首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understanding of the coupling between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is vital for furthering our understanding of the BOLD response. The aim of this study was to measure CBF‐CBV coupling in different vascular compartments during neural activation. Three haemodynamic parameters were measured during a visual stimulus. Look‐Locker flow‐sensitive alternating inversion recovery was used to measure changes in CBF and arterial CBV (CBVa) using sequence parameters optimized for each contrast. Changes in total CBV (CBVtot) were measured using a gadolinium‐based contrast agent technique. Haemodynamic changes were extracted from a region of interest based on voxels that were activated in the CBF experiments. The CBF‐CBVtot coupling constant αtot was measured as 0.16 ± 0.14 and the CBF‐CBVa coupling constant αa was measured as 0.65 ± 0.24. Using a two‐compartment model of the vasculature (arterial and venous), the change in venous CBV (CBVv) was predicted for an assumed value of baseline arterial and venous blood volume. These results will enhance the accuracy and reliability of applications that rely on models of the BOLD response, such as calibrated BOLD.  相似文献   

2.
The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [15O]H2O positron emission tomography (PET) and model‐free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r2: 0.28–0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r2: 0.28–0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [15O]H2O‐derived values (P < 0.001). Group‐wise voxel statistics identified minor areas with significant contrast differences between [15O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [15O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Hua J  Qin Q  Pekar JJ  van Zijl PC 《NMR in biomedicine》2011,24(10):1313-1325
Arterial cerebral blood volume (CBVa) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular‐space‐occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBVa using cerebrospinal fluid (CSF) for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBVa and arterial transit times were quantified. Arteriolar CBVa was determined separately by incorporating velocity‐dependent bipolar crusher gradients. Gray matter (GM) CBVa values (n = 11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b = 1.8 s/mm2), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T2, which was within the arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a non‐invasive alternative to existing blood volume techniques for mapping absolute CBVa in studies of brain physiology and neurovascular diseases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In order to study effects of catecholamines on cerebral oxygen consumption (CMRo2) and blood flow (CBF), rats maintained on 75 % N2O and 25 % O2, were infused i.v. with noradrenaline (2, 5, or 8 μpg. kg-1. min-1) or adrenaline (2 or 8, μg. kg-1.min-1) for 10 min before CBF and CMRoz were measured. In about 50% of animals infused with 2–8, μg. kg-1 min-1 of noradrenaline, CMRoz (and CBF) rose. However, there was no dose-dependent response, and CMRo2, did not exceed 150% of control. The effects of noradrenaline in a dose of 5 μg. kg-l. min-1 on CMRo2, and CBF were blocked by propranolol (2.5μg.kg-1). In animals infused with adrenaline (8 μg.kg-1.min-1) CMRo2, was doubled and, in many, CBF rose 4- to 6-fold. It is concluded that, when given in sufficient amounts, catecholamines have pronounced effects on cerebral metabolism and blood flow, the effects of adrenaline on CMRo2, and CBF resembling those observed in status epilepticus.  相似文献   

5.
The characterisation of the extravascular (EV) contribution to the blood oxygenation level‐dependent (BOLD) effect is important for understanding the spatial specificity of BOLD contrast and for modelling approaches that aim to extract quantitative metabolic parameters from the BOLD signal. Using bipolar crusher gradients, total (b = 0 s/mm2) and predominantly EV (b = 100 s/mm2) gradient echo BOLD ΔR2* and signal changes (ΔS/S) in response to visual stimulation (flashing checkerboard; f = 8 Hz) were investigated sequentially (within < 3 h) at 1.5, 3.0 and 7.0 T in the same subgroup of healthy volunteers (n = 7) and at identical spatial resolutions (3.5 × 3.5 × 3.5 mm3). Total ΔR2* (z‐score analysis) values were ?0.61 ± 0.10 s?1 (1.5 T), ?0.74 ± 0.05 s?1 (3.0 T) and ?1.37 ± 0.12 s?1 (7.0 T), whereas EV ΔR2* values were ?0.28 ± 0.07 s?1 (1.5 T), ?0.52 ± 0.07 s?1 (3.0 T) and ?1.25 ± 0.11 s?1 (7.0 T). Although EV ΔR2* increased linearly with field, as expected, it was found that EV ΔS/S increased less than linearly with field in a manner that varied with TE choice. Furthermore, unlike ΔR2*, total and EV ΔS/S did not converge at 7.0 T. These trends were similar whether a z‐score analysis or occipital lobe‐based region‐of‐interest approach was used for voxel selection. These findings suggest that calibrated BOLD approaches may benefit from an EV ΔR2* measurement as opposed to a ΔS/S measurement at a single TE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Aim: Inter‐individual variations in normal human cerebral blood flow (CBF) at rest condition have been reported. Inter‐individual variation of cerebral vascular tone is considered to contribute to this, and several determinants of cerebral vascular tone have been proposed. In the present study, the relationship between CBF and cerebral vascular tone to inter‐individual variation at rest condition was investigated using positron emission tomography (PET). Methods: CBF was measured using PET with H215O in each of 20 healthy subjects (20–28 years) under three conditions: at rest (baseline), during hypercapnia and during hypocapnia. The vascular response to change in PaCO2 was calculated as the percentage changes in CBF per absolute change in PaCO2 in response to hypercapnia and hypocapnia. Results: A significant negative correlation between baseline CBF and the vascular response to hypocapnia was observed in the thalamus, temporal cortex, parietal cortex, occipital cortex and cerebral cortex (P < 0.05). A trend towards negative correlation between baseline CBF and the vascular response to hypocapnia was observed in the cerebellum and putamen (P < 0.1). A significant negative correlation between baseline CBF and the vascular response to hypercapnia was observed in the occipital cortex (P < 0.05). No significant correlation was observed between baseline CBF and haemoglobin concentration, and PaCO2. Conclusion: These findings support the assumption that cerebral vascular tone might incline towards vasoconstriction and vasodilatation when baseline CBF is low and high between individuals respectively. Although several determinants of cerebral vascular tone have been proposed, the mechanism of such inter‐individual differences in cerebral vascular tone is unknown.  相似文献   

7.
A blood oxygenation level‐dependent (BOLD)‐based apparent relative oxygen extraction fraction (rOEF) as a semi‐quantitative marker of vascular deoxygenation has recently been introduced in clinical studies of patients with glioma and stroke, yielding promising results. These rOEF measurements are based on independent quantification of the transverse relaxation times T2 and T2* and relative cerebral blood volume (rCBV). Simulations demonstrate that small errors in any of the underlying measures may result in a large deviation of the calculated rOEF. Therefore, we investigated the validity of such measurements. For this, we evaluated the quantitative measurements of T2 and T2* at 3 T in a gel phantom, in healthy subjects and in healthy tissue of patients with brain tumors. We calculated rOEF maps covering large portions of the brain from T2, T2* and rCBV [routinely measured in patients using dynamic susceptibility contrast (DSC)], and obtained rOEF values of 0.63 ± 0.16 and 0.90 ± 0.21 in healthy‐appearing gray matter (GM) and white matter (WM), respectively; values of about 0.4 are usually reported. Quantitative T2 mapping using the fast, clinically feasible, multi‐echo gradient spin echo (GRASE) approach yields significantly higher values than much slower multiple single spin echo (SE) experiments. Although T2* mapping is reliable in magnetically homogeneous tissues, uncorrectable macroscopic background gradients and other effects (e.g. iron deposition) shorten T2*. Cerebral blood volume (CBV) measurement using DSC and normalization to WM yields robust estimates of rCBV in healthy‐appearing brain tissue; absolute quantification of the venous fraction of CBV, however, is difficult to achieve. Our study demonstrates that quantitative measurements of rOEF are currently biased by inherent difficulties in T2 and CBV quantification, but also by inadequacies of the underlying model. We argue, however, that standardized, reproducible measurements of apparent T2, T2* and rCBV may still allow the estimation of a meaningful apparent rOEF, which requires further validation in clinical studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The susceptibility differences at the gas–liquid interface of microbubbles (MBs) allow their use as an intravascular susceptibility contrast agent for in vivo MRI. However, the characteristics of MBs are very different from those of the standard gadolinium‐diethylenetriaminepentaacetic acid (Gd‐DPTA) contrast agent, including the size distribution and hemodynamic properties, which could influence MRI outcomes. Here, we investigate quantitatively the correlation between the relative cerebral blood volume (rCBV) derived from Gd‐DTPA (rCBVGd) and the MB‐induced susceptibility effect (ΔR2*MB) by conventional dynamic susceptibility contrast MRI (DSC‐MRI). Custom‐made MBs had a mean diameter of 0.92 µm and were capable of inducing 4.68 ± 3.02% of the maximum signal change (MSC). The MB‐associated ΔR2*MB was compared with rCBVGd in 16 rats on 4.7‐T MRI. We observed a significant effect of the time to peak (TTP) on the correlation between ΔR2*MB and rCBVGd, and also found a noticeable dependence between TTP and MSC. Our findings suggest that MBs with longer TTPs can be used for the estimation of rCBV by DSC‐MRI, and emphasize the critical effect of TTP on MB‐based contrast MRI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
During orthostatic hypotension we evaluated whether presyncopal symptoms relate to a reduced brain oxygenation. Nine subjects performed 50° head-up tilt for 1 h and eight subjects were followed during 2 h of supine rest and during 1 h of 10° head-down tilt. Cerebral perfusion was assessed by transcranial Doppler determined middle cerebral artery blood velocity (MCA vmean), while brain blood oxygenation was assessed by near-infrared spectrophotometry determined concentration changes for oxygenated (ΔHbO2) and deoxygenated haemoglobin and brain cell oxygenation by the oxidized cytochrome c concentration (ΔCytO2). During head-up tilt, six volunteers developed presyncopal symptoms and mean arterial pressure (88 (78–103) to 68 (57–79) mmHg; median and range), heart rate (96 (72–111) to 65 (50–107) beats min?1), MCA vmean (59 (51–82) to 41 (29–56) cm s?1), ΔHbO2 (by ?5.3 (?3.0 to ?14.8) μmol l?1) and ΔCytO2 were reduced (by ?0.2 (?0.1 to ?0.4) μmol l?1; P < 0.05). During tilt down the cardiovascular variables recovered immediately and ΔHbO2 increased to 2.2 (?0.9–12.0) mmol L?1 above the resting value and also ΔCytO2 recovered. In the nonsyncopal head-up tilted subjects as in the controls, blood pressure, heart rate, MCA vmean and brain oxygenation indices remained stable. The results suggest that during orthostasis, presyncopal symptoms relate not only to cerebral hypoperfusion but also to reduced brain oxygenation.  相似文献   

10.
Aberrations in tumor and peritumoral vasculature may not be distinguishable by cerebral blood flow (CBF) or cerebral blood volume (CBV) alone. The relationships between CBF and CBV were examined to estimate vasculature-specific hemodynamic characteristics. Twenty glioma patients were studied with dynamic susceptibility T2*-weighted MRI [(dynamic contrast-enhanced magnetic resonance imaging (DSC-MRI)] before and during week 1 and 3 of radiotherapy (RT). CBF and CBV were calculated from DSC-MRI, and relationships between the two were evaluated: the physiological measure of mean transit time (MTT) = CBV/CBF; empirical fitting using the power law CBV = constant x (CBF)(beta). Three different tissue types were assessed: the Gd-enhancing tumor volume (GEV); non-enhanced abnormal tissue located beyond GEV but within the abnormal hyperintense region on FLAIR images (NEV); normal tissue in the hemisphere contralateral to the tumor (CNT). The effects of tissue types, CBV magnitudes (low, medium and high), before and during RT, on MTT and beta were analyzed by analysis of variance (ANOVA). The MTT and beta for the three tissue types were significantly different (p < 0.009). MTT increased from CNT (1.60 s) to NEV (1.93 s) to GEV (2.28 s) (p < 0.0005). beta was significantly greater in GEV (1.079) and NEV (1.070) than in CNT (1.025). Beta increased with increasing CBV magnitude while MTT was independent of CBV magnitude. There was a significant decrease in MTT of NEV and GEV during week 3 of RT compared with pre-RT values for all CBV magnitudes. There was a significant increase in beta during RT in the tumor and peritumor. Progressive abnormalities in vasculature and hemodynamic characteristics of the vascular bed were delineated, with significant disorder in the tumor but mild abnormality in peritumoral tissue.  相似文献   

11.
Cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRo2) were measured in rats under nitrous oxide anaesthesia, using a 133Xenon modification of the Kety and Schmidt inert gas technique with sampling of cerebral venous blood from the retroglenoid vein. Extracerebral contamination of the venous blood sampled was studied by comparing the rates at which the activity of 133Xenon decreased in blood and tissues. Contamination was avoided by gentle compression of the contralateral retroglenoid vein during sampling. CBF and CMRo2 of the rat brain were 80±2 and 7.6 ± 0.2 ml·(100 g)-1, min-1, respectively. These values are about 25% lower than those previously obtained for cerebral cortical tissue under similar conditions. Induced hypercapnia (Paco2 about 70 mm Hg) or hypocapnia (Paco2 15–20 mm Hg) gave rise to expected changes in CBF but did not alter CMRo2 The CMRo2 of the rat brain is at least twice that of the human brain. This species difference, which is similar to that previously reported for the oxygen uptake of cerebral tissue in vitro, probably reflects on inverse relationship between brain weight and neuronal packing density.  相似文献   

12.
Hypoxic hypoxia (inspiratory hypoxia) stimulates an increase in cerebral blood flow (CBF) maintaining oxygen delivery to the brain. However, this response, particularly at the tissue level, is not well characterised. This study quantifies the CBF response to acute hypoxic hypoxia in healthy subjects. A 20‐min hypoxic (mean PETo 2 = 52 mmHg) challenge was induced and controlled by dynamic end‐tidal forcing whilst CBF was measured using pulsed arterial spin labelling perfusion MRI. The rate constant, temporal delay and magnitude of the CBF response were characterised using an exponential model for whole‐brain and regional grey matter. Grey matter CBF increased from 76.1 mL/100 g/min (95% confidence interval (CI) of fitting: 75.5 mL/100 g/min, 76.7 mL/100 g/min) to 87.8 mL/100 g/min (95% CI: 86.7 mL/100 g/min, 89.6 mL/100 g/min) during hypoxia, and the temporal delay and rate constant for the response to hypoxia were 185 s (95% CI: 132 s, 230 s) and 0.0035 s–1 (95% CI: 0.0019 s–1, 0.0046 s–1), respectively. Recovery from hypoxia was faster with a delay of 20 s (95% CI: –38 s, 38 s) and a rate constant of 0.0069 s–1 (95% CI: 0.0020 s–1, 0.0103 s–1). R2*, an index of blood oxygenation obtained simultaneously with the CBF measurement, increased from 30.33 s–1 (CI: 30.31 s–1, 30.34 s–1) to 31.48 s–1 (CI: 31.47 s–1, 31.49 s–1) with hypoxia. The delay and rate constant for changes in R2* were 24 s (95% CI: 21 s, 26 s) and 0.0392 s–1 (95% CI: 0.0333 s–1, 0.045 s–1 ), respectively, for the hypoxic response, and 12 s (95% CI: 10 s, 13 s) and 0.0921 s–1 (95% CI: 0.0744 s–1, 0.1098 s–1/) during the return to normoxia, confirming rapid changes in blood oxygenation with the end‐tidal forcing system. CBF and R2* reactivity to hypoxia differed between subjects, but only R2* reactivity to hypoxia differed significantly between brain regions. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.  相似文献   

13.
Cerebrovascular abnormality is frequently accompanied by cognitive dysfunctions, such as dementia. Antibodies against the α1‐adrenoceptor (α1‐AR) can be found in patients with Alzheimer's disease with cerebrovascular disease, and have been shown to affect the larger vessels of the brain in rodents. However, the impact of α1‐AR antibodies on the cerebral vasculature remains unclear. In the present study, we established a neuroimaging method to measure the relative cerebral blood volume (rCBV) in small rodents with the ultimate goal to detect changes in blood vessel density and/or vessel size induced by α1‐AR antibodies. For this purpose, mapping of R2* and R2 was performed using MRI at 9.4 T, before and after the injection of intravascular iron oxide particles (ferumoxytol). The change in the transverse relaxation rates (ΔR2*, ΔR2) showed a significant rCBV decrease in the cerebrum, cortex and hippocampus of rats (except hippocampal ΔR2), which was more pronounced for ΔR2* than for ΔR2. Immunohistological analyses confirmed that the α1‐AR antibody induced blood vessel deficiencies. Our findings support the hypothesis that α1‐AR antibodies lead to cerebral vessel damage throughout the brain, which can be monitored by MRI‐derived rCBV, a non‐invasive neuroimaging method. This demonstrates the value of rCBV estimation by ferumoxytol‐enhanced MRI at 9.4 T, and further underlines the significance of this antibody in brain diseases involving vasculature impairments, such as dementia. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
To elevate effects of carbon dioxide (CO2) retention by way of an increased respiratory load during submaximal exercise (150 W), the concentration changes of oxy‐ (ΔHbO2) and deoxy‐haemoglobin (ΔHb) of active muscles and the brain were determined by near‐infrared spectroscopy (NIRS) in eight healthy males. During exercise, pulmonary ventilation increased to 33 (28–40) L min–1 (median with range) with no effect of a moderate breathing resistance (reduction of the pneumotach diameter from 30 to 14 and 10 mm). The end‐tidal CO2 pressure (PETCO 2) increased from 45 (42–48) to 48 (46–58) mmHg with a reduction of only 1% in the arterial haemoglobin O2 saturation (SaO 2). During control exercise (normal breathing resistance), muscle and brain ΔHbO2 were not different from the resting levels, and only the leg muscle ΔHb increased (4 (–2–10) μM , P < 0.05). Moderate resistive breathing increased ΔHbO2 of the intercostal and vastus lateralis muscles to 6 ± (–5–14) and 1 (–7–9) μM (P < 0.05), respectively, while muscle ΔHb was not affected. Cerebral ΔHbO2 and ΔHb became elevated to 6 (1–15) and 1 (–1–6) μM by resistive breathing (P < 0.05). Resistive breathing caused an increased concentration of oxygenated haemoglobin in active muscles and in the brain. The results indicate that CO2 influences blood flow to active skeletal muscle although its effect appears to be smaller than for the brain.  相似文献   

15.
Normocapnic hyperoxic and hypercapnic hyperoxic gas challenges are increasingly being used in cerebrovascular reactivity (CVR) and calibrated functional MRI experiments. The longitudinal arterial blood water relaxation time (T1a) change with hyperoxia will influence signal quantification through mechanisms relating to elevated partial pressure of plasma‐dissolved O2 (pO2) and increased oxygen bound to hemoglobin in arteries (Ya) and veins (Yv). The dependence of T1a on Ya and Yv has been elegantly characterized ex vivo; however, the combined influence of pO2, Ya and Yv on T1a in vivo under normal ventilation has not been reported. Here, T1a is calculated during hyperoxia in vivo by a heuristic approach that evaluates T1‐dependent arterial spin labeling (ASL) signal changes to varying gas stimuli. Healthy volunteers (n = 14; age, 31.5 ± 7.2 years) were scanned using pseudo‐continuous ASL in combination with room air (RA; 21% O2/79% N2), hypercapnic normoxic (HN; 5% CO2/21% O2/74% N2) and hypercapnic hyperoxic (HH; 5% CO2/95% O2) gas administration. HH T1a was calculated by requiring that the HN and HH cerebral blood flow (CBF) change be identical. The HH protocol was then repeated in patients (n = 10; age, 61.4 ± 13.3 years) with intracranial stenosis to assess whether an HH T1a decrease prohibited ASL from being performed in subjects with known delayed blood arrival times. Arterial blood T1a decreased from 1.65 s at baseline to 1.49 ± 0.07 s during HH. In patients, CBF values in the affected flow territory for the HH condition were increased relative to baseline CBF values and were within the physiological range (RA CBF = 36.6 ± 8.2 mL/100 g/min; HH CBF = 45.2 ± 13.9 mL/100 g/min). It can be concluded that hyperoxic (95% O2) 3‐T arterial blood T1aHH = 1.49 ± 0.07 s relative to a normoxic T1a of 1.65 s. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level‐dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non‐human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7‐T magnetic resonance imaging (MRI) scanner. Somatosensory stimulation (333‐μs pulses; amplitude, 2 mA; 64 Hz) was delivered bilaterally via pairs of contact electrodes. A block design paradigm was used in which the stimulus duration increased in pseudo‐random order from a single pulse up to 256 electrical pulses (4 s). For CBV measurements, 30 mg/kg of ultrasmall superparamagnetic ironoxide particles (USPIO) injected intravenously, were used. Robust BOLD and CBV HRFs were obtained in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate at all stimulus conditions. In particular, BOLD and CBV responses to a single 333‐μs‐long stimulus were reliably measured, and the CBV HRF presented shorter onset time and time to peak than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. Onset times in S1 and S2 were faster than in caudate. Finally, the fine spatiotemporal features of the HRF in awake marmosets were similar to those obtained in humans, indicating that the continued refinement of awake non‐human primate models is essential to maximize the applicability of animal functional MRI studies to the investigation of human brain function.  相似文献   

17.
Mouse functional MRI (fMRI) has been of great interest due to the abundance of transgenic models. Due to a mouse's small size, spontaneous breathing has often been used. Because the vascular physiology affecting fMRI might not be controlled normally, its effects on functional responses were investigated with optical intrinsic signal (OIS) imaging and 9.4 T BOLD fMRI. Three conditions were tested in C57BL/6 mice: spontaneous breathing under ketamine and xylazine anesthesia (KX), mechanical ventilation under KX, and mechanical ventilation under isoflurane. Spontaneous breathing under KX induced an average pCO2 of 83 mmHg, whereas a mechanical ventilation condition achieved a pCO2 of 37‐41 mmHg within a physiological range. The baseline diameter of arterial and venous vessels was only 7%‐9% larger with spontaneous breathing than with mechanical ventilation under KX, but it was much smaller than that in normocapnic isoflurane‐anesthetized mice. Three major functional studies were performed. First, CBV‐weighted OIS and arterial dilations to 4‐second forepaw stimulation were rapid and larger at normocapnia than hypercapnia under KX, but very small under isoflurane. Second, CBV‐weighted OIS and arterial dilations by vasodilator acetazolamide were measured for investigating vascular reactivity and were larger in the normocapnic condition than in the hypercapnic condition under KX. Third, evoked OIS and BOLD fMRI responses in the contralateral mouse somatosensory cortex to 20‐second forepaw stimulation were faster and larger in the mechanical ventilation than spontaneous breathing. BOLD fMRI peaked at the end of the 20‐second stimulation under hypercapnic spontaneous breathing, and at ~9 seconds under mechanical ventilation. The peak amplitude of BOLD fMRI was 2.2% at hypercapnia and ~3.4% at normocapnia. Overall, spontaneous breathing induces sluggish reduced hemodynamic and fMRI responses, but it is still viable for KX anesthesia due to its simplicity, noninvasiveness, and well‐localized BOLD activity in the somatosensory cortex.  相似文献   

18.
Near infrared spectroscopy (NIRS) has been used to assess the impact of obstructive sleep apnea–hypopnea syndrome (OSAHS) on cerebral oxygenation. However, the relationship between the variations in the cerebral tissue oxygen saturation (ΔTOI) and pulse oximetry (ΔSpO2) has not been assessed in children with OSAHS. Consecutive clinically stable children with severe OSAHS [apnea–hypopnea index (AHI) >15 events h−1] diagnosed during a night‐time polygraphy with simultaneous recording of cerebral oxygenation with NIRS (NIRO‐200NX, Hamamatsu Photonics KK) were included between September 2015 and June 2016. Maximal ΔSpO2 (SpO2 drop from the value preceding desaturation to nadir) and concomitant variations in transcutaneous carbon dioxide (ΔPtcCO2), maximal ΔTOI and maximal variations in cerebral oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin were reported. The relationships between ΔSpO2, ΔPtcCO2 and ΔTOI, ΔO2Hb and ΔHHb were investigated. The data from five children (three boys, aged 9.6 ± 6.7 years, AHI 16–91 events h−1) were analysed. Strong correlations were found between ΔSpO2 and ΔTOI (r = 0.887, P < 0.001), but also with ΔO2Hb and ΔHHb with a particular pattern in the youngest child with a dark skin pigmentation. Mean ΔSpO2 was 20 ± 17% and mean ΔTOI was 8 ± 7%. Maximal ΔSpO2 of approximately 70% were coupled with ΔTOI of no more than 35%. ΔPtcCO2 correlated only weakly with the cerebral oxygenation indexes. This pilot study shows a strong relationship between pulse oximetry and cerebral oxygenation in children with OSAHS, with lower changes in TOI compared to SpO2. Future studies should address the clinical impact of respiratory events on cerebral oxygenation and its consequences.  相似文献   

19.
Liu P  Uh J  Devous MD  Adinoff B  Lu H 《NMR in biomedicine》2012,25(5):779-786
Pseudo‐continuous arterial spin labeling (PCASL) MRI is a relatively new arterial spin labeling technique and has the potential to extend the cerebral blood flow (CBF) measurement to all tissue types, including white matter. However, the arterial transit time (δa) for white matter is not well established and a limited number of reports using multi‐delay methods have yielded inconsistent findings. In this study, we used a different approach and measured white matter δa (mean ± standard deviation, 1541 ± 173 ms) by determining the arrival times of exogenous contrast agent in a bolus tracking experiment. The data also confirmed δa of gray matter to be 912 ± 209 ms. In the second part of this study, we used these parameters in PCASL kinetic models and compared relative CBF (rCBF, with respect to the whole brain) maps with those measured using a single photon emission computed tomography (SPECT) technique. It was found that the use of tissue‐specific δa in the PCASL model was helpful in improving the correspondence between the two modalities. On a regional level, the gray/white matter CBF ratios were 2.47 ± 0.39 and 2.44 ± 0.18 for PCASL and SPECT, respectively. On a single‐voxel level, the variance between the modalities was still considerable, with an average rCBF difference of 0.27. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We have followed the time course of the effect of the carbonic anhydrase inhibitor acetazolamide injected i. v. in unanesthetized healthy human beings. The dose administered was 500 mg as a bolus. Cerebral blood flow (CBF) was measured continuously before, during and after the injection, using a pulsed ultrasound doppler system, which measured the instantaneous mean velocity across the lumen of the internal carotid artery, just below its entrance into the skull. Ventilation, heart-rate, end-expiratory PCO2- arterial PCO2, pH and systemic blood pressure was also measured. We found that acetazolamide caused a rise in CBF which could be detected as early as 2 min after the injection. A maximal average response of 75% increase in CBF was seen after 25 min. The half-time of the declining phase of the response was 95 min. There were no systematic differences in the CO2 reactivities, given as ACBF/ΔPACO2 in % of CBF at normocapnia, before and after acetazolamide injection, regardless of the absolute PACO2 level. The present dose of the drug caused no change in ventilation, alveolar and arterial PCO2 or in arterial blood pH indicating that the carbonic anhydrase was not fully inhibited. Our observations show that acetazolamide nevertheless caused a rapid vasodilation in the brain and over a wide range of PCO2′s. We suggest that this agent has a local vasodilator effect on the cerebral arterioles, unrelated to its specific effects as a carbonic anhydrase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号