首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rationale: Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. Objective: To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. Methods and Results: Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. Conclusions: Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators.  相似文献   

2.
3.
4.
5.
The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. Although liver iron content is independently positively correlated with hepatic Bmp6 messenger RNA (mRNA) expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. CONCLUSION: Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, whereas the hepatic Erk1/2 signaling pathway is not activated by iron in vivo.  相似文献   

6.
7.
8.
9.
Bone morphogenetic protein (BMP) signaling regulates embryonic development of many organ systems and defective BMP signaling has been implicated in adult disorders of many of these systems. However, its relevance in cardiac disease has not been reported. Here we demonstrate for the first time that Bmp4 activity promotes cellular apoptosis following ischemia-reperfusion (I/R) injury induced myocardial infarction (MI). Bmp4 heterozygous null mice (Bmp4+/) demonstrated reduced infarct size, less myocardial apoptosis and down-regulation of pro-apoptotic proteins relative to wild-type mice following I/R injury. This was associated with reduction in I/R induced BMP4 levels in the left ventricular infarcted region. Furthermore, treatment of neonatal cardiomyocytes with BMP4 resulted in time and dose-dependent increase in cellular apoptosis and activation of the JNK MAP kinase pathway. In contrast, while JNK activation was significantly attenuated in Bmp4+/ mice and following Smad1 inhibition in myocytes, inhibition of JNK with a specific inhibitory peptide, TAT-JBD20, blocked BMP4 induced apoptosis. In vivo treatment of mice with Noggin, an endogenous extracellular BMP antagonist, or dorsomorphin, a small molecule inhibitor of BMP signaling, reduced infarct size, and inhibited pro-apoptotic signaling accompanied by an inhibition of Smad1 phosphorylation and JNK activation. These studies identify a novel role for Bmp4 in the pathogenesis of myocardial infarction and illustrate the use of a small molecule inhibitor of BMP signaling for treatment of acute I/R injury.  相似文献   

10.
11.
Finberg KE  Whittlesey RL  Andrews NC 《Blood》2011,117(17):4590-4599
The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe(-/-) mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6(-/-) mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe(-/-) mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder.  相似文献   

12.
13.
14.
目的探讨蛋白激酶C(PKC)活性改变对HSC表达TGF β1的影响及在HSC激活中的作用。方法将肝星状细胞系rHSC-99分为3组:对照组(A组),PKC激动剂佛波酯0.5μmol/L组(B组),PKC抑制剂Calphostin C 100nmol/L组(C组)。加药后0、3、6、12h和24h分别检测各组细胞PKC活性的变化;作用24h后,采用Western blot和RT—PCR方法检测各组细胞TGF β1,Smad 4,Ⅰ、Ⅲ型胶原和α-平滑肌肌动蛋白的表达;采用MTT法检测细胞的增殖情况。结果 佛波酯作用后PKC的活性显著增强,而Calphostin C则抑制PKC的活性。PKC活性增强后,与对照组相比TGF β1及其下游信号分子Smad 4的表达分别升高了4.8倍和13.1倍(P〈0.01);HSC的Ⅰ、Ⅲ型胶原和α-平滑肌肌动蛋白的表达分别升高了2.4倍、1.8倍和1.3倍(P〈0.01),并促进HSC的增殖;PKC活性被抑制后则能抑制以上作用。结论PKC活性的改变能调控HSC中TGF β1的表达,在HSC的激活中发挥调节作用。  相似文献   

15.
16.

Objective

To identify mechanisms by which Smad3 maintains articular cartilage and prevents osteoarthritis.

Methods

A combination of in vivo and in vitro approaches was used to test the hypothesis that Smad3 represses Runx2‐inducible gene expression to prevent articular cartilage degeneration. Col2‐Cre;Smad3fl/fl mice allowed study of the chondrocyte‐intrinsic role of Smad3 independently of its role in the perichondrium or other tissues. Primary articular cartilage chondrocytes from Smad3fl/fl mice and ATDC5 chondroprogenitor cells were used to evaluate Smad3 and Runx2 regulation of matrix metalloproteinase 13 (MMP‐13) messenger RNA (mRNA) and protein expression.

Results

Chondrocyte‐specific reduction of Smad3 caused progressive articular cartilage degeneration due to imbalanced cartilage matrix synthesis and degradation. In addition to reduced type II collagen mRNA expression, articular cartilage from Col2‐Cre;Smad3fl/fl mice was severely deficient in type II collagen and aggrecan protein due to excessive MMP‐13–mediated proteolysis of these key cartilage matrix constituents. Normally, transforming growth factor β (TGFβ) signals through Smad3 to confer a rapid and dynamic repression of Runx2‐inducible MMP‐13 expression. However, we found that in the absence of Smad3, TGFβ signals through p38 and Runx2 to induce MMP‐13 expression.

Conclusion

Our findings elucidate a mechanism by which Smad3 mutations in humans and mice cause cartilage degeneration and osteoarthritis. Specifically, Smad3 maintains the balance between cartilage matrix synthesis and degradation by inducing type II collagen expression and repressing Runx2‐inducible MMP‐13 expression. Selective activation of TGFβ signaling through Smad3, rather than p38, may help to restore the balance between matrix synthesis and proteolysis that is lost in osteoarthritis.
  相似文献   

17.
18.
肝纤维化是由于胶原纤维的产生和分解失衡,肝组织细胞外基质(ECM)过度沉积的结果。研究表明,转化生长因子β1(TGF-β1)、替代激活的巨噬细胞(aaM)和白细胞介素-13(IL-13)在纤维化过程中起关键作用。其中TGF-β1和IL-13为近年来的研究热点,前者通过肝星状细胞(HSC)的TGF-β1-Smads细胞信号转导通路起促进作用,而后者通过JAK-STAT6信号途径促纤维化,作用似乎更加关键。此外,替代激活的巨噬细胞为TGF-β1的重要来源,其本身又受IL-13刺激。因此,本文就IL-13、TGF-β1与血吸虫病肝纤维化细胞信号传导进行综述,以探讨血吸虫病肝纤维化的新药作用靶点。  相似文献   

19.
20.
Conversions of signaling gradients into sharp "all-or-none" borders are fundamental to tissue and organismal development. However, whether such conversions can be meaningfully reduced to dissociated cells in culture has been uncertain. Here we describe ultrasensitivity, the phenomenon equivalent to an all-or-none response, in dissociated neural precursor cells (NPCs) exposed to bone morphogenetic protein 4 (Bmp4). NPC ultrasensitivity is evident at the population and single-cell levels based on Msx1 induction, a well known Bmp target response, and occurs in the context of gene expression changes consistent with Bmp4 activity as a morphogen. Dissociated NPCs also display immediate early kinetics and irreversibility for Msx1 induction after brief Bmp4 exposure, which are attractive features for initial border formation. Relevance to border formation in vivo is provided by Bmp4 gain-of-function studies in explants and evidence for single-cell ultrasensitivity in normal and mutant Bmp gradient contexts in the developing forebrain. Together, these studies demonstrate relatively simple, robust, and reducible cell-intrinsic properties that contribute to developmental border formation within a signaling gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号