首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Injections of WGA-HRP were made in the rat trigeminal ganglion and C1-3 dorsal root ganglia (DRGs) to study the central projection patterns and their relations to each other. Trigeminal ganglion injections resulted in heavy terminal labeling in all trigeminal sensory nuclei. Prominent labeling was also observed in the solitary tract nucleus and in the medial parts of the dorsal horn at C1-3 levels, but labeling could be followed caudally to the C7 segment. Contralateral trigeminal projections were found in the nucleus caudalis and in the dorsal horn at C1-3 levels. The C1 DRG was found to be inconstant in the rat. When it was present, small amounts of terminal labeling were found in the external cuneate nucleus (ECN) and the central cervical nucleus (CCN). No dorsal horn projections were seen from the C1 DRG. Injections in the C2 DRG resulted in heavy labeling in the ECN, nucleus X, CCN, and dorsal horn, where it was mainly located in lateral areas. Labeling could be followed caudally to the Th 7 segment. C2 DRG projections also appeared in the cuneate nucleus (Cun), in all the trigeminal sensory nuclei, and in the spinal, medial, and lateral vestibular nuclei. A small C2 DRG projection was observed in the ventral cochlear nucleus. C3 DRG injections resulted in heavy labeling in both medial middle and lateral parts of the dorsal horn, in the ECN, and in nucleus X, whereas the labeling in the CCN was somewhat weaker. Smaller projections were seen to trigeminal nuclei, Cun, and the column of Clarke. Comparisons of the central projection fields of trigeminal and upper cervical primary afferents indicated a somatotopic organization but with a certain degree of overlap.  相似文献   

2.
Spinal cord projections from lumbar dorsal root ganglia (DRGs) were investigated in adult rats following injections of choleragenoid horseradish peroxidase (B-HRP) into each of the six lumbar DRGs. This method is known to label primarily thick fibers. Labeling was found in all laminae except in the outer part of lamina II. Labeled fibers and terminal-like structures were found 8-13 segments rostral and 1-5 segments caudal to the injected DRGs. A somatotopic organization was revealed in laminae III, where the labeling seemed to be organized in mediolateral zones. Some of these protruded as fingerlike processes through segments rostral and caudal to the root entry level. An interdigitating pattern for these fingerlike processes was seen between some DRGs, while an extensive overlap was found between other DRGs. Many zones were found to correspond to the known central projections of peripheral sensory nerves supplied by the injected ganglion. This suggests that the central projection of a DRG is highly related to the projections of the peripheral nerves included in the DRG. The projections to lamina IV were organized in a similar manner as in lamina III, even though the projections showed a higher degree of overlap than in lamina III. No clear somatotopic organization was found in laminae V-IX. Provided that the topographical relationship between central projections of single peripheral nerves and of DRGs correspond to their peripheral projections, the results of this study, together with results of earlier studies suggest that the outlines of dermatomes are highly related to the territories of peripheral nerves included in the dermatomes.  相似文献   

3.
The central projections of the rat sciatic, saphenous, median, and ulnar nerves were labeled by injecting each nerve with 0.05 mg B-HRP, or 0.5 mg WGA-HRP, or a mixture of both. The B-HRP labeled large dorsal root ganglion cells (30-50 microns) and, correspondingly, 98% of axons labeled in a rootlet were meyelinated; although all sizes of myelinated axons were labeled, a greater proportion fell in the large ranges (2-6.5 microns axon diameter) than in the small ranges (0.5-2 microns). Primary afferents labeled with B-HRP were distributed in laminae I, III, IV, and V of the dorsal horn and extended into the intermediate grey and the ventral horn; Clarke's column and the respective dorsal column nuclei were also densely labeled. Motoneurons of the nerve were densely labeled by B-HRP, including extensive regions of their dendritic trees. In contrast, WGA-HRP labeled small dorsal root ganglion cells (15-25 microns) and in the dorsal rootlets, 84% of the labeled axons were nonmyelinated; the small population of labeled myelinated afferents mainly fell within the smaller ranges (0.5-2.0 microns). Terminal fields of WGA-HRP labeled afferents were restricted to the superficial dorsal horn (laminae I-III), and to limited regions in the dorsal column nuclei. Sciatic nerve projections traced by labeling with B-HRP alone or in combination with WGA-HRP were more extensive than previously described when using either native HRP or WGA-HRP. Afferents to the dorsal horn extended from L1-S1, to Clarke's nucleus from T8-L1, to the ventral horn from L2-L5, and extended throughout the medial and dorsal region of the gracilie nucleus. Motoneurons were found from L4-L6. Using the same tracers, saphenous projections extended in the superficial dorsal horn from caudal L1 to rostral L4, in the deep dorsal horn to mid L4 and along the length of the central part of the gracilie nucleus. The median nerve projected to the internal basilar nucleus from C1-C6, the dorsal horn from C3-T2, Clarke's nucleus from T1-T6, the external cuneate nucleus, and a large central area throughout the length of the cuneate nucleus. Motoneurons were located in dorsolateral and ventrolateral nuclear groups from C4 through C8. The ulnar nerve projections were less extensive but also included the internal basilar nucleus from C1-C6, the medial region of the dorsal horn from C4-T1, Clarke's nucleus from T1-T6, the external cuneate nucleus, and the medial part of the cuneate nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Physiological, anatomical, and clinical data have demonstrated interactions between somatosensory and auditory brainstem structures. Spinal nerve projections influence auditory responses, although the nature of the pathway(s) is not known. To address this issue, we injected biotinylated dextran amine into the cochlear nucleus or dorsal root ganglion (DRG) at the second cervical segment (C2). Cochlear nucleus injections retrogradely labeled small ganglion cells in C2 DRG. C2 DRG injections produced anterograde labeling in the external cuneate nucleus, cuneate nucleus, nucleus X, central cervical nucleus, dorsal horn of upper cervical spinal segments, and cochlear nucleus. The terminal field in the cochlear nucleus was concentrated in the subpeduncular corner and lamina of the granule cell domain, where endings of various size and shapes appeared. Examination under an electron microscope revealed that the C2 DRG terminals contained numerous round synaptic vesicles and formed asymmetric synapses, implying depolarizing influences on the target cell. Labeled endings synapsed with the stalk of the primary dendrite of unipolar brush cells, distal dendrites of presumptive granule cells, and endings containing pleomorphic synaptic vesicles. These primary somatosensory projections contribute to circuits that are hypothesized to mediate integrative functions of hearing.  相似文献   

5.
The transport of HRP into the spinal cord and medulla in the cat has been examined from a forelimb cutaneous nerve, the lateral superficial radial nerve (LSR), and from the muscle nerves supplying both heads of the forelimb muscle, extensor carpi radialis (ECR). HRP transported by the LSR was widely distributed in the spinal cord throughout laminae I-IV in the vicinity of the root entry zone and from spinal segments T1 to C5. HRP was also transported from the LSR to the medulla where there was intense patchy, discontinuous labelling in the main cuneate nucleus. The pattern of labelling in the cuneate nucleus did not follow any simple somatotopic plan. Exposure of the muscle nerve to HRP led to labelling in the spinal dorsal horn in lamina I, in the deep dorsal horn on the lamina V/VI border, and in lateral and medial lamina VI at sites that contain cells of origin of spinocerebellar tracts. The medial lamina VI label was contiguous with a deposit that extended medially to the central canal. The label in lateral lamina VI was patchy and formed a discontinuous column from T1 to C5. HRP transported by the muscle nerve also produced label in the more ventral regions of the cuneate nucleus where it had a lacy appearance, in part due to its extensive distribution around dendrites. A relatively dense, patchy, and discontinuous deposit of reaction product was also present in the external cuneate nucleus after muscle nerve exposure. This deposit was most intense on the dorsomedial surface of this nucleus, but another, less intense, deposit was also present ventrally.  相似文献   

6.
The central projections of the ethmoidal, glossopharyngeal, and superior laryngeal nerves were determined in the muskrat by use of the transganglionic transport of a mixture of horseradish peroxidase (HRP) and wheat germ agglutinin (WGA)-HRP. The ethmoidal nerve projected to discrete areas in all subdivisions of the ipsilateral trigeminal sensory complex. Reaction product was focused in ventromedial portions of the principal nucleus, subnucleus oralis, and subnucleus interpolaris. The subnucleus oralis also contained sparse reaction product in its dorsomedial part. Projections were dense to ventrolateral parts of laminae I and II of the rostral medullary dorsal horn, with sparser projections to lamina V. Label in laminae I and V extended into the cervical dorsal horn. A few labeled fibers were followed to the contralateral dorsal horn. The interstitial neuropil of the ventral paratrigeminal nucleus was densely labeled. Extratrigeminal primary afferent projections in ethmoidal nerve cases involved the K?lliker-Fuse nucleus and ventrolateral part of the parabrachial nucleus, the reticular formation surrounding the rostral ambiguous complex, and the dorsal reticular formation of the closed medulla. Retrograde labeling in the brain was observed in only the mesencephalic trigeminal nucleus in these cases. The cervical trunk of the glossopharyngeal and superior laryngeal nerves also projected to the trigeminal sensory complex, but almost exclusively to its caudal parts. These nerves terminated in the dorsal and ventral paratrigeminal nuclei as well as lamina I of the medullary and cervical dorsal horns. Lamina V received sparse projections. The glossopharyngeal and superior laryngeal nerves projected to the ipsilateral solitary complex at all levels extending from the caudal facial nucleus to the cervical spinal cord. At the level of the obex, these nerves projected densely to ipsilateral areas ventral and ventromedial to the solitary tract. Additional ipsilateral projections were observed along the dorsolateral border of the solitary complex. Near the obex and caudally, the commissural area was labeled bilaterally. Labeled fibers from the solitary tract projected into the caudal reticular formation bilaterally, especially when the cervical trunk of the glossopharyngeal nerve received tracer. Labeled fibers descending further in the solitary tract gradually shifted toward the base of the cervical dorsal horn. The labeled fibers left the solitary tract and entered the spinal trigeminal tract at these levels. Retrogradely labeled cells were observed in the ambiguous complex, especially rostrally, and in the rostral dorsal vagal nucleus after application of HRP and WGA-HRP to either the glossopharyngeal or superior laryngeal nerves. In glossopharyngeal nerve cases, retrogradely labeled neurons also were seen in the inferior salivatory nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury.  相似文献   

8.
Central projections of suboccipital muscle nerves were examined following exposure of cut peripheral nerves to the tracer horseradish peroxidase. Labelled fibers entered the C1 and C2 dorsal roots and accumulated in the dorsolateral part of the dorsal funiculus. Many labelled fibers entered the grey matter of C1 to C3 in ventrally directed bundles which passed medially to the base of the dorsal horn. No terminal labelling was apparent in superficial layers of the dorsal horn. However, labelled fibers ramified extensively throughout medial parts of the intermediate laminae, in and around the central cervical nucleus. Labelled fibers also projected toward the ventral horn. In cats subjected to ventral root section at the time of peripheral nerve exposure, a modest distribution of reaction product was observed deep in the ventral horn. In cats which did not undergo ventral root section, anterograde projections in the ventral horn were obscured by the simultaneous retrograde filling of motoneurons both in the ventromedial nucleus and on the medial and lateral borders of the gray matter. Labelled axons also coursed rostrally into the medulla where they formed a circumscribed bundle between the main cuneate nucleus and the spinal nucleus of V. Three consistent regions of HRP deposition could be identified at medullary levels. Dense accumulations of reaction product were present in circumscribed regions of the external cuneate nucleus (ECN) throughout its rostrocaudal extent. A second zone of dense labelling occurred in the intermediate nucleus of Cajal, where it appeared to form a continuing column rostral to the central cervical nucleus in C1-C3. Sparse labelling was restricted to a third zone in the ventrolateral part of the main cuneate nucleus.  相似文献   

9.
An anatomical technique based on the retrograde transport of horseradish peroxidase (HRP) was used to investigate the projections of spinal cord neurons to the lateral reticular nucleus (LRN). Labeled cells were found at all spinal levels and in particular large numbers in cervical and lumbar segments. Various spinal areas gave rise to cells of origin of this tract, which appears to be more prominent than any other tract previously studied with a similar approach. Labeling common to all spinal segments was observed in (1) ventromedial parts of both intermediate zone and ventral horn (laminae VII, VIII and X), mainly contralaterally; (2) the reticular extension of the neck of the dorsal horn, partly bilateral; and (3) superficial layers of the dorsal horn and nucleus of the dorsolateral funiculus (NDLF), mainly contralateral and projecting essentially to the lateral zone of the LRN. Additional labeling was observed at cervical and lumbar levels, each with specific qualities: (1) the cervical enlargement, which displayed labeling in the central part of the ipsilateral intermediate zone (lamina VII); (2) the rostral lumbar levels, which had projections from the contralateral median portion of the neck of the dorsal horn. These latter projections appear to be specific to pathways reaching the lateral reticular nucleus and the inferior olive. Control injections in neighboring structures demonstrated the similarity between the afferents to the lateral reticular nucleus and the inferior olive. Control injections in neighboring structures demonstrated the similarity between the afferents to the lateral reticular nucleus and the inferior olive (except lamina I and NDLF projections) and the differences between these afferents and those projecting to the dorsal reticular formation, i.e., the nucleus reticularis ventralis.  相似文献   

10.
Horseradish peroxidase was intra-axonally injected into functionally identified primary afferent fibers within the rat spinal trigeminal tract in order to study the morphology of their central terminations. They were physiologically determined to be large, myelinated, cutaneous primary afferents by means of electrical and mechanical stimulation of their receptive fields. Ninety-three axons that innervated vibrissa follicles, guard hair follicles, and slowly adapting receptors were stained for distances of 4-12 mm at the levels of the main sensory nucleus, spinal trigeminal nucleus, and rostral cervical spinal cord. The collaterals of single axons from these receptors formed terminal arbors in the outer part of the spinal trigeminal nucleus rostral to and near the level of the obex (rostral type collaterals). In the rostral part of the subnucleus caudalis (Vc) they were confined to lamina V (caudalis type collaterals) and in the caudal part of Vc and in cervical segments they were confined to lamina III/IV (spinal-dorsal-horn-type collaterals). There were no transitional forms between the rostral and caudalis types, but there was a transitional form between the caudalis and spinal dorsal horn types. This transitional form was distributed in laminae III/IV and V. The terminal arbors of the rostral type of collaterals formed an interrupted, rostrocaudally oriented column like those seen in the lumbar dorsal horn, but the column shifted down to lamina V near the obex, and more caudally, gradually shifted upward to lamina III. Major morphological differences were not observed among the three different functional types of collaterals with respect to the rostrocaudal distribution of collaterals, and the shape and location of collaterals. The differential laminar distribution of collateral arbors of single axons along the rostrocaudal axis distinguishes the spinal trigeminal nucleus from the spinal dorsal horn where functional types of mechanoreceptive afferents form continuous or interrupted sagittal columns of terminal arbors that do not shift dorsoventrally within segments.  相似文献   

11.
The mechanism by which A-fibres sprout into lamina II of the dorsal horn of the adult rat after peripheral nerve injury, a region which normally receives input from noci- and thermoreceptive C-fibres alone, is not known. Recent findings indicating that selective C-fibre injury and subsequent degenerative changes in this region are sufficient to induce sprouting of uninjured A-fibres have raised the possibility that the structural reorganisation of A-fibre terminals is an example of collateral sprouting, in that deafferentation of C-fibre terminals alone in lamina II may be sufficient to cause A-fibre sprouting. Primary afferents of the sciatic nerve have their cell bodies located predominantly in the L4 and L5 dorsal root ganglia (DRGs), and the A-fibres of each DRG have central termination fields that show an extensive rostrocaudal overlap in lamina III in the L4 and L5 spinal segments. In this study, we have found that C-fibres from either DRG have central terminal fields that overlap much less in lamina II than A-fibres in lamina III. We have exploited this differential terminal organisation to produce deafferentation in lamina II of the L5 spinal segment, by an L5 rhizotomy, and then test whether A-fibres of the intact L4 dorsal root ganglion, which terminate within the L5 segment, sprout into the denervated lamina II in the L5 spinal segment. Neither intact nor peripherally injured A-fibres were seen to sprout into denervated lamina II after L5 rhizotomy. Sprouting was only ever seen into regions of lamina II containing the terminals of peripherally injured C-fibres. Therefore, it seems that the creation of synaptic space within lamina II is not the explanation for A-fibre sprouting after peripheral nerve section or crush, emphasising that injury-induced changes in C-fibres and subsequent chemotrophic effects in the superficial dorsal horn are the likely explanation. J. Comp. Neurol. 393:135–144, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The distribution of cervicothoracic (C1–T2) dorsal roots to the cuneate and accessory cuneate nuclei was studied in the rat with the Fink- Heimer I technique following single extradural rhizotomies. Cytoarchitectural analysis of the cuneate nucleus revealed an anatomically distinct caudal and rostral region. The caudal region was characterized by discrete aggregates of cells arranged as “slabs” or “bricks” which continue vertically almost to the ventral limit of the cuneate nucleus. In contrast, the cells of the rostral region were organized in a non-focal manner. The projection of the cervicothoracic dorsal roots to the cuneate nucleus reflected the cytoarchitectural pattern observed; non-focal terminal fields of degeneration in the rostral region and discrete “terminal field bands” of degeneration isolated from one another by degeneration-free zones in the caudal region. However, the projections of dorsal roots C5 and T2 to the caudal region is non-focal. In both regions of the cuneate nucleus, the distribution of dorsal root degeneration was topographically organized with cranial roots terminating ventrolaterally and more caudal roots, dorsomedially. The amount of intersegmental overlap of dorsal root terminal fields was greater in the rostral than in the caudal region. Individual dorsal roots projected differentially to the two regions of the cuneate nucleus. Roots C3 and C4 distributed primarily to the rostral region whereas C5 to T1 distributed to both regions. T2 root projected primarily to the caudal region. Dorsal roots C1 and C2 did not terminate in either region of the cuneate nucleus. All roots studied projected heavily and topographically to the accessory cuneate nucleus. Extensive overlap of the very dense terminal fields characterized the dorsal root projections to the accessory cuneate nucleus. On the basis of cytoarchitectonics and dorsal root projections, a dual organization of the cuneate nucleus was revealed. This organization reflected previous anatomical and electrophysiological studies in the rat and paralleled the organization described in the dorsal column nuclei of the cat. The significance of the dual organization with respect to dorsal column function was discussed, as was the finding of the lack of C1 and C2 dorsal root projections to the cuneate nucleus.  相似文献   

13.
The central projections of rat trigeminal primary afferent neurons to various "non-trigeminal" areas of the central nervous system were examined by labeling the fibers with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) transported anterogradely from the trigeminal ganglion. This technique produced a clear and comprehensive picture of trigeminal primary afferent connectivity that was in many ways superior to that which may be obtained by using degeneration, autoradiography, cobalt labeling, or HRP transganglionic transport techniques. Strong terminal labeling was observed in all four rostrocaudal subdivisions of the trigeminal brainstem nuclear complex, as well as in the dorsal horn of the cervical spinal cord bilaterally, numerous brainstem nuclei, and in the cerebellum. Labeling in the ipsilateral dorsal horn of the cervical spinal cord was very dense at C1, moderately dense at C2 and C3, and sparse at C4-C7. Numerous fibers crossed the midline in the medulla and upper cervical spinal cord and terminated in the contralateral pars caudalis and dorsal horn of the spinal cord from C1-C5. The latter axons terminated most heavily in the mandibular and ophthalmic regions of the contralateral side. Extremely dense terminal labeling was observed in the ipsilateral paratrigeminal nucleus and the nucleus of the solitary tract, moderate labeling was seen in the supratrigeminal nucleus and in the dorsal reticular formation, and small numbers of fibers were observed in the cuneate, trigeminal motor, lateral and superior vestibular nuclei, and in the cerebellum. The latter fibers entered the cerebellum in the superior cerebellar peduncle and projected to the posterior and anterior lobes as well as to the interposed and lateral deep cerebellar nuclei. Most projections in this study originated from fibers in the dorsal part of the spinal tract of V, suggesting a predominantly mandibular origin for these fibers. Projections from the ophthalmic and maxillary divisions, in contrast, were directed mainly to the cervical spinal cord bilaterally, to contralateral pars caudalis, and to certain areas of the reticular formation. In conclusion, this study has demonstrated that somatosensory information from the head and face may be transmitted directly to widespread and functionally heterogeneous areas of the rat central nervous system, including the spinal cord dorsal horn, numerous brainstem nuclei, and the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting neurons were examined in the rabbit spinal cord by using horizontal, sagittal, and transverse sections. A large number of NADPHd-positive neurons in the spinal cord of rabbit appeared to fall into six categories (N1-N6), but others could not be classified. Major cell groups of NADPHd-exhibiting neurons were identified in the superficial dorsal horn and around the central canal at all spinal levels and in the intermediolateral cell column at thoracic and upper lumbar levels. NADPHd-exhibiting neurons of the pericentral region were divided into a thin subependymal cell column containing longitudinally arranged, small bipolar neurons with processes penetrating deeply into the intermediolateral cell column and/or running rostrocaudally in the subependymal layer. The second pericentral cell column located more laterally in lamina X contains large, intensely stained NADPHd-exhibiting neurons with long dendrites radiating in the transverse plane. In the pericentral region (lamina X), close association of NADPHd-exhibiting somata and fibers and mostly longitudinally oriented blood vessels were detected. Neurons of the sacral parasympathetic nucleus, seen in segments S1-S3, exhibited prominent NADPHd cellular staining accompanied by heavily stained fibers extending from Lissauer's tract through lamina I along the lateral edge of the dorsal horn to lamina V. A massive dorsal gray commissure, highly positive in NADPHd staining, was found in segments S1-S3. Scattered positive cells were also found in the deeper dorsal horn, ventral horn, and white matter. Fiberlike NADPHd staining was found in the superficial dorsal horn and pericentral region in all the segments studied. Dense, punctate, nonsomatic NADPHd staining was detected in the superficial dorsal horn, in the pericentral region all along the rostrocaudal axis, and in the nucleus phrenicus (segments C4-C5), nucleus dorsalis (segments Th2-L2), Onuf's nucleus (segments S1-S3), and the dorsal part of the dorsal gray commissure (S1-S3).  相似文献   

15.
Dorsal root ganglion (DRG) neurons decrease their substance P (SP) synthesis after peripheral nerve lesions. Levels in the dorsal horn also decline but return to normal if regeneration is successful. In adults, when regeneration is prevented, recovery of SP in the dorsal horn is slow and incomplete, whereas in newborns, recovery is rapid and complete even though retrograde cell death of DRG neurons is greater than in adults. We have examined the mechanisms that might account for the rapid and complete recovery of SP and calcitonin-gene related peptide (CGRP) in the dorsal horn after peripheral nerve injury in newborns. Peptides were compared in the L4 and L5 DRG and spinal cord segments of normal rats and in rats surviving 6 days to 4 months after sciatic nerve section/ligation within 24 hours of birth. Sciatic nerve section/ligation produced 50% neuron death in L4 and L5 DRGs, but immunocytochemical methods showed that both SP-immunoreactivity (-IR) and CGRP-IR recovered completely in dorsal horn. Radioimmunoassay confirmed that recovery of SP was not an artefact due to shrinkage. β-Preprotachykinin (PPT)-mRNA hybridization and SP-IR were observed mostly in small neurons; α-CGRP-mRNA-hybridized and CGRP-IR neurons were more heterogeneous. The percentage of DRG neurons that contained SP (~ 25%) or CGRP (~ 50%) was the same in normal newborn and adult rats. Neither selective cell survival nor change in neuron phenotype was likely to contribute to the recovery seen in the dorsal horn, and DRG neurons ipsilateral to the lesion exhibited the same level of hybridized β-PPT-mRNA and α-CGRP-mRNA as intact DRG neurons. Because neither the constitutive level of expression of the genes nor peptide levels increased above those observed in intact DRG neurons, these mechanisms were also not responsible. Axotomized DRG neurons, however, contributed to recovery. Recovery was also due to sprouting by neurons in intact DRGs rostral and caudal to L4 and L5. © 1993 Wiley-Liss, Inc.  相似文献   

16.
In the upper cervical spinal segments, neurons in the medial part of lamina VI give rise to uncrossed spinocerebellar axons, whereas the central cervical nucleus (CCN) and neurons in laminae VII and VIII give rise to crossed spinocerebellar axons. Using anterograde labeling with biotinylated dextran in the rat, we examined the projections of these neuronal groups to the cerebellar nuclei. Uncrossed and crossed projections were distinguished by cerebellar lesions placed on the side contralateral or ipsilateral to the tracer injections confined to the second and third cervical spinal segments (C2 and C3, respectively). Labeled terminals of uncrossed projections were seen in the middle, dorsal, and ventrolateral parts of the middle subdivision and in the ventral part of the caudomedial subdivision of the medial nucleus. In the anterior interpositus nucleus, terminals were seen in the middle of the mediolateral extent, whereas, in the posterior interpositus nucleus, they were seen in lateral and caudal parts. The terminals of crossed projections from the CCN were distributed ventrally in medial to ventrolateral parts of the middle subdivision of the medial nucleus. Some terminals were seen in the caudomedial subdivision of the medial nucleus. In the anterior interpositus nucleus, labeled terminals were seen mainly in rostromedial parts, whereas, in the posterior interpositus nucleus, they were seen in caudal and dorsal parts of the medial half. The present study suggests that the medial lamina VI group and the CCN in the upper cervical segments project to the different areas of the cerebellar nuclei and are concerned with different functions.  相似文献   

17.
The spinal distribution of sympathetic preganglionic neurons (PGN) and visceral primary afferent neurons sending axons into the hypogastric nerve of the cat has been studied with HRP tracing techniques. After application of HRP to the cat hypogastric nerve, labeled PGN were identified in segments L2-L5. Most of these neurons were oriented transversely and were divided approximately equally between two nuclei: the principal nucleus and the intercalated nucleus. Cells were distributed in clusters at 160-361-microns intervals along the length of the cord. Sensory neurons were labeled in dorsal root ganglia from T12 to L5. Central axons of these visceral afferents were observed in the medial half of Lissauer's tract from T13 to L7. Afferent axon collaterals extended through lamina I on both sides of the dorsal horn but were most prominent on the lateral side, where they continued into lateral lamina V and VII, often overlapping the dorsal dendrites of PGN in this region. Labeled afferent projections exhibited a periodic distribution in lamina I with clusters of axons occurring at 235-343-microns intervals in the rostrocaudal axis. The central projection of hypogastric nerve primary afferents was qualitatively similar to the distribution of visceral afferent projections at other levels of the spinal cord.  相似文献   

18.
Brainstem projections to the phrenic nucleus were studied in rabbits using horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) as a retrograde and anterograde neuronal tracer. Injections of 1% WGA-HRP were centered in the phrenic nucleus in the C4-C5 ventral horn in 4 rabbits to identify pontomedullary nuclear groups that contain neurons projecting to the midcervical spinal cord. Regions of the rabbit brainstem that are homologous to the ventral respiratory group (VRG), dorsal respiratory group (DRG), B?tzinger Complex (B?tC) and K?lliker-Fuse nucleus in the cat and rat were shown to provide the major pontomedullary projections to the phrenic nucleus. Injections of WGA-HRP into physiologically identified locations within DRG, VRG and B?tC anterogradely labelled bulbospinal axons of these groups. These injections produced presumptive terminal labelling in the C4-C5 ventral horn in the region containing the phrenic cell column and the transverse phrenic motoneuron dendrite bundles as defined by WGA-HRP labelling of phrenic motoneurons. These results indicate: 1) The presumptive excitatory (DRG, VRG) and inhibitory (B?tC) bulbospinal control of phrenic motoneurons arise from the same medullary respiratory groups in the rabbit as in the cat and rat. 2) The bulbospinal control of phrenic motoneurons is primarily via direct projections to the phrenic motor nucleus, and not through segmental propriospinal interneurons. 3) As in the rat, the bulbospinal contribution of the DRG is less pronounced in the rabbit than in the cat. 4) The rabbit and rat have a slight ipsilateral predominance in their bulbospinal projections to phrenic nucleus; whereas these projections have a contralateral predominance in the cat.  相似文献   

19.
Injections of cholera toxin B-chain conjugated to horseradish peroxidase into individual peripheral branches of the trigeminal nerve or into the trigeminal ganglion showed that an ascending trigeminal tract (TTA) terminated in distinct ventral and dorsal divisions of the principal sensory nucleus (PrVv and PrVd, respectively), and a descending tract (TTD) terminated within pars oralis, pars interpolaris, and pars caudalis divisions of the nucleus of TTD (nTTD) and within the dorsal horn of the first six cervical spinal segments. In PrVD, mandibular, ophthalmic, and maxillary projections were predominantly located dorsally, ventrally, and medially, respectively. In nTTD, mandibular projections lay dorsomedially, ophthalmic projections lay ventrolaterally, and maxillary projections lay in between. At caudal medullary and spinal levels, mandibular projections were situated medially, ophthalmic projections were situated laterally, and maxillary projections were situated centrally. The terminations within the dorsal horn were most dense in laminae III and IV and were least dense in lamina II, with laminae III-IV also receiving topographically organised contralateral projections. Extratrigeminal projections were mainly to the external cuneate nucleus by way of a lateral descending trigeminal tract (ITTD; Dubbeldam and Karten [1978] J. Comp. Neurol. 180:661–678) and to the region of the tract of Lissauer and lamina I of the dorsal horn. Other projections were to a region medial to the apex of pars interpolaris, to the nuclei ventrolateralis anterior (Vla) and presulcalis anterior (Pas) of the solitary complex, and sparsely to the lateral reticular formation (plexus of Horsley) ventral to TTD. No projections were seen to the trigeminal motor nuclei or to the cerebellum. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The organization of the nuclei and dendritic architecture of motoneurons innervating the three heads of the trapezius muscle, clavotrapezius (CT), acromiotrapezius (AT), and spinotrapezius (ST), have been examined by using intracellular staining techniques. CT, AT, and ST motoneurons were found in the spinal accessory nucleus and were arranged in three overlapping subnuclei. CT motoneurons were primarily found in C2 and C3. In contrast, most AT motoneurons were found in C3, C4, and C5 and ST motoneurons were found in C4, C5, and the rostral parts of C6. Most dendrites of CT motoneurons, located in rostral C2, extended dorsally and many of these dendrites spread medially and laterally to encompass all of lamina VIII and the dorsolateral part of lamina VII. When viewed in the horizontal plane these motoneurons had a stellate appearance. The dendritic tree structure of CT motoneurons changed abruptly between rostral C2 and mid-C2. The majority of dendrites of CT motoneurons located in the central and caudal parts of C2 projected rostrally and caudally to form a complex bundle of dendrites in the motoneuron nucleus. Small numbers of dendrites were also found ventromedial and dorsal to the soma. The dendritic trees of CT motoneurons in C3 and C4 and AT and ST motoneurons located in C4 and the rostral parts of C5 also followed this fusiform distribution pattern. The dendritic trees of AT and ST motoneurons in caudal C5 were not fusiform but instead had a complex distribution pattern which consisted of dendrites projecting in several directions. Many dendrites projected rostrally and caudally, and in addition, there were major dendritic projections ventrolateral and dorsolateral to the soma. These results indicate that each head of the trapezius muscle is innervated by two structurally dissimilar groups of motoneurons which occupy different spinal segments. Trapezius motoneurons at the same segmental level, regardless of which head of the trapezius muscle they innervated, have similar dendritic trees whose structure differs from those of neighbouring dorsal neck muscle motoneurons in C2, C3, and C4. Thus, the organization of motoneuron dendritic trees appears to be governed by several factors including the muscle innervated by the motoneuron and the transverse and segmental position of the motoneuron's soma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号