首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: To assess the effects of focal motor cortex stimulation on motor performance and cortical excitability in patients with Parkinson's disease (PD). METHODS: Repetitive transcranial magnetic stimulation (rTMS) was performed on the left motor cortical area corresponding to the right hand in 12 'off-drug' patients with PD. The effects of subthreshold rTMS applied at 0.5 Hz (600 pulses) or at 10 Hz (2000 pulses) using a 'real' or a 'sham' coil were compared to those obtained by a single dose of l-dopa. The assessment included a clinical evaluation by the Unified Parkinson's Disease Rating Scale and timed motor tasks, and a neurophysiological evaluation of cortical excitability by single- and paired-pulse TMS techniques. RESULTS: 'Real' rTMS at 10 or 0.5 Hz, but not 'sham' stimulation, improved motor performance. High-frequency rTMS decreased rigidity and bradykinesia in the upper limb contralateral to the stimulation, while low-frequency rTMS reduced upper limb rigidity bilaterally and improved walking. Concomitantly, 10 Hz rTMS increased intracortical facilitation, while 0.5 Hz rTMS restored intracortical inhibition. CONCLUSIONS: Low- and high-frequency rTMS of the primary motor cortex lead to significant but differential changes in patients with PD both on clinical and electrophysiological grounds. The effects on cortical excitability were opposite to previous observations made in healthy subjects, suggesting a reversed balance of cortical excitability in patients with PD compared to normals. However, the underlying mechanisms of these changes remain to determine, as well as the relationship with clinical presentation and response to l-dopa therapy. SIGNIFICANCE: The present study gives some clues to appraise the role of the primary motor cortex in PD. Clinical improvement induced by rTMS was too short-lasting to consider therapeutic application, but these results support the perspective of the primary motor cortex as a possible target for neuromodulation in PD.  相似文献   

2.
In Parkinson's disease (PD), levodopa and subthalamic nucleus (STN) stimulation lead to major improvement in motor symptoms. Effects of both treatments on cognition and affective status are less well understood. Motor, cognitive, and affective symptoms may relate to the dysfunctioning of parallel cortico-striatal loops. The aim of this study was to assess cognition, behavior, and mood, with and without both treatments in the same group of PD patients. A group of 22 nondemented PD patients was included in this study. Patients were tested twice before surgery (off and on levodopa) and twice 3 months after surgery (OFF and ON STN stimulation, off levodopa). Cognitive and affective effects of STN stimulation and levodopa had some common, but also different, effects. STN stimulation improved performance on the planning test, associated with the dorsolateral prefrontal cortex. However, the treatments had opposite effects on tests associated with the orbitofrontal cortex; specifically, levodopa impaired while STN stimulation improved performance on the extinction phase of a reversal/extinction task. Acutely, both treatments improved motivation and decreased fatigue and anxiety. On chronic treatment (3 months after surgery), depression improved, whereas apathy worsened 3 months after surgery. To conclude, there were significant but contrasting effects of levodopa and STN stimulation on cognition and affective functions.  相似文献   

3.
CONTEXT: Subthalamic nucleus (STN) stimulation may be effective in ameliorating parkinsonian symptoms even to the extent to permit levodopa withdrawal. OBJECTIVES: To analyze the efficacy of STN stimulation in patients with Parkinson disease (PD) and to determine if levodopa may be withdrawn after surgery. DESIGN: Before-after trial. SETTING: Referral center, hospitalized care. PATIENTS: Fifteen patients with advanced PD. INTERVENTIONS: Microelectrode-guided bilateral STN high-frequency stimulation. OUTCOME MEASURES: Before surgery patients were evaluated in off-medication and on-medication conditions. Dopaminergic drug dosages were reduced after surgery, aiming for complete withdrawal. Six months after surgery, patients were reeavaluated in off- and on-medication conditions, with the stimulation turned on and off. RESULTS: Total Unified Parkinson's Disease Rating Scale (UPDRS) motor score in the off-medication condition improved by 65.9%; and axial symptoms, bradykinesia, rigidity, and tremor improved by 65.8%, 60.4%, 66.1%, and 81.1%, respectively. UPDRS part II scores were reduced by 71.8% and Schwab and England scores improved by 45.3%. Levodopa was withdrawn in 8 patients and the overall levodopa dose was reduced 80.4%. "Off" time was reduced 89.7% and the severity of dyskinesias decreased 80.6% after surgery. All results reached significance (P<.001). Stimulation of the STN achieved antiparkinsonian effect similar to that of treatment with levodopa. No life-threatening adverse effects occurred. CONCLUSIONS: Bilateral STN stimulation safely improves all parkinsonian symptoms, decreases or eliminates the need for levodopa, and ameliorates motor fluctuations and dyskinesias. Complete withdrawal of levodopa is feasible with this technique and the overall motor effect of STN stimulation is quantitatively comparable to that obtained with levodopa.  相似文献   

4.
The aim of the present study was to investigate the effects of one session of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left dorsal premotor cortex (PMd) and left dorsolateral prefrontal cortex (DLPFC) on choice reaction time in a noise-compatibility task, and cognitive functions in patients with Parkinson’s disease (PD). Clinical motor symptoms of PD were assessed as well. Ten patients with PD entered a randomized, placebo-controlled study with a crossover design. Each patient received 10 Hz stimulation over the left PMd and DLPFC (active stimulation sites) and the occipital cortex (OCC; a control stimulation site) in the OFF motor state, i.e. at least after 12 h of dopaminergic drugs withdrawal. Frameless stereotaxy was used to target the optimal position of the coil. For the evaluation of reaction time, we used a noise-compatibility paradigm. A short battery of neuropsychological tests was performed to evaluate executive functions, working memory, and psychomotor speed. Clinical assessment included a clinical motor evaluation using part III of the Unified Parkinson’s Disease Rating Scale. Statistical analysis revealed no significant effect of rTMS applied over the left PMd and/or DLPFC in patients with PD in any of the measured parameters. In this study, we did not observe any effect of one session of high frequency rTMS applied over the left PMd and/or DLPFC on choice reaction time in a noise-compatibility task, cognitive functions, or motor features in patients with PD. rTMS applied over all three stimulated areas was well tolerated and safe in terms of the cognitive and motor effects.  相似文献   

5.
帕金森病患者运动皮质兴奋性的经颅磁刺激研究   总被引:4,自引:0,他引:4  
目的:本研究拟应用低频重复性经颅磁刺激(rTMS)分别刺激帕金森病(PD)患者M1手代表区(M1Hand)及运动前区(PMC),探讨不同干预手段对运动皮质兴奋性的影响,以及M1与PMC间的联系。方法:对18名确诊PD患者先后进行4种不同干预,即口服美多芭、低频rTMS刺激M1Hand(0.5Hz,100%静息阈值,共1600次脉冲)、低频rTMS刺激PMC(0.5Hz,100%静息阈值,共1600次脉冲)以及假刺激。于每次干预前后各进行临床评价并测定运动诱发电位(MEP)相关指标。结果:①口服美多芭后UPDRSⅢ(P=0.001)以及其中有关僵直(P=0.001)、运动迟缓(P<0.001)的评分均较服药前显著改善。三种不同磁刺激干预产生结果不同,M1Hand组UPDRSⅢ减低(P=0.015),僵直(P=0.010)、运动迟缓(P=0.004)亦有所改善;PMC组UPDRSⅢ较干预前减低(P=0.046),僵直评分亦减低,但无显著性意义(P=0.163);②口服美多芭1h后MEP120减低(P=0.002),CSP延长(P=0.006);M1Hand组MEP120无著变,而CSP延长(P=0.015);PMC组MEP120减低(P=0.004),而CSP无著变;假刺激组则均无显著性改变。结论:低频rTMS对不同脑区产生的效应不同:刺激M1可使CSP延长;而刺激PMC可使MEP波幅减低。  相似文献   

6.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of advanced Parkinson's disease (PD). The aim of this study was to assess the effect of the bilateral surgical procedure and STN DBS on the neuropsychological functions. Twenty Parkinson's disease patients underwent a neuropsychological assessment before and 6 months after surgery in four different conditions: medication on (with levodopa) and medication off (without levodopa) during the preoperative period, medication on/stimulation on (levodopa plus stimulators switched on) and medication off/stimulation on (stimulators switched on without levodopa) during the postoperative period. We did not find any significant difference in the four conditions for all the neuropsychological tests, confirming the lack of an overall cognitive decline after surgery. From a neuropsychological point of view, these results seem to indicate that bilateral STN DBS is a safe treatment for advanced PD.  相似文献   

7.
Cunic D  Roshan L  Khan FI  Lozano AM  Lang AE  Chen R 《Neurology》2002,58(11):1665-1672
BACKGROUND: Transcranial magnetic stimulation (TMS) studies have found abnormalities in several excitatory and inhibitory circuits in the motor cortex in PD. These include motor evoked potential (MEP) recruitment curve, silent period duration (SP), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long-interval intracortical inhibition (LICI). METHODS: The authors studied the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on these circuits in 12 patients with PD treated with STN DBS. Data from nine patients who completed the study were analyzed. Patients remained on their usual medications. The stimulators were set at the optimal parameters (ON), half the optimal amplitude (HALF), and switched off (OFF) in random order. RESULTS: The Unified PD Rating Scale motor scores were significantly lower in the ON compared to the HALF and OFF conditions. Resting SICI, studied with paired-pulse TMS at interstimulus interval of 2 ms, was reduced in the OFF and HALF conditions compared to normal subjects. STN stimulation restored SICI to normal levels. STN stimulation had no effect on motor threshold, MEP recruitment curve, SP, active SICI, ICF, and LICI. CONCLUSIONS: Although restoration of short-interval intracortical inhibition by STN stimulation is similar to the effects of dopaminergic drugs, it has no effect on silent period duration and long-interval intracortical inhibition, which are also influenced by dopaminergic drugs. A previous study found that internal globus pallidus (GPi) stimulation reduced SP but did not change SICI. Thus, GPi and STN stimulation may affect different circuits in the motor cortex.  相似文献   

8.
OBJECTIVE: To assess the effects of high frequency stimulation of the subthalamic nucleus (STN) on axial symptoms occurring in advanced stages of Parkinson's disease (PD). METHODS: The efficacy of STN stimulation on total motor disability score (unified Parkinson's disease rating scale (UPDRS) part III) were evaluated in 10 patients with severe Parkinson's disease. The subscores were then studied separately for limb akinesia, rigidity, and tremor, which are known to respond to levodopa, and axial signs, including speech, neck rigidity, rising from a chair, posture, gait, and postural stability, which are known to respond less well to levodopa. Patients were clinically assessed in the "off" and "on" drug condition during a levodopa challenge test performed before surgical implantation of stimulation electrodes and repeated 6 months after surgery under continuous STN stimulation. A complementary score for axial symptoms from the "activities of daily living" (ADL)-that is, speech, swallowing, turning in bed, falling, walking, and freezing-was obtained from each patient's questionnaire (UPDRS, part II). RESULTS: Improvements in total motor disability score (62%), limb signs (62%), and axial signs (72%) obtained with STN stimulation were statistically comparable with those obtained with levodopa during the preoperative challenge (68%, 69%, and 59%, respectively). When levodopa and STN stimulation were combined there was a further improvement in total motor disability (80%) compared with preoperative levodopa administration. This consisted largely of an additional improvement in axial signs (84%) mainly for posture and postural stability, no further improvement in levodopa responsive signs being found. Axial symptoms from the ADL showed similar additional improvement when levodopa and STN stimulation were combined. CONCLUSION: These findings suggest that bilateral STN stimulation improves most axial features of Parkinson's disease and that a synergistic effect can be obtained when stimulation is used in conjunction with levodopa treatment.  相似文献   

9.
OBJECTIVE: Following a previous report [Bestmann et al. Clin Neurophysiol 2004;115:755-64] that pairs of subthreshold pulses of transcranial magnetic stimulation (TMS) can show temporal summation, we explored whether repeated application of pairs of stimulation could produce long-lasting after effects on the excitability of the human motor cortex. METHODS: Twelve healthy subjects received 25 min repetitive paired pulse magnetic stimulation (paired rTMS) given at a frequency of about 0.6 Hz over the left primary motor cortex (500 paired stimuli in total). The interval between the paired stimuli was 3 ms and the intensity of both stimuli was 80% of active motor threshold. The resting and active motor threshold, MEP recruitment curve, short interval intracortical inhibition (SICI) and facilitation, and the duration of the cortical silent period (SP) were tested for the right first interosseous muscle (FDI) before and two times after the end of 25 min paired rTMS. RESULTS: Prolonged subthreshold paired rTMS produced a significant decrease in excitability in the corticospinal projection to FDI: resting motor threshold was significantly increased and MEP recruitment was significantly decreased, SICI was significantly increased at 2 and 4 ms and the SP was significantly increased in duration. CONCLUSIONS: Prolonged low frequency paired rTMS at subthreshold intensity can modulate cortical excitability by producing inhibitory effects that outlast the period of stimulation.  相似文献   

10.
Deep brain stimulation (DBS) into the subthalamic nucleus (STN) is a highly effective treatment for advanced Parkinson's disease (PD). The consequences of STN stimulation on intracortical and corticospinal excitability have been addressed in a few studies using transcranial magnetic stimulation (TMS). Although excitability measurements were compared between the STN stimulation OFF and ON condition, in these experiments, there are no longitudinal studies examining the impact of electrode implantation per se on motor excitability. Here, we explored the effects of STN electrode implantation on resting motor thresholds (RMT), motor evoked potential (MEP) recruitment curves, and MEP onset latencies on 2 consecutive days before and shortly after STN surgery with the stimulator switched off, thus avoiding the effects of chronic DBS on the motor system, in 8 PD patients not taking any dopaminergic medication. After surgery, RMT and MEP recruitment curves were unchanged. In contrast, MEP onset latencies were significantly shorter when examined in relaxed muscles but were unchanged under preactivation. We hypothesize that postoperatively TMS pulses induced small currents in scalp leads underneath the TMS coil connecting the external stimulator with STN electrodes leading to inadvertent stimulation of fast-conducting descending neural elements in the vicinity of the STN, thereby producing submotor threshold descending volleys. These "conditioning" volleys probably preactivated spinal motor neurons leading to earlier suprathreshold activation by the multiple corticospinal volleys produced by TMS of the motor cortex. These TMS effects need to be considered when interpreting results of excitability measurements in PD patients after implantation of STN electrodes.  相似文献   

11.
We studied the short-term clinical effects of 10-Hz repetitive transcranial magnetic stimulation (rTMS) of the motor hand area contralateral to the more affected limb in 12 non-fluctuating, for at least 12 hours drug free patients with Parkinson's disease (PD). We investigated the efficacy of rTMS in combination with a levodopa challenge test design under double-blind, placebo controlled conditions. Significant reductions of UPDRS III motor scores showed the treatment conditions: placebo/rTMS, levodopa/sham stimulation and levodopa/rTMS. A more detailed evaluation of arm symptoms contralateral to the stimulated brain region showed even more pronounced effects for the three conditions. There were significant differences between the mean response of the UPDRS III arm scores to the four test conditions. In conclusion our study demonstrates short-term beneficial effects of 10-Hz rTMS on motor symptoms in PD patients. A release of endogenous dopamine in subcortical structures, i.e. putamen, in response to rTMS is the most likely mechanism of action.  相似文献   

12.
BACKGROUND: High frequency stimulation of the subthalamic nucleus (STN) is an alternative but expensive neurosurgical treatment for parkinsonian patients with levodopa induced motor complications. OBJECTIVE: To assess the safety, clinical effects, quality of life, and economic cost of STN stimulation. METHODS: We conducted a prospective multicentre study in 95 consecutive Parkinson's disease (PD) patients receiving bilateral STN stimulation and assessed its effects over 12 months. A double blind randomised motor evaluation was carried out at 3 month follow up, and quality of life, self care ability, and predictive factors of outcome following surgery were assessed. The cost of PD was estimated over 6 months before and after surgery. RESULTS: The Unified Parkinson's Disease Rating Scale (UPDRS) motor score improved by 57% (p<0.0001) and activities of daily living improved by 48% (p<0.0001) at 12 month follow up. Double blind motor scoring improved by 51% at 3 month follow up (p<0.0001). The total PD Quality of Life Questionnaire (PDQL-37) score improved by 28% (p<0.001). The better the preoperative motor score after a levodopa challenge, the better the outcome after STN stimulation. Five patients developed an intracerebral haematoma during electrode implantation with permanent after effects in two. The 6 month costs of PD decreased from 10,087 euros before surgery to 1673 euros after surgery (p<0.0001) mainly because of the decrease in medication. These savings allowed a return on the procedure investment, estimated at 36,904 euros over 2.2 years. CONCLUSIONS: STN stimulation has good outcomes with relatively low risk and little cost burden in PD patients with levodopa induced motor complications.  相似文献   

13.
Repetitive transcranial magnetic stimulation (rTMS) is a potent tool that can be used to modify activity of targeted cortical areas. Significant clinical effects have been obtained in patients with Parkinson's disease (PD) by stimulating different cortical regions with rTMS at inhibitory (low) or excitatory (high) frequency. These effects were thought to result from plastic changes in motor cortical networks. Actually cortical dysfunction has been documented in PD by neuroimaging and neurophysiologic studies showing either hypo- or hyper-activation of various brain areas. In addition, cortical excitability studies using transcranial magnetic stimulation disclosed significant alterations in intracortical facilitatory or inhibitory processes according to the resting state or to phases of movement preparation or execution. These observations clearly support the therapeutic potential of cortical neuromodulation in PD. Motor cortex stimulation could impact on any station within the cortico-basal ganglia-thalamo-cortical loops that are involved in motor control, providing alleviation of parkinsonian symptoms. Depending on the target, cortical stimulation might improve motor performance or other symptoms associated with PD, like depression. Clinical application of rTMS to treat PD patients is limited by the short duration of the effects beyond the time of stimulation, even if long-lasting improvements have been observed after repeated rTMS sessions. In any case, the place of cortical stimulation in the therapeutic management of PD patients remains to be determined, as an alternative or a complementary technique to deep brain stimulation. The rTMS technique could be used to better define the targets and the parameters of stimulation subsequently applied in chronic epidural stimulation.  相似文献   

14.
Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson's disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those >30 Hz is particularly unclear. Do they improve movement, and, if so, in what way? We acquired simultaneously magnetoencephalography and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power at 60-90 Hz and at 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity at 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronization at 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronization at 60-90 Hz in the basal ganglia cortical network is prokinetic but likely through a modulatory effect rather than any involvement in explicit motor processing.  相似文献   

15.
OBJECTIVE: Low-frequency repetitive transcranial magnetic stimulation (rTMS) can reduce cortical excitability. Here we examined whether inhibitory after effects of low-frequency rTMS are influenced by stimulus intensity, the type of TMS coil and re-afferent sensory stimulation. METHODS: In fifteen healthy volunteers, we applied 900 biphasic pulses of 1Hz rTMS to the left primary motor cortex (M1) at an intensity that was 10% below or 15% above resting motor threshold. For rTMS, we used two different figure-of-eight shaped coils (Magstim or Medtronic coil) attached to the same stimulator. We recorded motor evoked potentials (MEPs) evoked with the same set-up used for rTMS (MEP-rTMS) before and twice after rTMS. Using a different TMS setup, we also applied monophasic pulses to the M1 in order to assess the effects of rTMS on corticospinal excitability, intracortical paired-pulse excitability and the duration of the cortical silent period (CSP). In a control experiment, the same measurements were performed after 15min of 1Hz repetitive electrical nerve stimulation (rENS) of the right ulnar nerve. RESULTS: Analysis of variance revealed an interaction between intensity, coil and time of measurement (p<0.035), indicating that the effect of 1Hz rTMS on MEP-rTMS amplitude depended on the intensity and the type of coil used for rTMS. Suppression of corticospinal excitability was strongest after suprathreshold 1Hz rTMS with the Medtronic coil (p<0.01 for both post-rTMS measurements relative to pre-intervention baseline). Regardless of the type of coil, suprathreshold but not subthreshold rTMS transiently prolonged the CSP and attenuated paired-pulse facilitation. Suprathreshold 1Hz rENS also induced a short-lasting inhibition of MEP-rTMS. CONCLUSIONS: Both the stimulation intensity and the type of TMS coil have an impact on the after effects of 1Hz rTMS. Re-afferent feedback activation may at least in part account for the stronger suppression of corticospinal excitability by suprathreshold 1Hz rTMS. SIGNIFICANCE: These data should be considered when rTMS is used as a therapeutic means.  相似文献   

16.
IntroductionLevodopa-induced dyskinesia in patients with Parkinson's disease (PD) has been shown to be associated with an abnormal plasticity in the motor cortex. We investigated whether changes in the excitability of inhibitory and excitatory motor circuits could underlie maladaptive mechanisms associated with dyskinesia.MethodsUsing single and paired transcranial magnetic stimulation (TMS), we studied motor threshold, silent period (SP) duration, intracortical facilitation (ICF), short intracortical inhibition (SICI) and low- and high-intensity long intracortical inhibition (LICI) in 10 dyskinetic and 10 non-dyskinetic patients, matched for disease and treatment duration, before (OFF state) and after (ON state) levodopa, and in 10 healthy controls.ResultsIn the OFF state, the two groups of patients showed similar motor cortex excitability with a reduced SICI compared to controls. LICI was weaker and increasing stimulation intensity had a lower effect on SP duration in dyskinetic patients than in controls. In dyskinetic patients, in contrast to non-dyskinetic patients, levodopa failed to increase SICI and SP duration, and potentiated to a lesser extent the effect of increasing the stimulation intensity on LICI. Although levodopa improved motor symptoms to a similar extent in both dyskinetic and non-dyskinetic patients, it failed to activate effectively the excitability of the inhibitory systems in dyskinetic patients.DiscussionThese findings suggest that dyskinesia is associated with an abnormal effect of levodopa on cortical motor inhibitory circuits.  相似文献   

17.
Predictors of effective bilateral subthalamic nucleus stimulation for PD   总被引:7,自引:0,他引:7  
To identify factors predictive of effective bilateral subthalamic nucleus (STN) stimulation for PD with severe motor complications, pre- and postoperative Unified PD Rating Scale (UPDRS) scores were analyzed in a series of 54 patients who received bilateral STN stimulation. Younger age and levodopa responsiveness predict a favorable response to bilateral STN stimulation. For individual PD symptoms, those that improve with a suprathreshold dose levodopa challenge are likely to improve with stimulation.  相似文献   

18.
OBJECTIVES: Various methods of application of repetitive transcranial magnetic stimulation (TMS) have been evaluated for their potential capacity to alter motor cortical excitability. Initial research suggests that the repetitive application of paired TMS pulses (repetitive paired pulse TMS (rppTMS)) may have greater effects on cortical excitability, perhaps through the facilitation of I-wave interaction. We aimed to compare the post-train effects of 15 min trains of rppTMS to investigate the potential therapeutic application of this technique as well as to compare it to a standard high frequency repetitive TMS paradigm. METHODS: Ten normal subjects received three 15 min sessions of rppTMS, 5 Hz high frequency rTMS and sham TMS in randomised order. rppTMS consisted of a single train of 180 pulse pairs (0.2 Hz, 1.5 ms inter-stimulus interval, supra-threshold intensity) administered over 15 min. The rTMS condition involved 750 pulses provided in 5s 5 Hz trains with a 25s inter-train interval at 90% of the RMT. Motor evoked potential size and cortical silent period duration were assessed before and after each session. RESULTS: There were no significant changes in cortical excitability produced by any of the stimulation conditions. Five hertz rTMS produced an increase in cortical silent period duration (p=0.004) which was not affected by rppTMS. CONCLUSIONS: Fifteen minutes trains of 1.5ms rppTMS do not substantially increase post train cortical excitability. Repetitive brief trains of 5Hz rTMS also do not alter excitability but appear to effect cortical inhibition.  相似文献   

19.
Alopecia is a rare but important side effect of anti-parkinsonian medications. Our patient was a 72-year-old man with advanced Parkinson's disease (PD) who received levodopa and anti-cholinergic drugs and whose head had become almost completely bald. As bilateral subthalamic nucleus (STN) stimulation produced improvement in his motor symptoms, his drug dosages were reduced postoperatively. At 8 months after surgery, hair again covered his entire head. Our study presents a new aspect of the benefit of STN stimulation with regard to drug-induced non-motor symptoms in patient with PD.  相似文献   

20.
We studied the effects of 0.2 Hz repetitive transcranial magnetic stimulation (rTMS) successively performed 6 times for 2 weeks in 12 patients with idiopathic Parkinson's disease (PD). Ten patients received rTMS to the bilateral frontal cortex (frontal rTMS) and six patients received rTMS to the bilateral occipital cortex (occipital rTMS). Before and after rTMS, we evaluated regional cerebral blood flow (rCBF) using 99m-Tc-ECD single photon emission computed tomography (SPECT) and clinical tests.In an analysis with statistic parametric mapping, both frontal and occipital rTMS reduced rCBF in the cortical areas around the stimulated site. The activities of daily living (ADL) and motor scores of Unified Parkinson's Disease Rating Scale (UPDRS), pronation-supination movements, and buttoning up significantly improved after frontal rTMS than before it, while occipital rTMS had no significant effects in clinical tests.The findings of the present study suggest that successive 0.2 Hz rTMS has outlasting inhibitory effects on neuronal activity around the stimulated cortical areas. Because there were no significant relations between improved clinical tests and reduced rCBF, we speculate that the indirect effects of 0.2 Hz rTMS on subcortical structures are related to improved parkinsonian symptoms. Further studies recruiting large numbers of subjects are required to confirm the efficacy of 0.2 Hz rTMS on PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号