首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of methionine-enkephalin-Arg6-Gly7-Leu8, a unique peptide derived from proenkephalin A in the rat brainstem, was studied immunocytochemically by using a highly specific antiserum to this octapeptide sequence. Immunoreactive perikarya with various shapes and sizes were detected in many regions of the rat brainstem. Dense accumulation of immunoreactive perikarya and fibers was seen in the nuclei associated with special sensory and visceral functions, such as the interpeduncular nucleus, the parabrachial nucleus, the nucleus of the solitary tract, and the nucleus of the spinal tract of the trigeminal nerve. Clusters of methionine-enkephalin-Arg6-Gly7-Leu8-like immunoreactive perikarya and fibers were observed in certain areas considered to play a role in nociception and analgesia, such as the central gray of the midbrain central gray and the raphe magnus nucleus. Some methionine-enkephalin-Arg6-Gly7-Leu8-like immunoreactive perikarya were distributed in the lateral reticular nucleus, the nucleus of the solitary tract, and the raphe magnus nucleus, where monoaminergic neurons were also detected. In addition to the previously reported enkephalinergic cells, we found many methionine-enkephalin-Arg6-Gly7-Leu8 containing neurons; the rostral and caudal linear nucleus of raphe, the median raphe nucleus, entire length of the raphe magnus nucleus, the medial longitudinal fasciculus, the cuneate nucleus, the external cuneate nucleus, the gracile nucleus, and the area postrema. The wide distribution of this octapeptide-like immunoreactivity reflected neurons expressing the preproenkephalin A gene distributed more widely than previously reported and that innervated many regions.  相似文献   

2.
The distribution of serotonin immunoreactive cell bodies and fibers was studied in the chameleon brain by using the immunohistochemical technique with antisera against serotonin coupled to a carrier with glutaraldehyde. Serotonin perikarya were found in the caudal midbrain tegmentum, in the lateral part of the nucleus reticularis isthmi, the lateral part of the nucleus interpeduncularis and along the midline in the raphe superior. More caudally, the serotonin immunoreactive cell bodies were located along the nucleus raphe inferior and ventrolaterally in the vicinity of the olivary complex. No immunoreactive cell bodies were found in the spinal cord nor in the paraventricular organ (PVO) of the hypothalamus. Immunoreactive fibers were observed in the entire brain. Prominent concentrations were found in the dorsal cortex, lateral septum, lateral geniculate nucleus, median eminence, pretectal nucleus, nucleus interpeduncularis, vestibular nucleus and olivary complex. Descending serotonin immunoreactive fibers were found in particular in the ventral motoneuron area in the spinal cord. One of the most interesting findings in this study was the lack of immunoreactive CSF contacting neurons in the PVO and the observation of an extensive plexus of supraependymal fibers, a feature reported so far only in mammals.  相似文献   

3.
The aim of the present study was to determine the brainstem afferents and the location of neurons giving rise to monoaminergic, cholinergic, and peptidergic inputs to the cat trigeminal motor nucleus (TMN). This was done in colchicine treated animals by using a very sensitive double immunostaining technique with unconjugated cholera-toxin B subunit (CT) as a retrograde tracer. After CT injections in the TMN, retrogradely labeled neurons were most frequently seen bilaterally in the nuclei reticularis parvicellularis and dorsalis of the medulla oblongata, the alaminar spinal trigeminal nucleus (magnocellular division), and the adjacent pontine juxtatrigeminal region and in the ipsilateral mesencephalic trigeminal nucleus. We further observed that inputs to the TMN arise from the medial medullary reticular formation (the nuclei retricularis magnocellularis and gigantocellularis), the principal bilateral sensory trigeminal nucleus, and the dorsolateral pontine tegmentum. In addition, the present study demonstrated that the TMN received 1) serotonergic afferents, mainly from the nuclei raphe obscurus, pallidus, and dorsalis; 2) catecholaminergic afferent projections originating exclusively in the dorsolateral pontine tegmentum, including the K?lliker-Fuse, parabrachialis lateralis, and locus subcoeruleus nuclei; further, that 3) methionin-enkephalin-like inputs were located principally in the medial medullary reticular formation (nuclei reticularis magnocellularis and gigantocellularis and nucleus paragigantocellularis lateralis), in the caudal raphe nuclei (Rpa and Rob) and the dorsolateral pontine tegmentum; 4) substance P-like immunoreactive neurons projecting to the TMN were present in the caudal raphe and Edinger-Westphal nuclei; and 5) cholinergic afferents originated in the whole extent of the nuclei reticularis parvicellularis and dorsalis including an area located ventral to the nucleus of the solitary tract at the level of the obex. In the light of these anatomical data, the present report discusses the possible physiological involvement of TMN inputs in the generation of the trigeminal jaw-closer muscular atonia occurring during the periods of paradoxical sleep in the cat.  相似文献   

4.
5.
There is considerable evidence that the dorsolateral funiculus (DLF) of the spinal cord contains descending pathways critical for both opiate and brainstem stimulation-produced analgesia. To obtain a comprehensive map of brainstem neurons projecting to the spinal cord via the DLF, large injections of horseradish peroxidase (HRP) were made into the lumbosacral spinal cord of cat and rat. These injections were made caudal to midthoracic lesions which spared only a single DLF or ventral quadrant (VQ); thus only those neurons whose axons descended in the spared funiculus would be labelled. Cells with descending axons in the VQ were concentrated in the medullary nucleus raphe pallidus and obscurus, nucleus retroambiguus and in various subregions of the reticular formation including the nucleus reticularis ventralis, gigantocellularis, magnocellularis, pontis caudalis and pontis oralis. Significant numbers of neurons were also found in medial and lateral vestibular nuclei and in several presumed catecholamine-containing neurons of the dorsolateral pons. In the rat, but not in the cat, considerable numbers of cells are present in the mesencephalic reticular formation just lateral to the periaqueductal gray. In both species, some cells were found in the paraventricular nucleus of the hypothalamus. Brainstem cells projecting in the DLF were concentrated in the nucleus raphe magnus and in the adjacent nucleus reticularis magnocellularis, ipsilateral to the spared funiculus. Significant numbers of cells were found in the dorsolateral pons, differing somewhat in their distribution from those projecting in the VQ. DLF-projecting cells were also present in the ipsilateral Edinger-Westphal nucleus and periaqueductal grey contralateral red nucleus of the midbrain and in the ipsilateral hypothalamus. Smaller projections from other sites are described. These results are discussed in terms of the differential contribution of several brainstem neuronal groups, including the serotonergic nucleus, raphe magnus, the ventromedial reticular formation of the medulla, and various catecholamine-containing neurons of the dorsolateral pontine tegmentum to the analgesia produced by opiates and electrical brain stimulation.  相似文献   

6.
Brainstem afferents to the oculomotor omnipause neurons in monkey   总被引:2,自引:0,他引:2  
To determine how saccade-related areas in the brainstem address the saccade generator, we examined the afferents to the nucleus raphe interpositus. This region contains the omnipause neurons, which are pivotal in the generation of saccades. Horseradish peroxidase injected iontophoretically into the nucleus raphe interpositus retrogradely labeled a variety of brainstem nuclei. The greatest numbers of labeled neurons were in the paramedian pontomedullary reticular formation, in the nuclei reticularis gigantocellularis, and paragigantocellularis lateralis. Labeling was more modest but consistent in the interstitial nucleus of Cajal and the adjacent mesencephalic reticular formation, the middle gray of the superior colliculi, the region dorsolateral to the nucleus reticularis tegmenti pontis, and the medial vestibular nucleus. A few neurons were labeled around the habenulopeduncular tract and in the medial portion of the nucleus of the fields of Forel, in the nucleus reticularis medullaris ventralis, and in the spinal nucleus of the trigeminal nerve, the cochlear nucleus, and the superior olivary complex. The distribution and density of labeling suggest that omnipause neurons in the monkey are more intimately connected with other oculomotor structures than those in the cat. In addition, the rhombencephalic reticular afferents to the monkey omnipause neurons are more concentrated in their immediate vicinity than in the cat. The label consistently found dorsolateral to the nucleus reticularis tegmenti pontis may be a newly discovered link in saccade generation.  相似文献   

7.
Cells with possible dual projections to both spinal trigeminal nuclei were identified in the rat brainstem following separate injections of different retrogradely transported markers into the right and left spinal trigeminal nucleus. The greatest number of double-labeled cells was located in the nucleus reticularis gigantocellularis. Several double-marked cells were also observed in the nucleus raphe magnus, the nucleus paragigantocellularis and the periaqueductal gray. These results suggest that some cells in the above brainstem nuclei may have a bilateral modulating effect on the spinal trigeminal nuclei.  相似文献   

8.
Cells with possible dual projections to both spinal trigeminal nuclei were identified in the rat brainstem following separate injections of different retrogradely transported markers into the right and left spinal trigeminal nucleus. The greatest number of double-labeled cells was located in the nucleus reticularis gigantocellularis. Several double-marked were also observed in the nucleus raphe magnus, the nucleus paragigantocellularis and the periaqueductal gray. These results suggest that some cells in the above brainstem nuclei may have a bilateral modulating effect on the spinal trigeminal nuclei.  相似文献   

9.
The distribution and morphological characteristics of monoamine (MA)-containing neuronal somata in the brain stem of kittens and of adult cats were studied by means of the Falck-Hillarp histofluorescence method. This investigation has shown, among other things, that in the midbrain of the cat the catecholamine (CA) perikarya are chiefly confined to the pars compacta of the substantia nigra, the ventromedial tegmental area, the nucleus linearis rostralis and the nucleus parabrachialis pigmentosus. Numerous CA neurons are also present in the dorsolateral part of the pontine tegmentum but also within the nucleus subcoeruleus, in nuclei lemnisci lateralis dorsalis and in nuclei parabrachialis lateralis and medialis. In the medulla, a few CA neuronal somata are lying near the hypoglossal nucleus whereas a larger number of CA cell bodies occur at the level of nucleus reticularis lateralis and in nucleus paragigantocellularis lateralis. On the other hand, most of the serotonin (5-HT) perikarya are confined to the raphe nuclei of the brain stem: nuclei raphe dorsalis, centralis superior, raphe pontis, raphe magnus, raphe pallidus and raphe obscurus. Some 5-HT neuronal somata are also found lateral to the pyramidal tract and to the inferior olivary complex. The various similarities and differences in respect to the pattern of the topographical distribution of MA neurons in the brain stem of the cat as compared to that of other mammals are discussed.  相似文献   

10.
Corticotropin-releasing factor (CRF) has been implicated by both anatomical and physiological techniques as a potential cerebellar transmitter or modulator. In the present experiment, with the aid of immunohistochemistry, we have described specific cerebellar afferent pathways in the rabbit in which CRF is located. CRF-immunoreactive climbing fibers were present in the molecular layer throughout the cerebellum, but especially in lobules 8–9a. All inferior olivary neurons were CRF-immunoreactive. In lobules 8–9a, CRF-immunoreactive mossy fibers were organized in sagittal bands. The highest density of CRF-immunoreactive mossy fiber terminals was observed in the granule cell layer of lobules 8–9a and the flocculus. No CRF-immunoreactive perikarya were located in rabbit cerebellum. The brainstem origin of CRF-immunoreactive mossy fiber terminals was suggested by numerous CRF-immunoreactive perikarya located in the medial, lateral and descending vestibular nuclei, nucleus prepositus hypoglossi, nucleus x, paramedian reticular nucleus, gigantocellular reticular nucleus, lateral reticular nucleus, and raphe nuclei. Using double label experiments, we investigated the specific CRF afferent projection to the flocculus and posterior vermis. Horseradish peroxidase (HRP) injections into the posterior vermis double labeled CRF-immunoreactive neurons in the caudal medial and descending vestibular nuclei and nucleus prepositus hypoglossi. HRP injections into the flocculus double labeled more CRF-immunoreactive neurons in the nucleus prepositus hypoglossi than in the vestibular nuclei. HRP injections into either the posterior vermis or flocculus double labeled CRF-immunoreactive neurons in the paramedian reticular nucleus, nucleus reticularis gigantocellularis, and raphe nuclei. These data suggest that CRF may play an important role in vestibularly related functions of the cerebellum. © 1993 Wiley-Liss, Inc.  相似文献   

11.
By using intratissue injections of colchicine and an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing neuropeptide Y-like immunoreactivity in the brain stem of the cat. The densest clusters of immunoreactive perikarya were observed in the following nuclei: anteroventral cochlear, lateral reticular (internal and external divisions), dorsal tegmental, inferior colliculus and dorsal nucleus of the lateral lemniscus. By contrast, the nuclei abducens, the nucleus of the trapezoid body, preolivary, interpeduncularis, infratrigeminal, gigantocellular tegmental field, coeruleus and dorsal motor nucleus of the vagus had the lowest density. Finally, a moderate density of neuropeptide Y-like immunoreactive cell bodies was found in the nuclei: lateral tegmental field, laminar spinal trigeminal, praepositus hypoglossi, superior colliculus, lateral vestibular and motor trigeminal. In addition, a mapping of the neuropeptide Y-like immunoreactive fibers was carried out. Thus, the densest network of immunoreactive fibers was observed in the laminar spinal trigeminal nucleus. The nuclei periaqueductal gray, inferior central, praepositus hypoglossi, postpyramidal raphe, dorsal raphe, incertus and medial vestibular contained a moderate density of immunoreactive fibers, whereas the nuclei interpeduncularis, inferior colliculus, superior central, gracile, retrorubral, K?lliker-Fuse, dorsal tegmental, ambiguus and alaminar spinal trigeminal had the lowest density of neuropeptide Y-like immunoreactive fibers. The anatomical location of neuropeptide Y-like immunoreactivity suggests that the peptide could play an important role in several physiological functions, e.g., those involved in cardiovascular, auditory, motor, visual, nociceptive and somatosensory mechanisms.  相似文献   

12.
Immunohistochemical localization of enkephalin in rat brain and spinal cord.   总被引:23,自引:0,他引:23  
The distribution of immunoreactive enkephalin in rat brain and spinal cord was studied by immunoperoxidase staining using antiserum to leucine-enkephalin ([Leu5]-enkephalin) or methionine-enkephalin ([Met5]-enkephalin). Immunoreactive staining for both enkephalins was similarly observed in nerve fibers, terminals and cell bodies in many regions of the central nervous system. Staining of perikarya was detected in hypophysectomized rats or colchicine pretreated rats. The regions of localization for enkephalin fibers and terminals include in the forebrain: lateral septum, central nucleus of the amygdala, area CA2 of the hippocampus, certain regions of the cortex, corpus striatum, bed nucleus of the stria terminalis, hypothalamus including median eminence, thalamus and subthalamus; in the midbrain: nucleus interpeduncularis, periaqueductal gray and reticular formation; in the hind brain: nucleus parabrachialis, locus ceruleus, nuclei raphes, nucleus cochlearis, nucleus tractus solitarii, nucleus spinalis nervi trigemini, motor nuclei of certain cranial nerves, nucleus commissuralis and formatio reticularis; and in the spinal cord the substantia gelatinosa. In contrast enkephalin cell bodies appear sparsely distributed in the telencephalon, diencephalon, mesencephalon and rhombencephalon. The results of the histochemical staining show that certain structures which positively stain for enkephalin closely correspond to the distribution of opiate receptors in the brain and thus support the concept that the endogenous opiate peptides are involved in the perception of pain and analgesia. The localization of enkephalin in the preoptic-hypothalamic region together with the presence of enkephalin perikarya in the paraventricular and supraoptic nuclei suggest a role of enkephalin in the regulation of neuroendocrine functions.  相似文献   

13.
Termination areas of corticobulbar and corticospinal fibres in the rat   总被引:1,自引:0,他引:1  
Solution of the cobaltic lysine complex compound injected into the bulbar pyramid was taken up by pyramidal tract (PT) fibres and intraaxonally transported as far rostral as the internal capsule, and as far caudal as segment C4 of the spinal cord. With sulfide-precipitation of the cobalt and silver-intensification of the CoS, terminal branches of corticobulbar and corticospinal fibres could be shown in the following structures: In the pons the medial, ventral and the medial part of the lateral pontine nuclei are supplied with collaterals of PT fibres. The medial pontine nucleus receives contralateral PT fibres as well. The nucleus raphe magnus receives PT fibre collaterals from both sides. In the reticular formation contralateral fibres terminate in n. reticularis pontis caudalis, n. gigantocellularis, n. paramedianus, n. reticularis ventralis and dorsalis. Ipsilateral fibers terminate in the n. gigantocellularis and n. reticularis ventralis. The inferior olive receives both ipsilateral and contralateral PT fibres. All parts of the central gray substance are supplied by ipsi-and contralateral fibres which emerge from the PT at the level of the pyramidal decussation. The caudal nucleus of the spinal nucleus of the trigeminus receives a strong bundle of crossing PT fibres which terminate in the subnucleus magnocellularis. The dorsal column nuclei are virtually outlined by the numerous terminals of PT fibres. An oval area at ventrolateral aspect of the cuneate nucleus is innervated by PT fibres. The neurones of this area send their axons to the dorsal white column. In the spinal cord PT fibre terminals delineate four areas of termination. The first is the internal basilar nucleus which is the most richly supplied. The second lies lateral and ventral to this nucleus including segments of laminae V, VI, and VII. The third area extends into the ventral horn including a small zone of the ventral part of lamina VII. Thin PT fibre collaterals may establish here direct contacts with motoneurone dendrites. The fourth area includes laminae III and IV and receives individual terminal formations of thicker PT fibres. Findings which corroborate and which extend previous results are discussed. A few notes are made on the functional significance of some of these fibre connections.  相似文献   

14.
The distribution of GABA-producing neurons in the brainstem auditory nuclei of the rat was investigated immunohistochemically by using an antibody to glutamic acid decarboxylase (GAD). In the cochlear nuclei, GAD immunoreactive neurons are present only in the superficial granular and molecular layers, whereas terminals are found in all subdivisions of the nuclei and are particularly dense surrounding large spherical cells and one type of stellate cell. In the superior olivary complex, GAD immunoreactive neurons are located in the lateral olivary nucleus and throughout the periolivary region. Immunoreactive terminals are distributed along dendrites of principal cells of the medial and lateral olivary nuclei and are clustered around somata of globular neurons of the nucleus of the trapezoid body. An extremely dense band of immunoreactive somata and terminals is present along the ventral edge of the olivary complex. The ventral, intermediate, and dorsal nuclei of the lateral lemniscus contain small fusiform GAD-immunoreactive neurons and a moderately dense plexus of immunoreactive terminals. The inferior colliculus contains a large population of GAD-immunoreactive perikarya and an extremely dense accumulation of immunoreactive terminals in the central, dorsomedial, and external nuclei. These observations indicate that GABA systems are involved in function at all levels of the brainstem auditory pathway.  相似文献   

15.
The retrograde transport of fluorescent markers has been combined with the glyoxylic acid and Falck-Hillarp techniques to identify the origin of monoamine axons within the spinal cord of the North American opossum. Catecholamine axons arise from neurons located within the ventrolateral medulla, dorsal to the superior olivary complex, within the dorsolateral and rostrolateral pons and within the periventricular nuclei of the hypothalamus. Such neurons are most numerous within the dorsolateral pons where they are found dorsal and lateral to the motor trigeminal nucleus, within the nucleus locus coeruleus pars alpha and adjacent reticular formation as well as within the ventral part of the nucleus locus coeruleus. Neurons containing the fluorescent marker and catecholamines were interspersed with others containing only the injected marker with the possible exception of the nucleus locus coeruleus. Spinal axons of the indoleamine type arise from neurons within the nuclei pallidus, obscurus and magnus raphe, the nucleus reticularis gigantocellularis, the nucleus reticularis gigantocellularis pars ventralis, the nucleus reticularis pontis pars ventralis and the nucleus dorsalis raphe. The latter nucleus only innervates rostral cervical levels. Most of the above areas also contain many non-indoleamine neurons which were labelled by the injected marker. This was particularly true of the nucleus magnus raphe and the adjacent nucleus reticularis points pars ventralis after injections of fluorescent markers into the superficial dorsal horn.  相似文献   

16.
Early studies that used older tracing techniques reported exceedingly few projections from the dorsal raphe nucleus (DR) to the brainstem. The present report examined DR projections to the brainstem by use of the anterograde anatomical tracer Phaseolus vulgaris leucoagglutinin (PHA-L). DR fibers were found to terminate relatively substantially in several structures of the midbrain, pons, and medulla. The following pontine and midbrain nuclei receive moderate to dense projections from the DR: pontomesencephalic central gray, mesencephalic reticular formation, pedunculopontine tegmental nucleus, medial and lateral parabrachial nuclei, nucleus pontis oralis, nucleus pontis caudalis, locus coeruleus, laterodorsal tegmental nucleus, and raphe nuclei, including the central linear nucleus, median raphe nucleus, and raphe pontis. The following nuclei of the medulla receive moderately dense projections from the DR: nucleus gigantocellularis, nucleus raphe magnus, nucleus raphe obscurus, facial nucleus, nucleus gigantocellularis-pars alpha, and the rostral ventrolateral medullary area. DR fibers project lightly to nucleus cuneiformis, nucleus prepositus hypoglossi, nucleus paragigantocellularis, nucleus reticularis ventralis, and hypoglossal nucleus. Some differences were observed in projections from rostral and caudal parts of the DR. The major difference was that fibers from the rostral DR distribute more widely and heavily than do those from the caudal DR to structures of the medulla, including raphe magnus and obscurus, nucleus gigantocellularis-pars alpha, nucleus paragigantocellularis, facial nucleus, and the rostral ventrolateral medullary area. A role for the dorsal raphe nucleus in several brainstem controlled functions is discussed, including REM sleep and its events, nociception, and sensory motor control. © Wiley-Liss, Inc.  相似文献   

17.
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.  相似文献   

18.
Capsaicin is a neurotoxin known for its ability to cause degeneration of small unmyelinated primary sensory neurons in both spinal and cranial nerves. Although lower motor neurons do not degenerate following capsaicin treatment, the extent to which capsaicin may damage neurons in the brain has not been thoroughly evaluated. This study examines the effects of systemic capsaicin (50-150 mg/kg) on the central nervous system of 10-day-old rats. Rat pups were injected with capsaicin or the injection vehicle and sacrificed 6 hours-10 days later. Brains, spinal cords, and retinas were stained with cupric silver to label degenerating neurons. As previously reported for capsaicin-treated rats, degenerating nerve terminals were present in areas receiving primary afferent input: the spinal cord dorsal horn, spinal trigeminal nucleus, nucleus of the solitary tract, and area postrema. However, degenerating terminals were also present in areas not known to receive primary sensory innervation: the inferior olivary nucleus, sphenoid nucleus, medial and olivary pretectal nuclei, interpeduncular nucleus, interfascicular nucleus, caudal linear, dorsal, median, and paramedian raphe nuclei, supramammillary area, lateral habenula, ventrolateral geniculate nucleus, ventral reuniens nucleus, ventromedial hypothalamic nucleus, lateral hypothalamic and preoptic areas, suprachiasmatic nucleus, septohypothalamic nucleus, bed nucleus of the stria terminalis, lateral septal nucleus, accumbens shell, olfactory bulb, and retina. Some areas where capsaicin caused degeneration in rat pups do not appear to be capsaicin-sensitive in adult rats. Results indicate that (1) capsaicin's neurotoxicity is not limited to primary sensory neurons and (2) developmental factors may alter the capsaicin sensitivity of some neuronal projections within the brain.  相似文献   

19.
Central projections of the Arnold's nerve (the auricular branch of the vagus nerve; ABV) of the cat were examined by the transganglionic HRP method. After applying HRP to the central cut end of the ABV, HRP-labeled neuronal somata were seen in the superior ganglion of the vagus nerve. Main terminal labeling was seen ipsilaterally in the solitary nucleus, in the lateral portions of the ventral division of the principal sensory trigeminal nucleus, in the marginal regions of the interpolar subnucleus of the spinal trigeminal nucleus, in the marginal and magnocellular zones of the caudal subnucleus of the spinal trigeminal nucleus, in the ventrolateral portions of the cuneate nucleus, and in the dorsal horn of the C1–C3 cord segments. In the solitary nucleus, labeled terminals were seen in the interstitial, dorsal, dorsolateral and commissural subnuclei; some of these terminals may be connected monosynaptically with solitary nucleus neurons which send their axons to the somatomotor and/or visceromotor centers in the brainstem and spinal cord.  相似文献   

20.
The distribution of monoaminergic cell bodies in the brainstem of the cat has been examined with Falck-Hillarp fluorescence histochemical technique. Quantitative determinations indicate that the cat brainstem contains about 60,300 indolaminergic (IA) cells. The majority of these (about 46,700, or 77.5%) are located within raphe nuclei. The largest number is contained within nucleus raphe dorsalis (RD), accounting for around 24,300 IA cells, while raphe pallidus (RP) holds about 8,000, raphe centralis superior (RCS) 7,400, raphe magnus (RM) 2,400, raphe obscurus (RO) 2,300, linearis intermedius (LI) 2,100, and the raphe pontis (RPo) only some 280 IA cells. The IA cells represent, however, only part of the neuronal population of raphe nuclei, which, in addition, hold varying numbers of other medium-sized and small-sized neurons. Thus, quantifications in Nissl-stained material indicate that the IA cells make up about 70% of the medium-sized cells in RD, 50% in RP, 35% in RCS and RO, 25% in LI, 15% in RM, and only 10% in RPo. The substantial numbers of small-sized perikarya observed in all raphe nuclei may represent interneurons. Significant numbers of IA cells were consistently located outside the raphe nuclei at all brainstem levels. In all, these amounted to approximately 13,600, or 22.5% of the total number of IA cells. Thus, IA cells occurred in the myelinated bundles, and sometimes in reticular formation, bordering the raphe nuclei; in the ventral brainstem forming a lateral extension from the ventral raphe (RP, RM, RPo, RCS, and LI) to the position of the rubrospinal bundle; in the periventricular gray and subjacent tegmentum of dorsal pons and caudal mesencephalon; in the locus coeruleus (LC) complex; around the motor trigeminal nucleus; caudal to the red nucleus; and in the interpeduncular and interfascicular nuclei. The wide distribution of IA cells leads to a considerable mixing with catecholaminergic (CA) cell groups. Our observations on CA cell distribution are essentially in accordance with previous reports. Quantifications indicate that the LC complex contains about 9,150 CA cells, unilaterally. A previously unnoticed group of scattered CA cells was found in relation to the vestibular nuclei and extending dorsally toward the deep cerebellar nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号