首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique.

Materials and Methods

Echo shifts for three‐point IDEAL were chosen to optimize noise performance of the water–fat estimation, which is dependent on the relative proportion of water and fat within a voxel. Phantom experiments were performed to validate theoretical SNR predictions. Theoretical echo combinations that maximize noise performance are discussed, and examples of clinical applications at 1.5T and 3.0T are shown.

Results

The measured SNR performance validated theoretical predictions and demonstrated improved image quality compared to unoptimized echo combinations. Clinical examples of the liver, breast, heart, knee, and ankle are shown, including the combination of IDEAL with parallel imaging. Excellent water–fat separation was achieved in all cases. The utility of recombining water and fat images into “in‐phase,” “out‐of‐phase,” and “fat signal fraction” images is also discussed.

Conclusion

IDEAL‐SPGR provides robust water–fat separation with optimized SNR performance at both 1.5T and 3.0T with multicoil acquisitions and parallel imaging in multiple regions of the body. J. Magn. Reson. Imaging 2007;25:644–652. © 2007 Wiley‐Liss, Inc.  相似文献   

2.
Three‐point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin‐echo acquisition strategy (IDEAL‐GRASE) to provide a time‐efficient method for lipid–water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL‐GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high‐resolution T2 maps in addition to the water and fat images. The radial IDEAL‐GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.

Purpose:

To develop a robust 3D fast spin echo (FSE) T2‐weighted imaging method with uniform water and fat separation in a single acquisition, amenable to high‐quality multiplanar reformations.

Materials and Methods:

The Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) method was integrated with modulated refocusing flip angle 3D‐FSE. Echoes required for IDEAL processing were acquired by shifting the readout gradient with respect to the Carr‐Purcell‐Meiboom‐Gill echo. To reduce the scan time, an alternative data acquisition using two gradient echoes per repetition was implemented. Using the latter approach, a total of four gradient echoes were acquired in two repetitions and used in the modified IDEAL reconstruction.

Results:

3D‐FSE T2‐weighted images with uniform water–fat separation were successfully acquired in various anatomies including breast, abdomen, knee, and ankle in clinically feasible scan times, ranging from 5:30–8:30 minutes. Using water‐only and fat‐only images, in‐phase and out‐of‐phase images were reconstructed.

Conclusion:

3D‐FSE‐IDEAL provides volumetric T2‐weighted images with uniform water and fat separation in a single acquisition. High‐resolution images with multiple contrasts can be reformatted to any orientation from a single acquisition. This could potentially replace 2D‐FSE acquisitions with and without fat suppression and in multiple planes, thus improving overall imaging efficiency. J. Magn. Reson. Imaging 2010;32:745–751. © 2010 Wiley‐Liss, Inc.  相似文献   

4.

Purpose

To evaluate and quantify improvements in the quality of fat suppression for fast spin‐echo imaging of the knee using multipeak fat spectral modeling and IDEAL fat‐water separation.

Materials and Methods

T1‐weighted and T2‐weighted fast spin‐echo sequences with IDEAL fat‐water separation and two frequency‐selective fat‐saturation methods (fat‐selective saturation and fat‐selective partial inversion) were performed on 10 knees of five asymptomatic volunteers. The IDEAL images were reconstructed using a conventional single‐peak method and precalibrated and self‐calibrated multipeak methods that more accurately model the NMR spectrum of fat. The signal‐to‐noise ratio (SNR) was measured in various tissues for all sequences. Student t‐tests were used to compare SNR values.

Results

Precalibrated and self‐calibrated multipeak IDEAL had significantly greater suppression of signal (P < 0.05) within subcutaneous fat and bone marrow than fat‐selective saturation, fat‐selective partial inversion, and single‐peak IDEAL for both T1‐weighted and T2‐weighted fast spin‐echo sequences. For T1‐weighted fast spin‐echo sequences, the improvement in the suppression of signal within subcutaneous fat and bone marrow for multipeak IDEAL ranged between 65% when compared to fat‐selective partial inversion to 86% when compared to fat‐selectivesaturation. For T2‐weighted fast spin‐echo sequences, the improvement for multipeak IDEAL ranged between 21% when compared to fat‐selective partial inversion to 81% when compared to fat‐selective saturation.

Conclusion

Multipeak IDEAL fat‐water separation provides improved fat suppression for T1‐weighted and T2‐weighted fast spin‐echo imaging of the knee when compared to single‐peak IDEAL and two widely used frequency‐selected fat‐saturation methods. J. Magn. Reson. Imaging 2009;29:436–442. © 2009 Wiley‐Liss, Inc.  相似文献   

5.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

6.
Periodically‐rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin‐echo (FSE) and gradient and spin‐echo (GRASE), respectively. This is due to the inherent self‐navigation and motion correction of PROPELLER‐based techniques. However, it is unknown how various acquisition parameters that determine k‐space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.

Purpose

To implement IDEAL (iterative decomposition of water and fat using echo asymmetry and least squares estimation) water‐fat separation with 3D time‐of‐flight (TOF) magnetic resonance angiography (MRA) of intracranial vessels for improved background suppression by providing uniform and robust separation of fat signal that appears bright on conventional TOF‐MRA.

Materials and Methods

IDEAL TOF‐MRA and conventional TOF‐MRA were performed in volunteers and patients undergoing routine brain MRI/MRA on a 3T magnet. Images were reviewed by two radiologists and graded based on vessel visibility and image quality.

Results

IDEAL TOF‐MRA demonstrated statistically significant improvement in vessel visibility when compared to conventional TOF‐MRA in both volunteer and clinical patients using an image quality grading system. Overall image quality was 3.87 (out of 4) for IDEAL versus 3.55 for conventional TOF imaging (P = 0.02). Visualization of the ophthalmic artery was 3.53 for IDEAL versus 1.97 for conventional TOF imaging (P < 0.00005) and visualization of the superficial temporal artery was 3.92 for IDEAL imaging versus 1.97 for conventional TOF imaging (P < 0.00005).

Conclusion

By providing uniform suppression of fat, IDEAL TOF‐MRA provides improved background suppression with improved image quality when compared to conventional TOF‐MRA methods. J. Magn. Reson. Imaging 2009;29:1367–1374. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Purpose:

To compare fat‐suppressed magnetic resonance imaging (MRI) quality using iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL) with that using chemical shift selective fat‐suppressed T1‐weighted spin‐echo (CHESS) images for evaluating rheumatoid arthritis (RA) lesions of the hand and finger at 3T.

Materials and Methods:

MRI was performed in eight healthy volunteers and eight RA patients with a 3.0T MR system (Signa HDxt GE healthcare) using an eight‐channel knee coil. FS‐CHESS‐T1‐SE and IDEAL imaging were acquired in the coronal planes covering the entire structure of the bilateral hands with a slice thickness of 2 mm. In the RA patients both images were obtained after intravenous gadolinium administration. Image quality was evaluated on a five‐point scale (1 = excellent to 5 = very poor). Synovitis and bone marrow contrast uptake on MR images were reviewed by two musculoskeletal radiologists using the Rheumatoid Arthritis MRI Scoring System (RAMRIS) of the Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) group.

Results:

IDEAL showed uniform FS unaffected by magnetic field inhomogeneity and challenging geometry of hand and fingers, while CHESS‐T1‐SE often showed FS failure within the first metacarpal joint, tip of the finger, and ulnar aspect of the wrist joint. Overall image quality was significantly better with IDEAL than CHESS‐T1‐SE images (4.43 vs. 3.43, P < 0.01). Interobserver agreement (κ value) for synovitis and bone marrow contrast uptake was good to excellent with IDEAL (0.74–0.91, 0.62–0.89, respectively).

Conclusion:

IDEAL could compensate for the effects of field inhomogeneities, providing uniform FS of the hand and finger than did the CHESS‐T1‐SE sequence. J. Magn. Reson. Imaging 2013;37:733–738. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
OBJECTIVE: The objective of this article is to discuss the acquisition of high-quality MR images of the musculoskeletal system with uniform fat suppression using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). IDEAL is a three-point water-fat separation method that provides robust fat suppression even in the complex magnetic environments commonly encountered during clinical musculoskeletal imaging. CONCLUSION: The IDEAL technique provides uniform fat saturation even in complex magnetic environments and simultaneously produces in-phase and opposed-phase images that may be useful for characterization of osseous lesions. The IDEAL water-fat separation method is highly versatile and has been successfully combined with T1-weighted, T2-weighted, steady-state free precession, and spoiled gradient-recalled echo techniques to produce high-quality MR images in clinically acceptable scanning times.  相似文献   

10.
Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex‐based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude‐based” methods that acquire multiecho magnitude images. Magnitude‐based methods are insensitive to phase errors, but cannot estimate fat‐fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude‐based reconstruction is applied after complex‐based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat‐fraction can be estimated with improved accuracy at low fat‐fractions. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Fat/water separation methods such as fluctuating equilibrium magnetic resonance and linear combination steady‐state free precession have not yet been successfully implemented at 3.0 T due to extreme limitations on the time available for spatial encoding with the increase in magnetic field strength. We present a method to utilize a three‐dimensional radial sequence combined with linear combination steady‐state free precession at 3.0 T to take advantage of the increased signal levels over 1.5 T and demonstrate high spatial resolution compared to Cartesian techniques. We exploit information from the two half‐echoes within each pulse repetition time to correct the accumulated phase on a point‐by‐point basis, thereby fully aligning the phase of both half‐echoes. The correction provides reduced sensitivity to static field (B0) inhomogeneity and robust fat/water separation. Resultant images in the knee joint demonstrate the necessity of such a correction, as well as the increased isotropic spatial resolution attainable at 3.0 T. Results of a clinical study comparing this sequence to conventional joint imaging sequences are included. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.

Purpose:

To evaluate the diagnostic implications of the iterative decomposition of water and fat using echo‐asymmetry and the least‐squares estimation (IDEAL) technique to detect hepatic steatosis (HS) in potential liver donors using histopathology as the reference standard.

Materials and Methods:

Forty‐nine potential liver donors (32 male, 17 female; mean age, 31.7 years) were included. All patients were imaged using the in‐ and out‐of‐phase (IOP) gradient‐echo (GRE) and IDEAL techniques on a 1.5 T MR scanner. To estimate the hepatic fat fraction (FF), two reviewers performed regions‐of‐interest measurement in 15 areas of the liver seen on the IOP images and on the IDEAL‐FF images. The magnetic resonance imaging (MRI) and pathology values of macrosteatosis were correlated using the Pearson correlation coefficient. We analyzed the diagnostic performance of IOP imaging and IDEAL for detecting HS.

Results:

The results of the hepatic‐FF estimated on IDEAL were well correlated with the histologic degree of macrosteatosis (γ = 0.902, P < 0.001). IDEAL showed 100% sensitivity and 91% specificity for detecting HS, and IOP imaging showed 87.5% sensitivity and 97% specificity, respectively.

Conclusion:

IDEAL is a useful tool for the preoperative diagnosis of HS in potential living liver donors; it can also help to avoid unnecessary biopsies in these patients. J. Magn. Reson. Imaging 2012;36:1124–1130. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
目的比较磁共振脂肪抑制FSET2WI、STIRT2WI、IDEALT2WI及CUBEFlexT2WI4种方法显示正常臂丛神经的优劣。资料与方法对14例自愿者行臂丛神经MRI脂肪抑制FSET2WI、STIRT2WI、IDEALT2WI及CUBEFlexT2WI检查。对图像脂肪抑制质量进行肉眼分级评估,并测量信噪比和对比噪声比。结果 IDEALT2WI、CUBEFlexT2WI脂肪抑制质量明显优于FSET2WI(P<0.05),与STIRT2WI相比差异无统计学意义(P>0.05)。信噪比、对比噪声比均值比较各组间差异均有统计学意义(P<0.05),IDEALT2WI>CUBEFlexT2WI>FSET2WI>STIRT2WI。IDEALT2WI和CUBEFlexT2WI图像均可选择不同厚度重建、斜面重建等,从而可显示臂丛神经各段。结论 IDEALT2WI、CUBEFlexT2WI能提供均匀稳定的脂肪抑制,图像信噪比高,可清晰显示臂丛神经。  相似文献   

14.

Purpose:

To develop a robust T2‐weighted volumetric imaging technique with uniform water‐silicone separation and simultaneous fat suppression for rapid assessment of breast implants in a single acquisition.

Materials and Methods:

A three‐dimensional (3D) fast spin echo sequence that uses variable refocusing flip angles was combined with a three‐point chemical‐shift technique (IDEAL) and short tau inversion recovery (STIR). Phase shifts of ?π/6, +π/2, and +7π/6 between water and silicone were used for IDEAL processing. For comparison, two‐dimensional images using 2D‐FSE‐IDEAL with STIR were also acquired in axial, coronal, and sagittal orientations.

Results:

Near‐isotropic (true spatial resolution—0.9 × 1.3 × 2.0 mm3) volumetric breast images with uniform water‐silicone separation and simultaneous fat suppression were acquired successfully in clinically feasible scan times (7:00–10:00 min). The 2D images were acquired with the same in‐plane resolution (0.9 × 1.3 mm2), but the slice thickness was increased to 6 mm with a slice gap of 1 mm for complete coverage of the implants in a reasonable scan time, which varied between 18:00 and 22:30 min.

Conclusion:

The single volumetric acquisition with uniform water and silicone separation enables images to be reformatted into any orientation. This allows comprehensive assessment of breast implant integrity in less than 10 min of total examination time. J. Magn. Reson. Imaging 2012;35:1216‐1221. © 2012 Wiley Periodicals, Inc.
  相似文献   

15.

Purpose:

To validate i terative d ecomposition of water and fat with e cho a symmetry and l east‐squares estimation (IDEAL) for adipose tissue volume quantification. IDEAL allows MRI images to be produced only from adipose‐containing tissues; hence, quantifying adipose tissue should be simpler and more accurate than with current methods.

Materials and Methods:

Ten healthy controls were imaged with 1.5 Tesla (T) Spin Echo (SE), 3.0T T1‐weighted spoiled gradient echo (SPGR), and 3.0T IDEAL‐SPGR. Images were acquired from the abdomen, pelvis, mid‐thigh, and mid‐calf. Mean subcutaneous and visceral adipose tissue volumes were compared between the three acquisitions for each subject.

Results:

There were no significant differences (P > 0.05) between the three acquisitions for subcutaneous adipose tissue volumes. However, there was a significant difference (P = 0.0002) for visceral adipose tissue volumes in the abdomen. Post hoc analysis showed significantly lower visceral adipose tissue volumes measured by IDEAL versus 1.5T (P < 0.0001) and 3.0T SPGR (P < 0.002). The lower volumes given by IDEAL are due to its ability to differentiate true visceral adipose tissue from other bright structures like blood vessels and bowel content that are mistaken for adipose tissue in non‐fat suppressed images.

Conclusion:

IDEAL measurements of adipose tissue are equivalent to established 1.5T measurement techniques for subcutaneous depots and have improved accuracy for visceral depots, which are more metabolically relevant. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

16.

Purpose:

To investigate the feasibility of using IDEAL (Iterative Decomposition with Echo Asymmetry and Least squares estimation) fat–water imaging and the resultant fat fraction metric in detecting brown adipose tissue (BAT) in mice, and in differentiating BAT from white adipose tissue (WAT).

Materials and Methods:

Excised WAT and BAT samples and whole‐mice carcasses were imaged with a rapid three‐dimensional fat–water IDEAL‐SPGR sequence on a 3 Tesla scanner using a single‐channel wrist coil. An isotropic voxel size of 0.6 mm was used. Excised samples were also scanned with single‐voxel proton spectroscopy. Fat fraction images from IDEAL were reconstructed online using research software, and regions of WAT and BAT were quantified.

Results:

A broad fat fraction range for BAT was observed (40–80%), in comparison to a tighter and higher WAT range of 90–93%, in both excised tissue samples and in situ. Using the fat fraction metric, the interscapular BAT depot in each carcass could be clearly identified, as well as peri‐renal and inguinal depots that exhibited a mixed BAT and WAT phenotype appearance.

Conclusion:

Due to BAT's multi‐locular fat distribution and extensive mitochondrial, cytoplasm, and vascular supply, its fat content is significantly less than that of WAT. We have demonstrated that the fat fraction metric from IDEAL‐MRI is a sensitive and quantitative approach to noninvasively characterize BAT. J. Magn. Reson. Imaging 2010;31:1195–1202. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Radial trajectories facilitate high‐resolution balanced steady state free precession (bSSFP) because the efficient gradients provide more time to extend the trajectory in k‐space. A number of radial bSSFP methods that support fat–water separation have been developed; however, most of these methods require an environment with limited B0 inhomogeneity. In this work, high‐resolution bSSFP with fat–water separation is achieved in more challenging B0 environments by combining a 3D radial trajectory with the IDEAL chemical species separation method. A method to maintain very high resolution within the timing constraints of bSSFP and IDEAL is described using a dual‐pass pulse sequence. The sampling of a unique set of radial lines at each echo time is investigated as a means to circumvent the longer scan time that IDEAL incurs as a multiecho acquisition. The manifestation of undersampling artifacts in this trajectory and their effect on chemical species separation are investigated in comparison to the case in which each echo samples the same set of radial lines. This new bSSFP method achieves 0.63 mm isotropic resolution in a 5‐min scan and is demonstrated in difficult in vivo imaging environments, including the breast and a knee with ACL reconstruction hardware at 1.5 T. Magn Reson Med 71:95–104, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.

Purpose:

To determine whether Dixon‐based fat separation techniques can provide more robust removal of lipid signals from multiple‐mouse magnetic resonance imaging (MRI)‐acquired images than conventional frequency selective chemical saturation techniques.

Materials and Methods:

A two‐point Dixon technique was implemented using a RARE‐based pulse sequence and techniques for multivolume fat suppression were evaluated using a 4‐element array of volume resonators at 4.7 T. Images were acquired of both phantoms and mice.

Results:

Fat saturation was achieved on all four channels of the multiple mouse acquisition with the Dixon technique, while failures of fat saturation were found with chemical saturation techniques.

Conclusion:

This proof of concept study found that Dixon fat separation provided more reliable and homogenous fat suppression than chemical saturation in phantoms and in vivo. J. Magn. Reson. Imaging 2010; 31:510–514. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
In MRI, the suppression of fat signal is very important for many applications. Multipoint Dixon based water–fat separation methods are commonly used due to its robustness to B0 homogeneity compared with other fat suppression methods, such as spectral fat saturation. The traditional Cartesian k‐space trajectory based multipoint Dixon technique is sensitive to motion, such as pulsatile blood flow, resulting in artifacts that compromise image quality. This work presents a three‐point Dixon water–fat separation method using undersampled BLADE (aka PROPELLER) for motion robustness and speed. A regularized iterative reconstruction method is then proposed for reducing the streaking artifacts coming from undersampling. In this study, the performance of the regularized iterative reconstruction method is first tested by simulations and on MR phantoms. The performance of the proposed technique is then evaluated in vivo by comparing it with conventional fat suppression methods on the human brain and knee. Experiments show that the presented method delivers reliable water–fat separation results. The reconstruction method suppresses streaking artifacts typical for undersampled BLADE acquisition schemes without missing fine structures in the image. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
The concentric rings two‐dimensional (2D) k‐space trajectory enables flexible trade‐offs between image contrast, signal‐to‐noise ratio (SNR), spatial resolution, and scan time. However, to realize these benefits for in vivo imaging applications, a robust method is desired to deal with fat signal in the acquired data. Multipoint Dixon techniques have been shown to achieve uniform fat suppression with high SNR‐efficiency for Cartesian imaging, but application of these methods for non‐Cartesian imaging is complicated by the fact that fat off‐resonance creates significant blurring artifacts in the reconstruction. In this work, two fat–water separation algorithms are developed for the concentric rings. A retracing design is used to sample rings near the center of k‐space through multiple revolutions to characterize the fat–water phase evolution difference at multiple time points. This acquisition design is first used for multipoint Dixon reconstruction, and then extended to a spectroscopic approach to account for the trajectory's full evolution through 3D kt space. As the trajectory is resolved in time, off‐resonance effects cause shifts in frequency instead of spatial blurring in 2D k‐space. The spectral information can be used to assess field variation and perform robust fat–water separation. In vivo experimental results demonstrate the effectiveness of both algorithms. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号