首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since synaptic plasticity is an important property of the brain, it is timely to try to understand the possible mechanisms underlying this phenomenon. The role of the cytoplasm for neuronal functions has until now been largely overlooked, the main emphases being on the plasma membrane for fast electrical events and on cytoplasmic organelles for the slower metabolic processes. However, recent studies on the cytoplasm of non-muscle cells have stressed the importance of contractile proteins, like actin, on maintaining the cell shape and a number of vital cellular functions which may be related to the phase transitions in the cytoplasm. The necessary versatility is conferred on the actin networks by actin-associated proteins and by the free cytosolic calcium. In the nervous system, in addition to actin and myosin, a number of actin regulatory proteins was recently isolated, and they were shown to have properties similar to those of other non-muscle cells. Consequently, actin networks in neurons like those in non-muscle cells may be capable of contraction and phase transitions. The phase transitions have a rapid onset, and they may be quickly terminated or they may last over extended periods of time. In this way actin networks may gain control over the state of the cytoplasm and hence over the function of the neuron. Actin may be therefore uniquely suited to regulate various plastic reactions. The cytoplasm of growth cones and dendritic spines contains solely actin networks and is devoid of microtubules and neurofilaments. Since both these structures contain myosin and since growth cones are endowed with a considerable motility, dendritic spines also may have a likewise property. The necessary regulation of the levels of free cytosolic calcium may be provided by the spine apparatus in addition to calcium pumps in the plasma membrane and calcium regulatory proteins in the spine cytoplasm. Various types of stimulation which change the level of free cytosolic calcium may induce contraction of the spine actin network which may be responsible for the morphometric changes observed following different experimental interventions and pathological conditions. Although most of the conclusions in this review are rather speculative they may provide directions for future research in the spine and synaptic plasticity.  相似文献   

2.
The in situ detection of macromolecules by means of immunoelectron microscopy provides information about their ultrastructural localization in cellular compartments. With this technique, we have demonstrated that the contractile proteins actin and myosin are both localized in dendritic spines at densities exceeding those of other neuronal compartments. Myosin was associated with actin filaments, with spine plasma membrane, and with membranes of the spine apparatus. Given the dynamic properties of actin and myosin, these data suggest that these proteins may be involved in the mechanism of synaptic plasticity in general and in morphometric change resulting from intense synaptic activation in particular.  相似文献   

3.
Precise control of the formation and development of dendritic spines is critical for synaptic plasticity. Consequently, abnormal spine development is linked to various neurological disorders. The actin cytoskeleton is a structural element generating specific changes in dendritic spine morphology. Although mechanisms underlying dendritic filopodia elongation and spine head growth are relatively well understood, it is still not known how spine heads are enlarged and stabilized during dendritic spine maturation. By using rat hippocampal neurons, we demonstrate that the size of the stable actin pool increases during the neuronal maturation process. Simultaneously, the treadmilling rate of the dynamic actin pool increases. We further show that myosin IIb controls dendritic spine actin cytoskeleton by regulating these two different pools of F-actin via distinct mechanisms. The findings indicate that myosin IIb stabilizes the stable F-actin pool through actin cross-linking. Simultaneously, activation of myosin IIb contractility increases the treadmilling rate of the dynamic pool of actin. Collectively, these data show that myosin IIb has a major role in the regulation of actin filament stability in dendritic spines, and elucidate the complex mechanism through which myosin IIb functions in this process. These new insights into the mechanisms underlying dendritic spine maturation further the model of dendritic spine morphogenesis.  相似文献   

4.
J A Markham  E Fifková 《Brain research》1986,392(1-2):263-269
The myosin S-1 subfragment was used to label actin filaments in the developing rat brain. The results show actin filaments present throughout the dendritic region with highest concentrations within growth cones and regions of spine development. Between 6 and 25 days postnatal, spines became more complex and actin filaments within them increased in number and formed a complex network. The observed organization of actin supports the hypothesis that actin has a role in the protrusion of spines from the dendrite during development.  相似文献   

5.
Interactions between drebrin and Ras regulate dendritic spine plasticity   总被引:1,自引:0,他引:1  
Dendritic spines are major sites of morphological plasticity in the CNS, but the molecular mechanisms that regulate their dynamics remain poorly understood. Here we show that the association of drebrin with actin filaments plays a major role in regulating dendritic spine stability and plasticity. Overexpressing drebrin or the internal actin-binding site of drebrin in rat hippocampal neurons destabilized mature dendritic spines so that they lost synaptic contacts and came to resemble immature dendritic filopodia. Drebrin-induced spine destabilization was dependent on Ras activation: expression of constitutively active Ras destabilized spine morphology whereas drebrin-induced spine destabilization was rescued by co-expressing dominant negative Ras. Conversely, RNAi-mediated drebrin knockdown prevented Ras-induced destabilization and promoted spine maturation in developing neurons. Together these data demonstrate a novel mechanism in which the balance between stability and plasticity in dendritic spines depends on binding of drebrin to actin filaments in a manner that is regulated by Ras.  相似文献   

6.
Dendritic spines act as the receptive contacts at most excitatory synapses. Spines are enriched in a network of actin filaments comprised of two kinetically distinct pools. The majority of spine actin is highly dynamic and regulates spine size, structural plasticity, and postsynaptic density organization. The remainder of the spine actin network is more stable, but the function of this minor actin population is not well understood, as tools to study it have not been available. Previous work has shown that disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. Here, using cultured hippocampal neurons pooled from both sexes of mice, we provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement, associated with increased cortactin and GluN2B levels. Finally, tonic increases in synaptic activity rescue spine loss following Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest that Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.SIGNIFICANCE STATEMENT Dendritic spines contain two kinetically distinct pools of actin. The more abundant, highly dynamic pool regulates spine shape, size, and plasticity. The function of the smaller, stable actin network is not well understood, as tools to study it have not been available. We demonstrate here that Abl2 and its substrate and interaction partner, cortactin, are essential to maintain the stable pool in spines. Depletion of the stable actin pool via disruption of Abl2 or cortactin, or interactions between the proteins, significantly reduces spine stability. We also provide evidence that tonic increases in synaptic activity promote spine stability via enrichment of cortactin in spines, suggesting that synaptic activity acts on the stable actin pool to stabilize dendritic spines.  相似文献   

7.
Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non-muscle γ- and β-actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that γ-actin is expressed at a constant level throughout development, while the level of β-actin expression rapidly decreases with age. At the light microscopic level, γ-actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, β-actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, γ-actin is found in the cell body, neurites and growth cones, while β-actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565–9572; Bassell et al. (1998), J. Neuroscience, 18, 251–265]. Electron microscopy of post-embedding immunogold-labelled tissue confirms the widespread distribution of γ-actin, and also reveals an increased concentration of γ-actin in dendritic spines in the adult. During development, β-actin accumulation is observed in actively growing structures, e.g. growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, β-actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.  相似文献   

8.
Fast confocal imaging of calcium released from stores in dendritic spines   总被引:2,自引:0,他引:2  
The emerging significance of calcium stores in neuronal plasticity and the assumed involvement of dendritic spines in long-term plastic properties of neurons have led us to examine the presence and possible regulation of calcium stores in dendritic spines. Immunohistochemical staining for ryanodine receptors was found in dendritic spines of cultured hippocampal neurons. Confocal microscopic imaging of calcium transients in dendritic spines of these neurons in response to caffeine allowed us to demonstrate an independent and unique calcium store in spines. The response to caffeine was blocked by thapsigargin and ryanodine, and maintained in calcium-free medium. The calcium stores were depleted faster in the spines than the dendrites. Furthermore, when calcium was released from stores under calcium-free conditions, and diffused passively between the spine and the dendrite, the length of the spine neck determined the degree of spine independence. Finally, the caffeine-sensitive ryanodine receptor-linked calcium store was instrumental in regulating the response of neurons to glutamate. These results have important implications for understanding the roles of dendritic spines in neuronal integration and plasticity.  相似文献   

9.
Shapes of dendritic spines are changed by various physiological or pathological states. The high degree of spine shape heterogeneity suggests that they would be the morphological basis for synaptic plasticity. An increasing number of proteins and signal transduction pathways have recently been shown to be associated with structural modifications of spines. Here, we review the possible functional roles of spine shapes in cerebellar Purkinje neurons. Several studies have suggested that spine shapes in Purkinje cells are regulated by both intrinsic and environmental factors, and different spine shapes could have significantly different consequences for brain function. Clearly constricted necks observed in thin, mushroom-shaped, and branched spines serve for compartmentalization of calcium and other second messenger molecules, influencing different signaling mechanisms and synaptic plasticity. Mushroom-shaped spines frequently have perforated postsynaptic density and the area of the spine head is much larger than simple spines, implying that membrane dynamics and receptor turnover are occurring. Branched spines might form additional synapses with afferent inputs resulting in the modification of neuronal circuits. Taken together, all these studies suggest that each spine shape is likely to have a distinct role in Purkinje cell function.  相似文献   

10.
Matus A  Brinkhaus H  Wagner U 《Hippocampus》2000,10(5):555-560
Dendritic spines form the postsynaptic element at most excitatory synapses in the brain. The spine cytoskeleton consists of actin filaments which, in time-lapse recordings of living neurons expressing actin labeled with green fluorescent protein, can be seen to undergo rapid, dynamic changes. Because actin dynamics are associated with changes in cell shape, these cytoskeletal rearrangements may form a molecular basis for the morphological plasticity at brain synapses. The rapidity of these dynamic events in dendritic spines raises new questions. First, do the changes in actin cytoskeleton that are visible by light microscopy really correspond to changes in spine morphology, or do they represent changes in the relationship between actin and its many binding partners at postsynaptic sites? Second, how are these changes regulated by synaptic transmission? Third, to what extent do these changes occur in organized brain tissue? Answers to these questions are now beginning to emerge.  相似文献   

11.
Actin dynamics and actin-based motility are important for neurite outgrowth and synapse plasticity. Recent work implicates actin in synapse assembly, but the morphological relationship between actin and synapses during development is unclear. Here we used developing hippocampal neurons grown in culture to examine the relationship between F- and G-actin and clusters of synaptic proteins. Both F- and G-actin are most enriched in dendritic and axonal growth cones, but only G-actin is present within the distal tips of filopodia. Outside of growth cones, F-actin levels are greater in dendrites than in axons, whereas G-actin levels are slightly greater in axons than in dendrites. The distribution of both F- and G-actin is consistent with their presence at synapses, but only F-actin levels become detectably enhanced at synaptic sites. Quantitative analyses suggest that first-forming synapses are associated with enhanced levels of pre- and postsynaptic F-actin that do not necessarily remain elevated during synapse maturation. However, nearly all mature excitatory synapses become associated with high, mostly postsynaptic concentrations of F-actin contained principally within dendritic spines. Mature shaft and GABAergic synapses are also associated with enhanced levels of F-actin, but to a lesser degree. Thus, although F-actin is essential for function and maintenance of young synapses, it need not be highly concentrated at every site. The large increase in postsynaptic F-actin concentration observed in mature neurons is likely to reflect actin's role in dendritic spine morphology and in synapse plasticity.  相似文献   

12.
Dendritic spines are sites of synaptic plasticity in the brain and are capable of remodeling their shape and size. However, little is known about the cellular mechanisms that regulate spine morphology and motility. Synaptopodin is a recently described actin-associated protein found in renal podocytes and dendritic spines (Mundel et al. J Cell Biol. [1997] 139:193-204), which is believed to play a role in spine plasticity. The present study analyzed the distribution of synaptopodin in the hippocampal formation. In situ hybridization histochemistry revealed a high constitutive expression of synaptopodin mRNA in the principal cell layers. Light microscopic immunohistochemistry showed that the protein is distributed throughout the hippocampal formation in a region- and lamina-specific manner. Postembedding immunogold histochemistry demonstrated that synaptopodin is exclusively present in dendrites and spines, specifically in the spine neck in close association with the spine apparatus. Spines lacking a spine apparatus are not immunoreactive for synaptopodin. These data suggest that synaptopodin links the spine apparatus to actin and may thus be involved in the actin-based plasticity of spines.  相似文献   

13.
The strength of synaptic connections in the brain varies with activity, and this plasticity depends on remodeling of the actin cytoskeleton in dendritic spines. Critical to this are the Rho family GTPases, whose activity is controlled by various modulatory proteins, including the Rho-GEF Lfc. In cultured neurons and nonneuronal cells, Lfc has been shown both to bind to microtubules and to regulate the actin cytoskeleton. Significantly, Lfc was found to be concentrated in the dendritic shafts of cultured hippocampal neurons under control conditions but then translocated into spines when neural activity was stimulated. In this study, we used immunohistochemistry and electron microscopy to examine activity-dependent changes in the distribution of Lfc in the neuropil of monkey prefrontal cortex. We found that, although Lfc was concentrated in dendrites, it also had a complex distribution in the neuropil, including being present in spines, axons, terminals, and glial processes. Moreover, Lfc distribution varied in different layers of cortex. By using an in vitro slice preparation of monkey prefrontal cortex, we demonstrated an activity-dependent translocation of Lfc from dendritic shafts to spines. The results of this study support a role for Lfc in activity-dependent spine plasticity and demonstrate the feasibility of studying activity-dependent changes in protein localization in tissue slices.  相似文献   

14.
Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single‐spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.  相似文献   

15.
Dendritic spine morphology is thought to play important roles in synaptic development and plasticity, and morphological derangements in spines are correlated with several neurological disorders. Here, we identified an interaction between Spine-Associated RapGAP (SPAR), a postsynaptic protein that reorganizes actin cytoskeleton and drives dendritic spine head growth, and PDLIM5/Enigma Homolog (ENH), a PDZ-LIM (postsynaptic density-95/Discs large/zona occludens 1-Lin11/Isl-1/Mec3) family member. PDLIM5 has been implicated in susceptibility to bipolar disorder, major depression, and schizophrenia, but its function in neurological disease is poorly understood. We show that PDLIM5 is present in the postsynaptic density, where it promotes decreased dendritic spine head size and longer, filopodia-like morphology. Conversely, RNA interference against PDLIM5 or loss of PDLIM5 interaction with SPAR caused increased spine head diameter. Furthermore, PKC activation promoted delivery of PDLIM5 into dendritic spines and increased its spine colocalization with SPAR. These data reveal new postsynaptic functions for PDLIM5 in shrinkage of dendritic spines that may be relevant to its association with psychiatric illness.  相似文献   

16.
Dendritic spines, small bulbous postsynaptic compartments emanating from neuronal dendrites, have been thought to serve as basic units of memory storage. Despite their small size (~0.1 femtoliter), thousands of species of proteins exist in the spine, including receptors, channels, scaffolding proteins and signaling enzymes. Biochemical signaling mediated by these molecules leads to morphological and functional plasticity of dendritic spines, and ultimately learning and memory in the brain. Here, we review new insights into the mechanisms underlying spine plasticity brought about by recent advances in imaging techniques to monitor molecular events in single dendritic spines. The activity of each protein displays a specific spatiotemporal pattern, coordinating downstream events at different microdomains to change the function and morphology of dendritic spines.  相似文献   

17.
Drebrin is a major actin-filament-binding protein localized in mature dendritic spines. A recent in vivo immunoelectron microscopic study suggests that drebrin content at each dendritic spine is regulated by some unknown mechanisms. In the present in vitro study, we examined whether glutamate stimulation alters drebrin content in dendritic spines. Glutamate stimulation induced disappearance of drebrin immunostaining from dendritic spines but led to appearance of drebrin immunostaining in dendritic shafts and somata. The glutamate-induced shift of drebrin immunostaining was blocked by an NMDA receptor antagonist. Immunoblot analyses showed that both the total and the cytosolic drebrin remained unchanged and revealed that the drebrin shift was not due to drebrin degradation. These findings indicate that NMDA receptor activation induces a shift in subcellular distribution of drebrin associated with actin filaments, and that the shift might be a molecular basis for actin reorganization accompanied with synaptic plasticity.  相似文献   

18.
Modifications of the size, shape and number of dendritic spines is thought to be an important component of activity-dependent changes of neuronal circuits, and may play an important role in the plasticity of drug addiction. The present study examined whether homeostatic increases in synaptic N-methyl-d-aspartate (NMDA) receptors in response to chronic ethanol exposure is associated with corresponding morphological changes in dendritic spines. Prolonged exposure of rat hippocampal cultures to either the NMDA receptor antagonist d(-)-2-amino-5-phosphono-pentanoic acid or to ethanol increased punctate staining of F-actin and the postsynaptic density protein-95 (PSD-95). The increase in dendritic F-actin occurred only with clusters that co-localized with PSD-95 clusters, indicating that these actin structures likely represent dendritic spines. The ethanol-induced increases in PSD-95 and F-actin clusters were activity-dependent and reversible. Finally, inhibition of protein palmitoylation prevented ethanol-induced increases in synaptic NMDA receptor clustering and F-actin without altering the basal clustering of either F-actin or PSD-95. These observations support a model in which chronic ethanol exposure induces homeostatic increases of NR2B-containing NMDA receptors and PSD-95 to the postsynaptic density. This in turn may provide a scaffolding platform for the subsequent recruitment of actin signaling cascades that alter actin cycling and promote spine enlargement.  相似文献   

19.
20.
Dendritic spines are morphing structures believed to provide a cellular substrate for synaptic plasticity. It has been suggested that the actin cytoskeleton is the target of molecular mechanisms regulating spine morphology. Here we hypothesized that acidic calponin, an actin-binding protein, is one of the key regulators of actin filaments during spine plasticity. Our data showed that the overexpression of acidic calponin-GFP (green fluorescent protein) in primary cultures of rat hippocampal neurons causes an elongation of spines and an increase of their density as compared with those of GFP-expressing neurons. These effects required the actin-binding domains of acidic calponin. The close apposition of the presynatic marker synaptophysin to these long spines and the presence of specific postsynaptic markers actin, PSD-95, NR1, and GluR1 suggested the existence of functional excitatory synaptic contacts. Indeed, electrophysiological data showed that the postsynaptic overexpression of acidic calponin enhanced the frequency of miniature excitatory postsynaptic currents as compared with that of GFP-expressing neurons, but did not affect their properties such as amplitude, rise time, and half width. Studies in heterologous cells revealed that acidic calponin reorganized the actin filaments and stabilized them. Taken together, these findings show that acidic calponin regulates dendritic spine morphology and density, likely via regulation of the actin cytoskeleton reorganization and dynamic. Furthermore, the acidic calponin-induced spines are able to establish functional glutamatergic synapses. Such data suggest that acidic calponin is a key factor in the regulation of spine plasticity and synaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号