首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-one patients with long standing unexplained ptosis (3), chronic progressive external ophthalmoplegia (CPEO, 16) or Kearns-Sayre syndrome (KSS, 2) were studied for the presence of mitochondrial DNA (mtDNA) deletions and the major disease-associated mtDNA point mutations with the aim of correlating mitochondrial genetic abnormalities with pathogenesis in these patients. Only 52% were found to have a deletion; of these, 82% harboured the 'common deletion'. Two of 2 KSS patients and 9 of 16 CPEO patients were deletion positive. None of the 3 patients with bilateral ptosis only had a deletion. Of those patients with ragged red fibres (RRF) on histology, 69% had a deletion. No disease associated mtDNA point mutation was observed with the exception of the nucleotide (nt) 11084 A-G mutation associated with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) in a patient also harbouring the common deletion. The role of deletions in CPEO patients is discussed.  相似文献   

2.
Five unrelated patients harboring the A3243G mutation in the mitochondrial DNA (mtDNA) but presenting with different clinical phenotype were studied for their percentage of mutation at the single muscle fiber levels. One patient had a clinically and pathologically defined Leigh syndrome (LS), two showed mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), another showed progressive external ophthalmoplegia (PEO), and the other showed mitochondrial diabetes mellitus (MDM). The mutation load was greater in the muscle from the patient with LS (92%), who showed more than 80% even in the non-ragged red fibers (RRF) and also presented the highest proportion of RRF. The patients with MELAS had lower mutation levels as well as a lower proportion of RRF, and these two parameters were even lower in the PEO and MDM patients. These results were consistent with the concept that differences in the mutation load and in the somatic distribution of the mutation among different cells and tissues are responsible for the differences in phenotypical expression of the disease. Received: 8 April 1999 / Revised, accepted: 28 June 1999  相似文献   

3.
The purpose of this study was to investigate the correlation between the level of mutated mitochondrial DNA in muscle and oxidative capacity in 24 patients with mitochondrial myopathy (MM). Maximal oxygen uptake (VO(2max)), workload (W(max)), and venous plasma lactate levels were measured during an incremental cycle test to exhaustion in 17 patients with point mutations of mtDNA and in seven with single, large-scale deletions of mtDNA (chronic progressive external ophthalmoplegia [CPEO]). Results were compared with those in 25 healthy matched subjects. The mutation load in MM patients was 67 +/- 5% (range, 29 - 99%). VO(2max) and W(max) correlated with percentage of heteroplasmy (r > 0.82; p < 0.005) and were lower in patients versus healthy subjects (p < 0.000005). Exercise-induced peak increases in heart rate, ventilation, and resting plasma lactate levels correlated with muscle mutation load (r > 0.71; p < 0.005). Exercise-induced increases in plasma lactate correlated with muscle mutation load in CPEO patients (r = 0.95; p < 0.005). Impaired oxidative capacity and ragged red muscle fibers were found in CPEO and 3243A-->G patients with mutation loads as low as 45 and 57%, respectively. The study indicates that oxidative capacity correlates directly with skeletal muscle mutation load in MM patients, and that the mutation threshold level for impaired oxidative metabolism in MM patients is lower than found in in vitro studies.  相似文献   

4.
BACKGROUND: Chronic progressive external ophthalmoplegia (CPEO) may be related to primary nuclear DNA or mitochondrial (mt)DNA mutations. The A3243G mtDNA point mutation most frequently causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, but also has been associated with other phenotypes including CPEO, migraine, seizure, diabetes, and sensorineural hearing loss. CASE DESCRIPTION: We report a 38-year-old white man with seizures and progressive difficulties of infantile origin including CPEO, sensorineural hearing loss, cataracts, migraines, multiple endocrinopathy, myopathy, and cardiomyopathy. Moderate hearing loss in association with CPEO, diabetes mellitus, or migraines were noted in the proband's maternal grandmother, great aunt, mother, and three sisters, suggesting either an autosomal dominant or maternal inheritance. Detailed histological and biochemical analysis of the proband's biopsied muscle specimen revealed severe abnormalities compatible with a mitochondrial disease. MtDNA analysis excluded large-scale deletions, but revealed a heteroplasmic A to G transition at nt3243 in 56.4% and 27.4% of molecules in muscle and white blood cells, respectively. CONCLUSION: We discuss possible causes of this intrafamilial heterogeneity of phenotypes associated with the A3243G mtDNA mutation.  相似文献   

5.
Muscle dysfunction in mitochondrial myopathy is predominantly caused by insufficient generation of energy. We hypothesise that structural changes in muscles could also contribute to their pathophysiology. The aims of this study were to determine fat fractions and strength in selected muscles in patients with chronic progressive external ophthalmoplegia (CPEO), and compare progression of muscle fat fraction with age in individuals with CPEO vs. healthy controls and patients with the m.3243A>G mutation of mitochondrial DNA (mtDNA). Seventeen patients with CPEO and single large-scale deletions of mtDNA, 52 healthy controls, and 12 patients carrying the m.3243A>G mtDNA mutation were included. Muscle fat fractions were measured from cross-sections of paraspinal and leg muscles. Peak muscle strength was assessed from a static dynamometer. There was a direct correlation between age and fat fraction in all muscle groups in CPEO patients and healthy controls (p < 0.05). Analysis of covariance showed a higher progression rate of fat replacement in CPEO patients vs. healthy controls in studied muscle groups (p < 0.05). Patients with the m.3243A>G mutation had slower progression rates of fat replacement. Muscle strength decreased with increasing muscular fat fraction in CPEO patients, no correlation was seen in other groups. This indicates that structural muscle changes contribute to the phenotype of older patients affected by CPEO and large-scale deletions. It should therefore be considered, along with known energy deficiencies, as the cause of exercise intolerance.  相似文献   

6.
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) is commonly associated with the A3243G mitochondrial DNA (mtDNA) mutation encoding the transfer RNA of leucine (UUR) (tRNA Leu(UUR)). The pathogenetic mechanisms of this mutation are not completely understood. Neuronal functions are particularly vulnerable to alterations in oxidative phosphorylation, which may affect the function of the neurotransmitter glutamate, leading to excitotoxicity. In order to investigate the possible effects of A3243G upon glutamate homeostasis, we assessed glutamate uptake in osteosarcoma-derived cytoplasmic hybrids (cybrids) expressing high levels of this mutation. High-affinity Na+-dependent glutamate uptake was assessed as radioactive [3H]-glutamate influx mediated by specific excitatory amino acid transporters (EAATs). The maximal rate (Vmax) of Na+-dependent glutamate uptake was significantly reduced in all the mutant clones. Although the defect did not relate to either the mutant load or magnitude of oxidative phosphorylation defect, we found an inverse relationship between A3243G mutation load and mitochondrial ATP synthesis, without any evidence of increased cellular or mitochondrial free radical production in these A3243G clones. These data suggest that a defect of glutamate transport in MELAS neurons may be due to decreased energy production and might be involved in mediating the pathogenic effects of the A3243G mtDNA mutation.  相似文献   

7.
Correlation between clinical and molecular features in two MELAS families.   总被引:2,自引:0,他引:2  
We describe the clinical, morphological, biochemical presentation in two MELAS families, and correlate it with the distribution and proportion of mitochondrial DNA carrying the A to G transition at nt 3243. Family A was characterized by late onset MELAS in two members, CPEO in one, and mild CNS involvement in another. 20-61% of mtDNA of affected and unaffected individuals was mutated in muscle, 2-18% in blood. There was no obvious correlation between clinical picture and proportion of mutated mtDNA. In family B full MELAS syndrome appeared only in the third generation, but the mutation was also detected in muscle of asymptomatic individuals of the first and second generation. The proportion of mutated mtDNA in blood, and to a lesser extent in muscle, correlated with the severity of the clinical presentation. The MELAS mutation is consistently detected in all asymptomatic maternal relatives of MELAS patients. We conclude that different clinical presentations of mitochondrial encephalomyopathy may coexist in the same family, and correlation between clinical severity and molecular abnormality is not always recognizable. Presence of the MELAS mutation in muscle and blood is a necessary but not sufficient condition for the expression of the typical MELAS phenotype.  相似文献   

8.
In the present study we assessed the prevalence and nature of hearing loss in patients with chronic progressive external ophthalmoplegia (CPEO) or Kearns–Sayre syndrome (KSS) due to single large–scale mitochondrial DNA (mtDNA) deletion or mtDNA tRNA Leu (UUR) A3243G point mutation (A3243G PM). 14 patients with mtDNA deletion and three patients with A3243G PM underwent audiological evaluation comprising pure–tone and speech audiometry as well as transient evoked otoacoustic emissions (OAE). Audiological evaluation revealed hearing impairment in 10/17 patients. Hearing loss was mild to moderate predominantly affecting high frequencies in five patients with subjective hearing problems (three patients with mtDNA deletions, two patients with A3243G PM). Subclinical hearing deficits restricted to high frequencies were seen in further five asymptomatic patients (four patients with mtDNA deletions, one patients with A3243G PM). Audiological findings suggested a cochlear origin of hearing loss in all subjects. Our results demonstrate that CPEO or KSS patients due to mtDNA deletion or A3243G PM are at high risk of developing sensorineural hearing deficits.  相似文献   

9.
Various mutations in the mitochondrial tRNALeu(UUR) gene give rise to a variety of neurological disorders. Among these, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) are frequently associated with a tRNALeu(UUR) mutation at nucleotide position 3243 of the mitochondrial DNA. A supplementary clinical feature seen in these patients is headache in early life. Recently, a tRNALeu(UUR) mutation at nucleotide position 3243 has been found in a patient presenting with cluster headache. This led us to examine the mitochondrial genomes of 22 patients presenting with cluster headache. None of the patients harboured the reported tRNALeu(UUR) mutation or any other length variations of the mtDNA. Cluster headache is most likely not causally associated with the A3243G mutation of the mitochondrial DNA.  相似文献   

10.
11.
We studied a patient with a mitochondrial encephalomyopathy characterized by the presence of all the cardinal features of both myoclonic epilepsy and ragged-red fibers (MERRF) and mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) syndromes. Muscle biopsy showed ragged-red fibers (RRF). Some RRF were cytochrome c oxidase (COX)-negative, while some others stained positive for COX. Muscle biochemistry revealed defects of complexes I and IV of the respiratory chain. Both muscle and blood mitochondrial DNA from the patient showed the presence of the mutation at nucleotide position 3243 in the tRNALeu(UUR) gene and the absence of point mutations related to MERRF syndrome. The proportions of mutant mtDNA were 70% in muscle and 30% in blood. The mutation was absent in blood from all maternal relatives, in hair follicles from the mother, and in muscle from one sister of the proband. Therefore, there was no evidence of maternal inheritance. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common mitochondrial disease due to mitochondrial DNA (mtDNA) mutations. At least 15 distinct mtDNA mutations have been associated with MELAS, and about 80% of the cases are caused by the A3243G tRNA(Leu(UUR)) gene mutation. We report here a novel tRNA(Val) mutation in a 37-year-old woman with manifestations of MELAS, and compare her clinicopathological phenotype with other rare cases associated tRNA(Val) mutations.  相似文献   

13.
The m.3243A>G point mutation in the mitochondrial tRNALeu(UUR) (MTTL1) gene is a common cause of mitochondrial DNA disease and is associated with a variety of clinical presentations. A different mutation occurring at the same site – an m.3243A>T transversion – is less prevalent, but has previously been observed in two patients with encephalopathy and lactic acidosis. We report the investigations of a further two patients with the m.3243A>T mutation who presented with either a chronic progressive external ophthalmoplegia (CPEO) phenotype or sensorineural hearing loss, with single fibre mutation studies confirming segregation of the m.3243A>T mutation with COX deficiency.  相似文献   

14.
Clinical features of A3243G mitochondrial tRNA mutation   总被引:2,自引:0,他引:2  
Mitochondrial cytopathy is a heterogeneous group of disorders with a wide range of clinical features. To evaluate the incidence and clinical heterogeneity of A3243G mitochondrial tRNA mutation in the Korean population, we evaluated patients who were clinically suggestive of having mitochondrial encephalomyopathy. Eighty-five patients were included in this study. All showed clinical features of mitochondrial encephalomyopathy and had three or more of the following clinical manifestations: (1) psychomotor regression, (2) hyperlacticacidemia, (3) recurrent stoke-like episodes, (4) idiopathic cardiomyopathy, (5) sensoryneural hearing loss, (6) diabetes mellitus, (7) myopathy, (8) renal disease and (9) relatives with known mitochondrial disease. The patients were clinically classified as MELAS, MERRF, Leigh syndrome, Kearns-Sayre syndrome, chronic progressive external ophthalmoplegia and uncertain. Of the 85 patients, 19 had the A3243G mutation (22.3%). Thirty-one patients showed typical clinical characteristics of MELAS. Fourteen of those 31 patients had A3243G mutation (45.1%). Four patients harboring A3243G mutations showed atypical and heterogeneous clinical features, unlike MELAS. This study revealed the frequent occurrence of A3243G mutation in Korean patients with mitochondrial disorders and their clinical features can be heterogeneous. It will be helpful to screen the presence of A3243G mutation for the genetic diagnosis of mitochondrial encephalomyopathy in Korea.  相似文献   

15.
MERRF/MELAS overlap syndrome in a family with A3243G mtDNA mutation   总被引:3,自引:0,他引:3  
Four members of a family were found to carry the A3243G mtDNA mutation. Clinical features varied from typical MELAS to myoclonic epilepsy to simple deafness without neurological signs. Several other members of the family had symptoms consistent with a mitochondrial disease. Muscle biopsy in 3 of the 4 patients showed the most prominent mitochondrial alterations with partial deficiency of cytochrome c oxidase in the case with the mildest phenotype. Mitochondrial DNA analysis detected a variable percentage of A3243G mutation, roughly correlating with the phenotype. The interesting feature of the family lies in the great intrafamilial variability of the severity of clinical expression, encompassing MELAS and MERRF features, associated with the A3243G mtDNA mutation. A search for the most common mtDNA mutations is recommended in all patients featuring incomplete MELAS or MERRF syndromes and in all familial cases presenting minimal clinical signs.  相似文献   

16.
OBJECTIVE--To verify the phenotype to genotype correlations of mitochondrial DNA (mtDNA) related disorders in an atypical maternally inherited encephalomyopathy. METHODS--Neuroradiological, morphological, biochemical, and molecular genetic analyses were performed on the affected members of a pedigree harbouring the heteroplasmic A to G transition at nucleotide 3243 of the mitochondrial tRNALeu(UUR), which is usually associated with the syndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). RESULTS--The proband was affected by a fullblown syndrome of myoclonic epilepsy with ragged red fibres (MERRF), severe brain atrophy, and basal ganglia calcifications, without the MRI T2 hyperintense focal lesions which are pathognomonic of MELAS. Oligosymptomatic relatives were variably affected by lipomas, goitre, brain atrophy, and basal ganglia calcifications. Muscle biopsies in the proband and his mother showed a MELAS-like pattern with cytochrome c oxidase hyperreactive ragged red fibres and strongly succinate dehydrogenase reactive vessels. Quantification of the A3243G mutation disclosed 78% and 70% of mutated mtDNA in the muscle of the severely affected proband and of his oligosymptomatic mother respectively. Nucleotide sequencing of the mitochondrial tRNALeu(UUR) and tRNALys in the proband's muscle failed to show any additional nucleotide change which could account for the clinical oddity of this pedigree by modulating the expression of the primary pathogenic mutation. CONCLUSION--So far, MERRF has been associated with mutations of the mitochondrial tRNALys, and MELAS with mutations of the mitochondrial tRNALeu(UUR). Now MERRF may also be considered among the clinical syndromes associated with the A to G transition at nt 3243 of the tRNALeu(UUR).  相似文献   

17.
OBJECTIVE: To clarify the relationship between mitochondrial DNA (mtDNA) sequence variations and phenotypes in patients with A3243G mutation. MATERIALS AND METHODS: We studied whole mtDNA sequences in two families with A3243G mutation and characteristic clinical features. Two brothers in Family 1 had shown thiamine deficiency and mitochondrial myopathy without central nervous system involvement. In Family 2, a 16-year-old woman showed the symptoms of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Her mother had had diabetes mellitus and died at the age of 42. The proportion of A3243G mtDNA in blood was 87 and 89% in the patients of Family 1, and 25% in the patient and less than 5% in the mother of Family 2. RESULTS: The mtDNA analysis revealed the following homoplasmic substitutions: T1520C and C12153T found only in Family 1, and A15954G found only in Family 2. These substitutions were not detected in seven other MELAS patients or in 50 controls. CONCLUSION: These substitutions might be specific to these families and could be one of the factors that modulate their clinical features together with the A3243G mutation.  相似文献   

18.
We describe a 62-year-old woman with chronic progressive external ophthalmoplegia (CPEO), multiple lipomas, diabetes mellitus, and a novel mitochondrial DNA (mtDNA) mutation at nucleotide 4302 (4302A>G) of the tRNAIle gene (MTTI). This is the first mutation at position 44 in the variable loop (V loop) of any mitochondrial tRNA.The muscle biopsy revealed 10% ragged-red/ragged-blue fibers and 25% cytochrome c oxidase (COX)-deficient fibers.No deletions or duplications were detected by Southern blot analysis. The 4302A>G transition was present only in the patient’s muscle and single-fiber analysis revealed significantly higher levels of the mutation in COX-deficient than in normal fibers. Like tRNALeu(UUR), tRNAIle appears to be a “hot spot” for mtDNA mutations causing CPEO.  相似文献   

19.
Mitochondrial DNA (mtDNA) disease is an important genetic cause of neurological disability. A variety of different clinical features are observed and one of the most common phenotypes is MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). The majority of patients with MELAS have the 3243A>G mtDNA mutation. The neuropathology is dominated by multifocal infarct-like lesions in the posterior cortex, thought to underlie the stroke-like episodes seen in patients. To investigate the relationship between mtDNA mutation load, mitochondrial dysfunction and neuropathological features in MELAS, we studied individual neurones from several brain regions of two individuals with the 3243A>G mutation using dual cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry, and Polymerase Chain Reaction Restriction Fragment Lenght Polymorphism (PCR-RFLP) analysis. We found a low number of COX-deficient neurones in all brain regions. There appeared to be no correlation between the threshold level for the 3243A>G mutation to cause COX deficiency within single neurones and the degree of pathology in affected brain regions. The most severe COX deficiency associated with the highest proportion of mutated mtDNA was present in the walls of the leptomeningeal and cortical blood vessels in all brain regions. We conclude that vascular mitochondrial dysfunction is important in the pathogenesis of the stroke-like episodes in MELAS patients. As migraine is a commonly encountered feature in MELAS, we propose that coupling of the vascular mitochondrial dysfunction with cortical spreading depression (CSD) might underlie the selective distribution of ischaemic lesions in the posterior cortex in these patients.  相似文献   

20.
Genexpressionsstudien bei klassischen Mitochondriopathien   总被引:1,自引:0,他引:1  
Mende S  Storch A  Reichmann H 《Der Nervenarzt》2007,78(10):1155-1159
Mitochondria are semiautonomous cell organelles which possess their own genome (mtDNA) but nonetheless depend on the import of nuclear-encoded proteins. In recent years, several mutations of mtDNA have been associated with specific diseases of the muscles and nervous system. In 1993, the A>G point mutation at position 3243 of the mtDNA, until then a prominent genetic marker for mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), was detected in patients with progressive external ophthalmoplegia (PEO). Due to the divergent clinical presentations of MELAS and PEO, the presence of potential nuclear secondary mutations or so-called modifier genes had been suspected. Now it is well known that a bidirectional information flow between the mitochondrion and the cell nucleus exists and that nuclear gene expression adapts to the functional status of the mitochondria. However it remains unclear when and how the nucleus responds to changes or mutations of the mtDNA and if there are indeed disease-specific biomarker genes whose expression changes in case of mtDNA aberrations. This review article focuses on the most recent gene expression profiling studies in the field of classic mitochondrial disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号