. In this study, we investigated the effect of i.t. nocistatin on N/OFQ analgesia to radiant thermal stimuli in chronic constriction injury (CCI) rat. Firstly, to investigate the analgesic effect of N/OFQ, different doses of N/OFQ (3, 10, 30 microg) were intrathecally injected and foot withdrawal latency (FWL) to radiant heat was recorded. It is observed that 3 microg N/OFQ had no effect on FWL, 10 and 30 microg N/OFQ significantly increased FWL of CCI rat. Then, 10 microg N/OFQ, 10 microg nocistatin and a drug cocktail including 10 microg N/OFQ and 10 microg nocistatin were intrathecally injected. The results showed that FWL significantly decreased after using N/OFQ and nocistatin compared with using only N/OFQ, and 10 microg nocistatin had no effect on FWL versus control, suggesting that this dose of nocistatin per se had no effect on the pain threshold of CCI rat, but could block the analgesic effect of N/OFQ. These results indicated that i.t. N/OFQ dose-relatedly depressed thermal hyperalgesia produced by CCI and nocistatin could block N/OFQ analgesia at spinal level in CCI rat.  相似文献   

7.
Orphanin/nociceptin (OFQ/N), a 17-amino-acid peptide, is an endogenous peptide, the receptor for which is similar to mu-, delta- and kappa-opioid receptors ( approximately 65% homology). Reports indicate that OFQ/N can block the antinociception induced by mu-, delta- and kappa-opioid agonists in the rat and in the mouse, indicating that there is a functional interaction between opioid receptors and OFQ/N receptors in the nervous system. It is well known that activation of the mu- and kappa-opioid receptors results in hyperthermia and hypothermia, respectively, in Sprague-Dawley rats. The present studies were designed to examine effects of OFQ/N on body temperature (Tb) and explore whether the mechanism of T(b) change induced by OFQ/N involved the opioid system. The results show that (1) i.c.v. injection of a high dose of OFQ/N (9-18 micro g) produces hypothermia in adult rats; (2) OFQ/N (1.8 micro g, i.c.v., t=+30 s after morphine) can decrease morphine-induced hyperthermia; (3) neither the opioid receptor antagonist, naloxone (10 mg/kg, s.c., t=-15 s before OFQ/N) nor the kappa-opioid receptor antagonist nor-BNI (1 micro g/5 microl, i.c.v., t=-30 s before OFQ/N) reduces the hypothermia induced by i.c.v. injection of OFQ/N at dose of 18 micro g (P>0.05); (4) 60 micro g/5 microl AS oligo (i.c.v. treatment on days 1, 3 and 5) against OFQ/N receptors significantly reduces the hypothermia induced by i.c.v. injection of 9 micro g OFQ/N (P<0.01). These results suggest that the hypothermia induced by i.c.v. injection of a high dose of OFQ/N (9 or 18 micro g) is mediated, at least partially, by its own receptor, independent or downstream of opioid receptors in the rat brain and that OFQ/N probably acts as a physiological antagonist to reduce morphine-induced hyperthermia.  相似文献   

8.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ receptor (NOP) which is yet to be functionally characterized in dog brain. Ligand binding data reports low NOP density (29 fmol mg(-1) protein) in dog. In this study using dog brain membranes, we have examined the effects of N/OFQ on [leucyl-(3)H]N/OFQ(1-17)OH ([leucyl-(3)H]N/OFQ) binding in the presence and absence of 120 mM NaCl and 100 microM GTPgammaS. Data from standard [(35)S]GTPgammaS binding and immunoprecipitation (G(alphai1-3)) assays are also presented, along with data from a limited number of control experiments with human NOP expressed in Chinese hamster ovary (CHO(hNOP)) cells. N/OFQ displaced [leucyl-(3)H]N/OFQ binding with pK(i) and slope values of 9.62+/-0.07 and 0.38+/-0.05, respectively. Addition of NaCl/GTPgammaS produced a steepening (slope 0.95+/-0.06, n=3) of the curve. N/OFQ stimulated [(35)S]GTPgammaS binding with pEC(50) and E(max) values of 8.21+/-0.17 and 1.17+/-0.01, respectively (in CHO(hNOP), pEC(50) and E(max) values were 8.47+/-0.01 and 7.01+/-0.63). N/OFQ stimulated [(35)S]GTPgammaS binding in dog and CHO(hNOP) cell membranes could be immunoprecipitated with an anti-G(alphai1-3) antibody, indicating coupling to a pertussis toxin (PTx)-sensitive G-protein. N/OFQ actions were competitively antagonized by the selective NOP antagonists, 100 nM J-113397, 1 microM [Nphe(1)]N/OFQ(1-13)NH(2) and 1 microM [Phe(1)Psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2) (partial agonist) yielding pK(B) values of 8.58+/-0.21, 7.06+/-0.59 and 7.32+/-0.41, respectively (in CHO(hNOP), a pK(B) for J-113397 of 8.33+/-0.02 was obtained). Despite relatively low receptor density, we were able to detect functional activity of native dog NOP, with pharmacology consistent with reports for other species.  相似文献   

9.
Although nociceptin/orphanin FQ (N/OFQ) influences dopamine (DA) neuronal activity, it is not known whether N/OFQ acts directly on DA neurons, indirectly by means of local circuitry, or both. We used two parallel approaches, dual in situ hybridization (ISH) and neurotoxic lesions of DA neurons by using 6-hydroxydopamine (6-OHDA), to ascertain whether N/OFQ and the N/OFQ receptor (NOP) mRNA are expressed in DA neurons in the ventral tegmental area (VTA) and substantia nigra compacta (SNc). In the VTA and SNc, small populations (approximately 6-10%) of N/OFQ-containing neurons coexpressed mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis. Similarly, very few (1-2%) TH-positive neurons contained N/OFQ mRNA signal. A majority of NOP-positive neurons (approximately 75%) expressed TH mRNA and roughly half of the TH-containing neurons expressed NOP mRNA. Many N/OFQ neurons (approximately 50-60%) expressed glutamic acid decarboxylase 65 and 67 mRNAs, markers for gamma-aminobutyric acid (GABA) neurons. In the 6-OHDA lesion studies, NOP mRNA levels were nearly 80 and 85% lower in the VTA and SNc, respectively, on the lesioned side. These lesions appear to lead to compensatory changes, with N/OFQ mRNA levels approximately 60% and 300% higher in the VTA and SNc, respectively, after 6-OHDA lesions. Finally, N/OFQ-stimulated [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate levels were decreased in the VTA and SNc but not the prefrontal cortex after 6-OHDA lesions. Accordingly, it appears that N/OFQ mRNA was found largely on nondopaminergic (i.e., GABA) neurons, whereas NOP mRNA was located on DA neurons. N/OFQ is in a position to influence DA neuronal activity by means of the NOP located on DA neurons.  相似文献   

10.
Nociceptin/orphanin‐FQ (N/OFQ) peptide and its receptor (NOP: N/OFQ opioid peptide receptor) are highly expressed in the hippocampus, but their functional role remains poorly understood. We recently showed that hippocampal N/OFQ inhibits learning and memory abilities in mice. Here, we investigated whether the endogenous peptide also regulated emotional responses at the level of the hippocampus. Bilateral infusions of the selective NOP receptor antagonist, UFP‐101 (1–3 nmol/side), into the dorsal hippocampus produced antidepressant‐like effects in the mouse forced swim and tail suspension tests comparable with those obtained with the prototypical antidepressant, fluoxetine (10–30 mg/kg, intraperitoneal). In the light‐dark test, neither UFP‐101 (1–3 nmol/side) nor N/OFQ peptide (1–3 nmol/side) modified anxiety measures when injected at behaviorally active doses in the dorsal hippocampus. These findings show a clear dissociation in the involvement of hippocampal N/OFQ system in anxiety‐ and despair‐related behaviors. We conclude that the dorsal hippocampus is a brain region in which there is an important N/OFQ modulation of mnemonic processes and adaptive emotional responses associated to despair states. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Pain often outlasts its usefulness as warning and aid in wound healing, and becomes chronic and intractable after tissue damage and nerve injury. Many molecules have been implicated as mediators and modulators in persistent pain such as hyperalgesia and tactile pain (allodynia). We previously showed that prostaglandin (PG) E(2), PGF(2alpha) or the neuropeptide nociceptin, also called orphanin FQ (N/OFQ) administered intrathecally (i.t.) produced allodynia in conscious mice. In the present study, we examined the relationship of pain responses between PGs and N/OFQ using the N/OFQ receptor (NOP) antagonist, N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxy-methyl)benzamide monohydrochloride (JTC-801), and in mice lacking the N/OFQ prepropeptide (ppN/OFQ(-/-)) and the NOP receptor (NOP(-/-)). JTC-801 dose-dependently blocked the N/OFQ- and PGE(2)-induced allodynia, but not the PGF(2alpha)-induced one. Neither N/OFQ nor PGE(2) induced allodynia in NOP(-/-) mice. By contrast, the N/OFQ-induced allodynia was not affected by inhibition of PG production by a 60-min pretreatment with the non-steroidal anti-inflammatory drug, indomethacin. Among PGE receptor (EP) subtype-selective agonists, the EP4 agonist, AE1-329, markedly stimulated the release of N/OFQ from spinal slices and induced allodynia. AE1-329 also increased nitric oxide production in spinal slices using fluorescent nitric oxide detection, which was blocked by pretreatment with JTC-801. Conversely, PGE(2)-induced allodynia was not observed in ppN/OFQ(-/-) mice. N/OFQ immunoreactive puncta were colocalized with EP4. Taken together, these results demonstrate that PGE(2) induced allodynia by stimulation of N/OFQ release in the spinal cord via EP4 receptor subtypes.  相似文献   

12.
A synaptosomal preparation was employed to pharmacologically characterize the role of presynaptic nociceptin/orphanin FQ (N/OFQ) receptors (NOP receptors) in the regulation of 5-hydroxytryptamine release in the Swiss mouse neocortex. In the present study, the NOP receptor ligands N/OFQ, Ac-RYYRWK-NH(2) and [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)-NH(2) inhibited the K(+)-induced [(3)H]-5-HT overflow with similar maximal effects ( approximately -35%) but different potencies (pEC(50) of 8.56, 8.35 and 7.23, respectively). The novel agonist [Arg(14),Lys(15)]N/OFQ also inhibited [(3)H]-5-HT overflow, but the concentration-response curve was biphasic and the efficacy higher ( approximately -45%). Receptor selectivity of NOP receptor agonists was demonstrated by showing that synaptosomes from NOP receptor knockout mice were unresponsive to N/OFQ, [Arg(14),Lys(15)]N/OFQ and [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)-NH(2) but maintained full responsiveness to endomorphin-1. Moreover, the inhibitory effect of N/OFQ was prevented by peptide ([Nphe(1)]N/OFQ(1-13)-NH(2) and UFP-101) and nonpeptide (J-113397 and JTC-801) NOP receptor selective antagonists. Desensitization occurred under perfusion with high (3 and 10 microm) N/OFQ concentrations. This phenomenon was prevented by the protein kinase C inhibitor, bisindolylmaleimide. Moreover, N/OFQ-induced desensitization did not affect mu opioid receptor responsiveness. Finally, it was observed in a similar preparation of rat cerebrocortical synaptosomes, although it was induced by higher N/OFQ concentrations than that used in the mouse. Together, these findings indicate that presynaptic NOP receptors inhibit 5-hydroxytryptamine release in the mouse neocortex. Based on present and previous studies, we conclude that NOP receptors in the mouse are subtly different from the homologous receptor population in the rat, strengthening the view that there exist species differences in the pharmacology of central NOP receptors.  相似文献   

13.
Nociceptin or orphanin FQ (N/OFQ) is the natural ligand of the opioid receptor-like 1 receptor (ORL-1), which has been also classified as the fourth member of the opioid family of receptors and named OP(4). Elucidation of the biological role of N/OFQ has been hampered by the lack of compounds that selectively block the OP(4) receptor. Recently, a N/OFQ derivative, [Nphe(1)]N/OFQ(1-13)NH(2), has been found to possess OP(4) antagonistic properties both in vitro and in vivo models. We investigated its spinal effect in the chronic constriction injury of the sciatic nerve in the rat, a model relevant to neuropathic pain in humans. Intrathecal (i.t.) administration of N/OFQ (0.2--20 nmoles) dose-dependently reversed mechanical allodynic-like behavior, while [Nphe(1)]N/OFQ(1-13)NH(2) (20--120 nmoles, i.t.) was ineffective on its own. [Nphe(1)]N/OFQ(1-13)NH(2) (60--120 nmoles, i.t.) antagonized N/OFQ (about 80% of reduction) but did not modify the activity of morphine (20 nmoles, i.t.). These results further support, for the first time in a chronic model of pain, the specific antagonistic profile of [Nphe(1)]N/OFQ(1-13)NH(2)vs the OP(4) receptor. This pseudopeptide is an interesting pharmacological tool to better clarify the role of N/OFQ in pathophysiology.  相似文献   

14.
Neurons in the suprachiasmatic nucleus (SCN) constitute the principal circadian pacemaker of mammals. In situ hybridization studies revealed expression of orphanin-FQ/nociceptin (OFQ/N) receptor (NOR) mRNA in the SCN, whereas no expression of mRNA for preproOFQ/N (ppOFQ/N) was detected. The presence of OFQ/N peptide in the SCN was demonstrated by radioimmunoassay. SCN neurons (88%) responded dose-dependently to OFQ/N with an outward current (EC50 = 22.3 nM) that was reduced in amplitude by membrane hyperpolarization and reversed polarity near the theoretical potassium equilibrium potential. [Phe1psi(Ch2-NH)Gly2]OFQ/N(1-13)NH2 (3 microM), a putative NOR antagonist, activated a small outward current and significantly reduced the amplitude of the OFQ/N-stimulated current. OFQ/N reduced the NMDA receptor-mediated increase in intracellular Ca2+. When injected unilaterally into the SCN of Syrian hamsters housed in constant darkness, OFQ/N (1-50 pmol) failed to alter the timing of the hamsters' wheel-running activity. However, injection of OFQ/N (0.1-50 pmol) before a brief exposure to light during the midsubjective night significantly attenuated the light-induced phase advances of the activity rhythm. These data are consistent with the interpretation that OFQ/N acting at specific receptors modulates the activity of SCN neurons and, thereby, the response of the circadian clock to light.  相似文献   

15.
Orphanin FQ/nociceptin (OFQ/N) has been shown to modulate mesolimbic dopaminergic neurotransmission. Repeated administration of OFQ/N into the ventral tegmental area results in a sensitized locomotor response to subsequent peripheral cocaine administration. The aim of the present study was to examine the potential for OFQ/N to produce a sensitized locomotor response to cocaine after a single intra-VTA administration and to determine if this effect of OFQ/N extrapolates to other points along the mesolimbic or nigrostriatal dopaminergic axes. Bilateral administration of OFQ/N (30 microg/side) into the VTA on day 1 to male Sprague--Dawley rats resulted in an enhanced locomotor response to cocaine (10 mg/kg i.p) administered on day 2. However, OFQ/N (3, 10 and 30 microg per side) administered on day 2, 5 mins prior to the administration of cocaine (10 mg/kg i.p), in animals treated with aCSF or OFQ/N on day 1, similarly blocked the action of cocaine, suggesting that the sensitized response was not due to tolerance to the effect of endogenously released OFQ/N. The administration of OFQ/N into the substantia nigra or nucleus accumbens failed to produce a significant sensitized response to a cocaine challenge 24 h later. A significant increase in cocaine stimulated locomotor response on day 2 was observed after injection of OFQ/N into the striatum on day 1. These results demonstrate the ability of a single intra-VTA or intra-striatal administration of OFQ/N to produce increases in the sensitivity to cocaine and may indicate a role for endogenous OFQ/N systems in regulating responses to psychostimulant drugs.  相似文献   

16.
17.
We examined the effects of acute and chronic stress on neurotransmission of nociceptin/orphanin FQ (N/OFQ) in a variety of brain regions. Four groups of rats were exposed to chronic variable stress, and/or a single acute stress before decapitation. Group 1 served as unstressed controls. The rats in group 2 (chronic stress/no acute stress) were exposed to a 10-day regimen of chronic stress (two unpredictable stressors per day). These rats were decapitated 20 h after the last stressor. The rats in group 3 (no chronic stress/acute stress) were not exposed to chronic stress, but they were restrained for 30 min prior to decapitation. The rats in group 4 (chronic stress/acute stress) were chronically stressed for 10 days, and were then restrained prior to decapitation. Trunk blood was collected, and plasma adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) were assayed by radioimmunoassay (RIA). The rats' brains were dissected, and N/OFQ content was measured by RIA in a variety of brain regions, and in spinal cord. Chronic stress exposure altered the hormonal responses to the acute stress exposure. In the rats that were exposed to chronic stress without acute stress (group 2), N/OFQ content did not differ from the content of the unstressed controls in any of the dissected brain regions. In the two groups that were stressed acutely just before decapitation (groups 3 and 4), N/OFQ content was decreased by 25-30% in the basal forebrain. Accordingly, the neuronal content of N/OFQ is decreased in basal forebrain neurones during acute stress exposure. In light of our previous finding that N/OFQ administration increases circulating ACTH and CORT concentrations, and augments hormonal responses to an acute stressor, the current finding raises the possibility that endogenous N/OFQ participates in neuronal regulation of hormonal responses to acute stress exposure.  相似文献   

18.
Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for opioid receptor-like receptor, has been shown to inhibit high-voltage-gated calcium channels (VGCCs) in acutely dissociated rat hippocampal pyramidal cells [Knoflach, F., Reinscheid, R.K., Civelli, O. & Kemp, J.A. (1996), J. Neurosci., 16, 6657]. In this study, it was further demonstrated that N/OFQ inhibition of calcium channel current was blocked by its specific antagonist PGN, [Phe1-psi(CH2-NH)-Gly2]nociceptin (1-13)-NH2, and the EC50 of the N/OFQ inhibition was approximately 10 nM, indicating that this effect was really mediated via the opioid receptor-like receptor. The N/OFQ inhibition of the calcium channel current was significantly reduced, as the maximal inhibition decreased from 36 to 23%, by 1-min pretreatment of freshly dissociated hippocampal neurons with the same peptide. The inhibition completely recovered from this acute desensitization in less than 20 min. The N/OFQ inhibition was also greatly attenuated by pretreatment of the neurons with the GABAB (gamma-aminobutyric acid) agonist baclofen while the baclofen inhibition of the calcium channel current was significantly reduced by N/OFQ pretreatment, revealing the agonist-induced desensitization was heterologous in nature. This desensitization was blocked by pretreating the neurons with the sodium channel blocker, tetrodotoxin (TTX), or by removing the extracellular calcium, which indicates the necessity of membrane depolarization and extracellular calcium influx in the process. Furthermore, pretreatment of the neurons with the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), attenuated the N/OFQ inhibition of the calcium channel current whereas the cAMP-dependent kinase A activator, forskolin, showed no effect, suggesting the probable involvement of PKC in the N/OFQ-induced desensitization.  相似文献   

19.
Kazi JA  Liu EH  Lee TL  Tachibana S 《Neuropeptides》2007,41(4):227-231
Nocistatin and nociceptin/orphaninFQ (N/OFQ) are the two new peptides which may have roles in nociception, memory, anxiety, and other biological functions. Nocistatin acts as a functional antagonist to N/OFQ in several functions, but their neuro-anatomical sites of interaction are unknown. We investigated the effect of combined intracerebroventricular (i.c.v.) injection of nocistatin with N/OFQ, on N/OFQ induced c-Fos expression in the mouse hippocampus, using c-Fos immunohistochemistry. We found that co-injection of nocistatin with N/OFQ significantly attenuated N/OFQ induced c-Fos expression in the hippocampus.  相似文献   

20.
The opioid peptide, Orphanin FQ/nociceptin (OFQ/N(1-17))(,) its active fragments, and a related precursor peptide each produce analgesia following microinjection into the amygdala of rats. OFQ/N(1-17)-induced analgesia elicited from the amygdala is blocked by amygdala pretreatment of either general, mu, kappa, or delta-opioid antagonists even though OFQ/N(1-17) binds poorly to these receptor subtypes, and the antagonists bind poorly to the ORL-1/KOR-3 receptor. Agonists at mu and kappa opioid receptors as well as beta-endorphin each produce analgesia elicited from the amygdala that is blocked by opioid antagonist pretreatment in the ventrolateral periaqueductal gray (vlPAG) of rats. The present study examined whether pretreatment of general and selective opioid antagonists in the vlPAG blocked OFQ/N(1-17)-induced analgesia on the tail-flick test elicited from the amygdala, and whether pretreatment of general and selective opioid antagonists in the amygdala blocked OFQ/N(1-17)-induced analgesia elicited from the vlPAG of rats. OFQ/N(1-17)-induced analgesia elicited from the amygdala was significantly and markedly reduced following vlPAG pretreatment with a dose range of either naltrexone, beta-funaltrexamine (beta-FNA, mu), nor-binaltorphamine (NBNI, kappa) or naltrindole (NTI, delta). In contrast, opioid antagonists administered into misplaced mesencephalic control placements ventral and lateral to the vlPAG actually enhanced OFQ/N(1-17)-induced analgesia elicited from the amygdala. OFQ/N(1-17)-induced analgesia elicited from the vlPAG was significantly and markedly reduced following amygdala pretreatment with naltrexone and NBNI, to a lesser degree by NTI, and was unaffected by beta-FNA. Yet, opioid antagonists administered into misplaced amygdala control placements were generally ineffective in altering OFQ/N(1-17)-induced analgesia elicited from the vlPAG. Latencies were transiently increased by general, but not selective opioid antagonist treatment alone in the amygdala, but not the vlPAG. These data indicate reciprocal and regional interactions between the amygdala and vlPAG in the mediation of OFQ/N(1-17) by classic opioid receptor subtype antagonists in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号