首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased production of new neurons in the adult dentate gyrus (DG) by neural stem/progenitor cells (NSCs) following acute seizures or status epilepticus (SE) is a well known phenomenon. However, it is unknown whether NSCs in the aged DG have similar ability to upregulate neurogenesis in response to SE. We examined DG neurogenesis after the induction of continuous stages III-V seizures (SE) for over 4 h in both young adult (5-months old) and aged (24-months old) F344 rats. The seizures were induced through 2-4 graded intraperitoneal injections of the excitotoxin kainic acid (KA). Newly born cells in the DG were labeled via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, which commenced shortly after the induction of SE in KA-treated rats. New cells and neurons in the subgranular zone (SGZ) and the granule cell layer (GCL) were analyzed at 24 h after the last BrdU injection using BrdU and doublecortin (DCX) immunostaining, BrdU-DCX and BrdU-NeuN dual immunofluorescence and confocal microscopy, and stereological cell counting. Status epilepticus enhanced the numbers of newly born cells (BrdU(+) cells) and neurons (DCX(+) neurons) in young adult rats. In contrast, similar seizures in aged rats, though greatly increased the number of newly born cells in the SGZ/GCL, failed to increase neurogenesis due to a greatly declined neuronal fate-choice decision of newly born cells. Only 9% of newly born cells in the SGZ/GCL differentiated into neurons in aged rats that underwent SE, in comparison to the 76% neuronal differentiation observed in age-matched control rats. Moreover, the number of newly born cells that migrate abnormally into the dentate hilus (i.e., ectopic granule cells) after SE in the aged hippocampus is 92% less than that observed in the young adult hippocampus after similar SE. Thus, SE fails to increase the addition of new granule cells to the GCL in the aged DG, despite a considerable upregulation in the production of new cells, and SE during old age leads to much fewer ectopic granule cells. These results have clinical relevance because earlier studies have implied that both increased and abnormal neurogenesis occurring after SE in young animals contributes to chronic epilepsy development.  相似文献   

2.
Neurogenesis in the adult dentate gyrus (DG) generates new granule neurons that differentiate in the inner one‐third of the granule cell layer (GCL). The migrating precursors of these neurons arise from neural stem cells (NSCs) in the subgranular zone (SGZ). Although it is established that pathological conditions, including epilepsy and stroke, cause dispersion of granule neuron precursors, little is known about the factors that regulate their normal placement. Based on the high expression of the chemokine CXCL12 in the adult GCL and its role in guiding neuronal migration in development, we addressed the function of the CXCL12 receptor CXCR4 in adult neurogenesis. Using transgenic reporter mice, we detected Cxcr4‐GFP expression in NSCs, neuronal‐committed progenitors, and immature neurons of adult and aged mice. Analyses of hippocampal NSC cultures and hippocampal tissue by immunoblot and immunohistochemistry provided evidence for CXCL12‐promoted phosphorylation/activation of CXCR4 receptors in NSCs in vivo and in vitro. Cxcr4 deletion in NSCs of the postnatal or mature DG using Cre technology reduced neurogenesis. Fifty days after Cxcr4 ablation in the mature DG, the SGZ showed a severe reduction of Sox2‐positive neural stem/early progenitor cells, NeuroD‐positive neuronal‐committed progenitors, and DCX‐positive immature neurons. Many immature neurons were ectopically placed in the hilus and inner molecular layer, and some developed an aberrant dendritic morphology. Only few misplaced cells survived permanently as ectopic neurons. Thus, CXCR4 signaling maintains the NSC pool in the DG and specifies the inner one‐third of the GCL as differentiation area for immature granule neurons. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Overexpression of GSK3β in transgenic mice induces learning deficits and some features associated with Alzheimer's disease (AD), including dentate gyrus (DG) atrophy. Here, we assessed whether these mice also recapitulate DG atrophy as well as impaired neurogenesis reported in AD. Ultrastructural analysis revealed that there were fewer and more disorganized neurogenic niches in these animals, coupled with an increase in the proportion of immature neurons. Indeed, the maturation of granule cells is delayed as witnessed by the alterations to the length and patterning of their dendritic trees and to the mossy fiber terminals. Together with an increase in neuronal death, these phenomena lead to a marked decrease in the number and disorganization of granule cells of the DG. Our results suggest that GSK3β overexpression perturbs proliferation and maturation, resulting in the loss of immature neurons. In turn, the activation of microglia is stimulated in conjunction with a decrease in the birth of new functional neurons, leading to the deterioration of this structure. These data support the idea that by inducing degeneration of the DG, GSK3β could be involved in the pathogenesis of AD. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
One neuropathological hallmark of temporal lobe epilepsy is granule cell dispersion, a widening of the hippocampal granule cell layer (GCL) with abnormally positioned excitatory neurons. The finding that seizure activity also induces adult hippocampal neurogenesis was taken largely as indicative of a regenerative attempt, not as part of the pathology. The aim of our study was to characterize a potential relationship between granule cell dispersion and seizure-induced neurogenesis. Kainic acid (KA)-induced seizures in mice led to increased cell proliferation and new neurons persisted for months after the seizures. We show that the proliferative stimulus did not affect nestin-expressing early precursor cells that primarily respond to physiologic mitogenic stimuli, but stimulated the division of late type-3 progenitor cells, which express doublecortin (DCX), a protein associated with cell migration. This delayed proliferation presumably interfered with migration, leading to a significant dispersion of DCX-positive progenitors and early postmitotic neurons within the dentate gyrus granule cell layer. We propose that initial seizures induce ectopic precursor cell proliferation resulting in the dispersion of immature neurons within the adult granule cell layer. Thus, seizure-generated neurons might contribute to the disease process of epilepsy.  相似文献   

5.
The induction of neurogenesis in the adult subgranular zone (SGZ) by injury is often accompanied by changes in the extracellular environment that can have significant impacts on neural progenitor cells (NPCs). We examined the induction of neurogenesis in the SGZ at 72 h following an injection of the hippocampal toxicant, trimethyltin (TMT; 2 mg/kg, ip) inducing apoptosis in dentate granule neurons. BrdU+ incorporation during the active period of neuronal death indicated NPC proliferation and migration of newly generated cells into the granule cell layer (GCL). BrdU+ cells were transiently in contact with process bearing microglia within the inner SGZ layer. Contact with GFAP+ astrocyte processes occurred once cells were within the GCL. A small percentage of the BrdU+ cells within the SGZ region showed immunoreactivity for tumor necrosis factor (TNF) p75 receptor (TNFp75R). In mice deficient for TNFp75R, TMT injection produced an equivalent level of dentate granule cell death however; BrdU+ cells were localized at the SGZ as compared to the presence of cells within the GCL in the WT mice dosed with TMT. These data suggest that cells generated by NPCs in the SGZ induced with a focal lesion to the dentate granule neurons of adolescent mice maintain the capacity to utilize the neuroinflammation and microglia responses within their environment for migration into the GCL.  相似文献   

6.
Declined production and diminished dendritic growth of new dentate granule cells in the middle-aged and aged hippocampus are correlated with diminished concentration of fibroblast growth factor-2 (FGF-2). This study examined whether increased FGF-2 concentration in the milieu boosts both production and dendritic growth of new dentate granule cells in the middle-aged hippocampus. The FGF-2 or vehicle was infused into the posterior lateral ventricle of middle-aged Fischer (F)344 rats for 2 weeks using osmotic minipumps. New cells born during the first 12 days of infusions were labeled via daily intraperitoneal injections of 5'-bromodeoxyuridine (BrdU) and analysed at 10 days after the last BrdU injection. Measurement of BrdU(+) cells revealed a considerably enhanced number of new cells in the subgranular zone (SGZ) and granule cell layer (GCL) of the dentate gyrus (DG) ipsilateral to FGF-2 infusions. Characterization of beta-III tubulin(+) neurons among newly born cells suggested an increased addition of new neurons to the SGZ/GCL ipsilateral to FGF-2 infusions. Quantification of DG neurogenesis at 8 days post-infusions via doublecortin (DCX) immunostaining also revealed the presence of an enhanced DG neurogenesis ipsilateral to FGF-2 infusions. Furthermore, DCX(+) neurons in FGF-2-infused rats exhibited enhanced dendritic growth compared with their counterparts in vehicle-infused rats. Thus, subchronic infusion of FGF-2 is efficacious for stimulating an enhanced DG neurogenesis from neural stem/progenitor cells in the middle-aged hippocampus. As dentate neurogenesis is important for hippocampal-dependent learning and memory and DG long-term potentiation, strategies that maintain increased FGF-2 concentration during ageing may be beneficial for thwarting some of the age-related cognitive impairments.  相似文献   

7.
The pilocarpine‐induced status epilepticus rodent model has been commonly used to analyze the mechanisms of human temporal lobe epilepsy. Recent studies using this model have demonstrated that epileptic seizures lead to increased adult neurogenesis of the dentate granule cells, and cause abnormal cellular organization in dentate neuronal circuits. In this study, we examined these structural changes in rats with seizures of varying severity. In rats with frequent severe seizures, we found a clear loss of Prox1 and NeuN expression in the dentate granule cell layer (GCL), which was confined mainly to the suprapyramidal blade of the GCL at the septal and middle regions of the septotemporal axis of the hippocampus. In the damaged suprapyramidal region, the number of immature neurons in the subgranular zone was markedly reduced. In contrast, in rats with less frequent severe seizures, there was almost no loss of Prox1 and NeuN expression, and the number of immature neurons was increased. In rats with no or slight loss of Prox1 expression in the GCL, ectopic immature neurons were detected in the molecular layer of the suprapyramidal blade in addition to the hilus, and formed chainlike aggregated structures along the blood vessels up to the hippocampal fissure, suggesting that newly generated neurons migrate at least partially along blood vessels to the hippocampal fissure. These results suggest that seizures of different severity cause different effects on GCL damage, neurogenesis, and the migration of new neurons, and that these structural changes are selective to subdivisions of the GCL and the septotemporal axis of the hippocampus.  相似文献   

8.
Adult-born neurons in the dentate gyrus (DG) can survive for long periods, are capable of integrating into neuronal networks, and are important for hippocampus-dependent learning. Neurogenesis is dramatically reduced during senescence, and it remains unknown whether those few neurons that are produced remain capable of network integration. The expression of Arc, a protein coupled to neuronal activity, was used to measure activity among granule cells that were labeled with BrdU 4 months earlier in young (9 months) and aged (25 months) Fischer344 rats. The results indicate that while fewer cells are generated in the senescent DG, those that survive are (a) more likely to respond to spatial processing by expressing Arc relative to the remainder of the granule cell population and (b) equally responsive to spatial exploration as granule cells of the same age from young animals. These findings provide compelling evidence that newborn granule cells in the aged DG retain the capacity for participation in functional hippocampal networks.  相似文献   

9.
The granule cell layer (GCL) of the adult dentate gyrus (DG) is a heterogeneous structure formed by neurons of different ages because a significant proportion of neurons continues to be generated throughout life. The subgranular zone of the DG contains neural progenitor cells (NPCs) that divide, differentiate, and migrate to produce functional dentate granule cells (DGCs) that become incorporated into the existing hippocampal circuitry. New available tools to identify adult-born neurons in live and fixed brain sections have allowed the transition from NPC to functional neuron to be characterized in great detail. Maturation of the neuronal phenotype includes changes in membrane excitability and morphology as well as the establishment of appropriate connectivity within the existing circuits, a process that lasts several weeks. The events leading to neuronal maturation share many of the features of the developing brain, and electrical activity is emerging as a key modulator of neuronal development in the adult DG. The underlying mechanisms are now beginning to be understood.  相似文献   

10.
Yang F  Wang JC  Han JL  Zhao G  Jiang W 《Hippocampus》2008,18(5):460-468
Recent evidence shows that functional neurogenesis exists in the adult hippocampus and that epileptic seizures can increase neurogenesis in the dentate gyrus (DG). However, it is unknown whether different seizure severity has different effects on neurogenesis in the DG of adult rats. In this study, we examined hippocampal neurogenesis in the rat mild and severe seizure preparations characterized with frequent wet dog shakes and severe status epilepticus, respectively. Both mild and severe seizures promoted the mitotic activity in the DG, but severe seizures caused a stronger cell proliferative response than mild seizures. Less than 20% of newborn cells in the DG differentiated into neurons in rats suffering severe seizures, whereas more than 60% of newborn dentate cells differentiated into neurons in control and mild seizure groups. Most newborn neurons migrated into the granular cell layer in control and mild seizure groups, but severe seizures were associated with an aberrant migration of newborn neurons into the dentate hilus. Severe seizures induced astrocyte activation and the expression of nestin and the migration directional molecules netrin 1 and Sema-3A in the hilus, which were not present in the hilus of control and mild seizure-attacked rats, suggesting that these molecules are involved in the aberrant migration of newborn neurons.  相似文献   

11.
Schizophrenia is a devastating psychiatric illness with a complex pathophysiology. We have recently documented schizophrenia-like endophenotypes in phospholipase C-β1 knockout (PLC-β1(-/-)) mice, including deficits in prepulse inhibition, hyperlocomotion, and cognitive impairments. PLC-β1 signals via multiple G-protein coupled receptor pathways implicated in neural cellular plasticity; however, adult neurogenesis has yet to be explored in this knockout model. In this study, we employed PLC-β1(-/-) mice to elucidate possible correlates between aberrant adult hippocampal neurogenesis (AHN) and schizophrenia-like behaviors. Using stereology and bromodeoxyuridine (BrdU) immunohistochemistry we demonstrated a significant increase in the density of adult-generated cells in the granule cell layer (GCL) of adult PLC-β1(-/-) mice compared with wild-type littermates. Cellular phenotype analysis using confocal microscopy revealed these cells to be mature granule neurons expressing NeuN and calbindin. Increased neuronal survival occurred concomitant with reduced caspase-3(+) cells in the GCL of PLC-β1(-/-) mice. Stereological analysis of Ki67(+) cells in the subgranular zone suggested that neural precursor proliferation is unchanged in PLC-β1(-/-) mice. We further showed aberrant migration of mature granule neurons within the GCL of adult PLC-β1(-/-) mice with excessive adult-generated mature neurons residing in the middle and outer GCL. PLC-β1(-/-) mice exhibited specific behavioral deficits in location recognition, a measure of hippocampal-dependent memory, but not novel object recognition. Overall, we have shown that PLC-β1(-/-) mice have a threefold increase in net AHN, and have provided further evidence to suggest a specific deficit in hippocampal-dependent cognition. We propose that abnormal cellular plasticity in these mice may contribute to their schizophrenia-like behavioral endophenotypes.  相似文献   

12.
Hippocampal neurogenesis declines substantially in chronic temporal lobe epilepsy (TLE). However, it is unclear whether this decline is linked to altered production of new cells and/or diminished survival and neuronal fate‐choice decision of newly born cells. We quantified different components of hippocampal neurogenesis in rats exhibiting chronic TLE. Through intraperitoneal administration of 5′‐bromodeoxyuridine (BrdU) for 12 days, we measured numbers of newly born cells in the subgranular zone‐granule cell layer (SGZ‐GCL) at 24 h and 2.5 months post‐BrdU administration. Furthermore, the differentiation of newly added cells into neurons and glia was quantified via dual immunofluorescence for BrdU and various markers of neurons and glia. Addition of new cells to the SGZ‐GCL over 12 days was comparable between the chronically epileptic hippocampus and the age‐matched intact hippocampus. Furthermore, comparison of BrdU+ cells measured at 24 h and 2.5 months post‐BrdU administration revealed similar survival of newly born cells between the two groups. However, only 4–5% of newly born cells (i.e., BrdU+ cells) differentiated into neurons in the chronically epileptic hippocampus, in comparison to 73–80% of such cells exhibiting neuronal differentiation in the intact hippocampus. Moreover, differentiation of newly born cells into S‐100β+ astrocytes or NG2+ oligodendrocyte progenitors increased to ∼79% in the chronically epileptic hippocampus from ∼25% observed in the intact hippocampus. Interestingly, the extent of proliferation of astrocytes and microglia (identified through Ki‐67 and S‐100β and Ki‐67 and OX‐42 dual immunofluorescence) in the SGZ‐GCL was similar between the chronically epileptic hippocampus and the age‐matched intact hippocampus, implying that the proliferation of neural stem/progenitor cells in the SGZ‐GCL of the chronically epileptic hippocampus was not obscured by an increased division of glia. Thus, severely diminished DG neurogenesis in chronic TLE is not associated with either decreased production of new cells or reduced survival of newly born cells in the SGZ‐GCL. Rather, it is linked to a dramatic decline in the neuronal fate‐choice decision of newly generated cells. Overall, the differentiation of newly born cells turns mainly into glia with chronic TLE from predominantly neuronal differentiation seen in control conditions. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Hippocampal function varies in a subregion‐specific fashion: spatial processing is thought to rely on the dorsal hippocampus, whereas anxiety‐related behavior relies more on the ventral hippocampus. During development, neurogenesis in the dentate gyrus (DG) proceeds along ventral to dorsal as well as suprapyramidal to infrapyramidal gradients, but it is unclear whether regional differences in neurogenesis are maintained in adulthood. Moreover, it is unknown whether young neurons in the adult exhibit subregion‐specific patterns of activation. We therefore examined the magnitude of neurogenesis and the activation of young and mature granule cells in DG subregions in adult rats that learned a spatial water maze task, swam with no platform, or were left untouched. We found that both adult neurogenesis and granule cell activation, as defined by c‐fos expression in the granule cell population as a whole, were higher in the dorsal than the ventral DG. In contrast, c‐fos expression in adult‐born granule cells, identified by PSA‐NCAM or location in the subgranular zone, occurred at a higher rate in the opposite subregion, the ventral DG. Interestingly, c‐fos expression in the entire granule cell population was equivalent in water maze‐trained rats and swim control rats, but was increased in the young granule cells only in the learning condition. These results provide new evidence that hippocampally‐relevant experience activates young and mature neurons in different DG subregions and with different experiential specificity, and suggest that adult‐born neurons may play a specific role in anxiety‐related behavior or other nonspatial aspects of hippocampal function. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent motor seizures (SRMS), learning and memory impairments, and depression, is associated with neurodegeneration, abnormal reorganization of the circuitry, and loss of functional inhibition in the hippocampal and extrahippocampal regions. Over the last decade, abnormal neurogenesis in the dentate gyrus (DG) has emerged as another hallmark of TLE. Increased DG neurogenesis and recruitment of newly born neurons into the epileptogenic hippocampal circuitry is a characteristic phenomenon occurring during the early phase after the initial precipitating injury such as status epilepticus. However, the chronic phase of the disease displays substantially declined DG neurogenesis, which is associated with SRMS, learning and memory impairments, and depression. This review focuses on DG neurogenesis in the chronic phase of TLE and first confers the extent and mechanisms of declined DG neurogenesis in chronic TLE. The available data on production, survival and neuronal fate choice decision of newly born cells, stability of hippocampal stem cell numbers, and changes in the hippocampal microenvironment in chronic TLE are considered. The next section discusses the possible contribution of declined DG neurogenesis to the pathophysiology of chronic TLE, which includes its potential effects on spontaneous recurrent seizures, cognitive dysfunction, and depression. The subsequent section considers strategies that may be useful for augmenting DG neurogenesis in chronic TLE, which encompass stem cell grafting, administration of distinct neurotrophic factors, physical exercise, exposure to enriched environment, and antidepressant therapy. The final section suggests possible ramifications of increasing the DG neurogenesis in chronic epilepsy.  相似文献   

15.
Dentate gyrus (DG) neurogenesis is transiently increased during the first weeks after status epilepticus (SE). Survival of the new neurons is initially compromised by an acute inflammatory response, but the long-term fate of the remaining ones in the post-SE environment is unknown. Here adult rats were subjected to 2 h electrically evoked self-sustained SE and perfused after 5 weeks or 6 months. Rats exhibited partial or generalized SE followed by spontaneous behavioural seizures and abnormal electroencephalographic activity during 6 months. Numbers of activated microglia in the dentate subgranular zone (SGZ)-granule cell layer (GCL) and in the hilus declined after 5 weeks, but were still elevated at 6 months after SE, with no differences between the milder partial and the more severe generalized SE. At 6 months, partial and generalized SE rats showed a seven-fold increase in the number of mature SGZ-GCL neurons formed during the first 2 weeks along with aberrant neurons in the hilus. Total numbers of mature neurons in SGZ-GCL were unaltered, indicating that SE-generated neurons replaced dead granule cells. Neuroblast formation had returned to normal levels in SGZ-GCL but generation of aberrant neurons in the hilus was still ongoing at 6 months. Our data indicate that long-term impairment of neurogenesis, as reported previously after kainic acid-induced SE, is not a general feature of chronic epilepsy. We have found that a substantial proportion of the mature granule cells at 6 months are generated during the first 2 weeks after SE and survive despite chronic inflammation, and that SE triggers continuous production of aberrant hilar neurons.  相似文献   

16.
The granule cell layer (GCL) of the dentate gyrus contains neurons generated during embryonic, early postnatal and adult life. During adulthood there is a continuous production of neuronal cohorts that develop and functionally integrate in the preexisting circuits. This morphogenic process generates a stratified GCL, with the outermost layers containing dentate granule cells (DGCs) generated during perinatal life, and the innermost layers containing adult-born DGCs. In this review we analyse the functional profile of the different neuronal populations of the GCL, with an emphasis on adult-born neurons as they develop, mature and integrate in the dentate gyrus network. We focus on the contribution of adult-born neurons to activity-dependent synaptic modification in the dentate gyrus and, in turn, discuss how network activity modulates integration and survival of new neurons.  相似文献   

17.
The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium-pilocarpine-induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick-end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) -stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor-treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure-induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.  相似文献   

18.
In the adult murine hippocampus, dentate gyrus (DG), neurogenesis and neural cell death are thought to affect learning and memory in incompletely understood mechanism(s). Because cholinergic neurotransmission influences both of these functions, we hypothesized that cholinergic signaling, affected by acetylcholinesterase (AChE) activity, expression level, and alternative splicing, may provide a link between these processes. To challenge this hypothesis, we compared DG neurogenesis in transgenic mice overexpressing engineered "synaptic" AChE-S, incapable of acetylcholine (ACh) hydrolysis (TgSin) with strain-matched controls. In control mice, we observed increasing AChE gene expression with progressing neurogenesis. This involved dividing DG neurons expressing proliferating cell nuclear antigen (PCNA) and Tuj1-positive committed neurons compared with neighboring cells. However, TgSin hippocampi with lower hydrolytic AChE activity showed more PCNA-labeled cells than controls. In contrast, TgS mice overexpressing catalytically active AChE-S, with higher than control levels of AChE hydrolytic activity, presented elevated cell labeling by both bromodeoxyuridine and caspase-3, reflecting facilitated survival of newly born neurons as well as increased neural apoptosis. In comparison, overexpression of the stress-induced "readthrough" AChE-R variant in TgR mice resulted in higher hydrolytic activities but unchanged neurogenesis and apoptosis parameters, while all strains presented similar granule cell layer areas, cell density, and neuron numbers. Importantly, this homeostasis was maintained at a cognitive cost: in the hippocampal-dependent socially transmitted food preference task, TgS and TgSin mice showed impaired acquisition and retention, respectively. Our findings suggest that replacement of AChE-S with AChE-R serves to maintain DG homeostasis and associated cognitive tasks, highlighting the role of cholinergic signaling in adult hippocampal neurogenesis and functioning.  相似文献   

19.
In the adult hippocampus, neurogenesis is influenced both by external stimuli, such as physical exercise, and by intrinsic conditions like age and disease. However, the way in which many of these external and internal cues interact in this process remains poorly understood. We have used a new, more precise, stereological cell counting method that involves confocal microscopy to analyze the effects of exercise on adult neurogenesis in the mouse. We found that treadmill exercise increases the number of differentiating neurons (doublecortin/calretinin cells) in the granule cell layer of the mouse hippocampus in a manner that is directly related to the size of the mature granule cell population. More immature neurons were found after exercise in animals that had a larger dentate gyrus (DG), while no changes were observed in those with a smaller DG. This differential response to physical exercise suggests that the pre-existing neuronal population regulates the neurogenic response in the DG to external stimuli. These data raise the possibility of anticipating an individuals' response to therapeutic interventions (like exercise) aimed at augmenting dentate neurogenesis and alleviating or preventing cognitive decline.  相似文献   

20.
Ample evidence points to the dentate gyrus as anatomical region for persistent neurogenesis in the adult mammalian brain. This has been confirmed in a variety of animal models under physiological as well as pathophysiological conditions. Notwithstanding, similar experiments are difficult to perform in humans. Postmortem studies demonstrated persisting neurogenesis in the elderly human brain. In addition, neural precursor cells can be isolated from surgical specimens obtained from patients with intractable temporal lobe epilepsy (TLE) and propagated or differentiated into neuronal and glial lineages. It remains a controversial issue, whether epileptic seizures have an effect on or even increase hippocampal neurogenesis in humans. Recent data support the notion that seizures induce neurogenesis in young patients, whereas the capacity of neuronal recruitment and proliferation decreases with age. Animal models of TLE further indicate that these newly generated neurons integrate into epileptogenic networks and contribute to increased seizure susceptibility. However, pathomorphological disturbances within the epileptic hippocampus, such as granule cell dispersion (GCD), may not directly result from compromised neurogenesis. Still, the majority of adult TLE patients present with significant dentate granule cell loss at an end stage of the disease, which relates to severe memory and learning disabilities. In conclusion, surgical specimens obtained from TLE patients represent an important tool to study mechanisms of stem cell recruitment, proliferation and differentiation in the human brain. In addition, increasing availability of surgical specimens opens new avenues to systematically explore disease pathomechanisms in chronic epilepsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号