首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work extends the multiple acquisitions with global inversion cycling vascular space occupancy (MAGIC VASO) method to human whole-brain functional magnetic resonance imaging (fMRI) at 3.0 Tesla and demonstrates the need to consider the dynamic contribution of cerebrospinal fluid (CSF) to the relative VASO signal change (DeltaVASO/VASO). Simulations were performed to determine the optimal slice number between global inversions, and correction factors were obtained to account for incomplete blood nulling in particular slices. The necessity of an accurate estimate of resting cerebral blood volume (CBV(rest)) is discussed in the context of DeltaCBV/CBV calculations. A three-compartment model is proposed to include both the resting and changing fractional CSF contribution (x(c,rest) and Deltax(c), respectively) to DeltaVASO/VASO. A MAGIC VASO sequence that provides whole-brain coverage is demonstrated using a paradigm comprised of visual, motor, and auditory stimulation. Activated regions are quantitatively compared in the corresponding blood oxygenation level-dependent (BOLD) images. Estimates of the minimum DeltaCBV/CBV resulting from motor and visual stimulation were comparable to previous findings at 17 +/- 8% (N = 8) and 19 +/- 9% (N = 6), respectively. The absence of VASO activation for auditory stimulation and evidence of activation-induced decreases in CSF volume fraction around the insula and superior temporal gyrus support the possibility of a Deltax(c) contribution to the VASO signal. Without specific knowledge of the CSF components (x(c,rest) and Deltax(c)), inference of DeltaCBV/CBV from DeltaVASO/VASO is severely limited.  相似文献   

2.
Recently, a vascular‐space‐occupancy (VASO) MRI technique was developed for quantitative assessment of cerebral blood volume (CBV). This method uses the T1‐shortening effect of gadolinium diethylenetriamine pentaacetic acid (Gd‐DTPA) with imaging parameters chosen that null the precontrast blood magnetization but allow the postcontrast blood magnetization to recover to equilibrium. A key advantage of VASO CBV estimation is that it provides a straightforward procedure for converting MR signals to absolute physiologic values. However, as with other T1‐based steady‐state approaches, several important factors need to be considered that influence the accuracy of CBV values obtained with VASO MRI. Here, the transverse relaxation (T2/T) effect in VASO MRI was investigated using multiecho spin‐echo and gradient‐echo experiments, resulting in underestimation of CBV by 14.9% ± 1.1% and 16.0% ± 2.5% for spin echo (TE = 10 ms) and gradient echo (TE = 6 ms), respectively. In addition, the influence of contrast agent clearance was studied by acquiring multiple postcontrast VASO images at 2.2‐min intervals, which showed that the concentration of Gd‐DTPA in the first 14 min (single dose) was sufficient for the blood magnetization to fully recover to equilibrium. Finally, the effect of vascular Gd‐DTPA leakage was assessed for scalp tissue, and signal extrapolation as a function of postinjection time was demonstrated to be useful in minimizing the associated errors. Specific recommendations for VASO MRI acquisition and processing strategies are provided. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Vascular‐space‐occupancy (VASO) MRI, a blood nulling approach for assessing changes in cerebral blood volume (CBV), is hampered by low signal‐to‐noise ratio (SNR) because only 10–20% of tissue signal is recovered when using nonselective inversion for blood nulling. A new approach, called inflow‐VASO (iVASO), is introduced in which only blood flowing into the slice has experienced inversion, thereby keeping tissue and cerebrospinal fluid (CSF) signal in the slice maximal and reducing CSF partial volume effects. SNR increases of 198% ± 12% and 334% ± 9% (mean ± SD, n = 7) with respect to VASO were found at TR values of 5s and 2s, respectively. When using inflow approaches, data interpretation is complicated by the fact that signal changes are affected by vascular transit times. An optimal TR‐range (1.5–2.5s) was derived in which the iVASO response during activation predominantly reflects arterial/arteriolar CBV (CBVa) changes. In this TR‐range, perfusion contributions to the signal change are negligible because arterial label has not yet undergone capillary exchange, and arterial and precapillary blood signals are nulled. For TR = 2s, the iVASO signal change upon visual stimulation corresponded to a CBVa increase of 58% ± 7%, in agreement with arteriolar CBV changes previously reported. The onset of the hemodynamic response for iVASO occurred 1.2 ± 0.5s (n = 7) faster than for conventional VASO. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Vascular‐space‐occupancy (VASO) MRI is a novel technique that uses blood signal nulling to detect blood volume alterations through changes in tissue signal. VASO has relatively low signal to noise ratio (SNR) because only 10–20% of tissue signal remain at the time of blood nulling. Here, it is shown that by adding a magnetization transfer (MT) prepulse it is possible to increase SNR either by attenuating the initial tissue magnetization when the MT pulse is placed before inversion, or, accelerating the recovery process when the pulse is applied after the inversion. To test whether the MT pulse would affect the blood nulling time in VASO, MT effects in blood were measured both ex vivo in a bovine blood phantom and in vivo in human brain. Such effects were found to be sufficiently small (< 2.5%) under a saturation power ≤ 3 μT, length = 500 ms, and frequency offset ≥40 ppm to allow use of the same nulling time. Subsequently, functional MRI experiments using MT‐VASO were performed in human visual cortex at 3 Tesla. The relative signal changes in MT‐VASO were of the same magnitude as in VASO, while the contrast to noise ratio (CNR) was enhanced by 44 ± 12% and 36 ± 11% respectively. Therefore, MT‐VASO should provide a means for increasing inherently low CNR in VASO experiments while preserving the CBV sensitivity. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A model for quantifying cerebral blood volume (CBV) based on the vascular space occupancy (VASO) technique and varying the extent of blood nulling yielding task‐related signal changes with various amounts of blood oxygenation level‐dependent (BOLD) and VASO weightings was previously described. Challenges associated with VASO include limited slice coverage and the confounding inflow of fresh blood. In this work, an approach that extends the previous model to multiple slices and accounts for the inflow effect is described and applied to data from a multiecho sequence simultaneously acquiring VASO, cerebral blood flow (CBF), and BOLD images. This method led to CBV values (7.9 ± 0.3 and 5.6 ± 0.3 ml blood/100 ml brain during activation [CBVACT] and rest [CBVREST], respectively) consistent with previous studies using similar visual stimuli. Furthermore, an increase in effective blood relaxation (0.65 ± 0.01) compared to the published value (0.62) was detected, likely reflecting inflow of fresh blood. Finally, cerebral metabolic rate of oxygen (CMRO2) estimates using a multiple compartment model without assumption of CBVREST led to estimates (18.7 ± 17.0%) that were within published ranges. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.

Purpose

To assess the role of vascular space occupancy (VASO) magnetic resonance imaging (MRI), a noninvasive cerebral blood volume (CBV)‐weighted technique, for evaluating CBV reactivity in patients with internal carotid artery (ICA) stenosis.

Materials and Methods

VASO reactivity, defined as a signal change in response to hypercapnic stimulus (4‐second exhale, 14‐second breath‐hold), was measured in the left and right ICA flow territories in patients (n = 10) with varying degrees of unilateral and bilateral ICA stenosis and in healthy volunteers (n = 10).

Results

Percent VASO reactivity was more negative (P < 0.01) bilaterally in patients (ipsilateral: ?3.6 ± 1.5%; contralateral: ?3.4 ± 1.2%) compared with age‐matched controls (left: ?1.9 ± 0.6%; right: ?1.9 ± 0.8%). Owing to the nature of the VASO contrast mechanism, this more negative VASO reactivity was attributed to autoregulatory CBV effects in patients. A postbreath‐hold overshoot, which was absent in healthy volunteers, was observed unilaterally in a subset of patients.

Conclusion

More negative VASO reactivity was observed in patients with ICA stenosis and may be a marker of autoregulatory effects. Furthermore, the postbreath‐hold overshoot observed in patients is consistent with compensatory microvascular vasoconstriction and may be a marker of hemodynamic impairment. Based on the results of this feasibility study, VASO should be useful for identifying CBV adjustments in patients with steno‐occlusive disease of the ICA. J. Magn. Reson. Imaging 2009;29:718–724. © 2009 Wiley‐Liss, Inc.
  相似文献   

7.
The goal of the vascular space occupancy (VASO) imaging technique is to use selective nulling of the blood signal to infer relative changes in cerebral blood volume (CBV). In accordance with recent work, we show that changes in the local CSF fraction (x(c)) with activation can significantly impact the VASO signal, thereby limiting our ability to infer DeltaCBV from DeltaVASO alone. Here we calculate CBV change using a VASO-based method which ACcounts for the Dynamic Cerebrospinal (ACDC) fluid fraction. By combining data from two separate VASO acquisitions that eliminate either the blood signal (VASO(b)) or the CSF signal (VASO(c)), a nonlinear least-squares optimization may then be used to simultaneously solve for the relative changes in CBV and CSF with activation. The method is applied across the whole brain during a breath-holding task, offering insight into the relationship between changes in CBV and x(c) associated with global vasodilatation. Calculations of mean changes in CBV in different volumes of interest obtained from the proposed method compare much better with previous (gold-standard) PET data than traditional VASO methods that do not account for a nonzero Deltax(c) with activation. This confirms the necessity of incorporating the dynamic CSF volume into VASO-based calculations of DeltaCBV.  相似文献   

8.
In vascular‐space‐occupancy (VASO)‐MRI, cerebral blood volume (CBV)‐weighted contrast is generated by applying a nonselective inversion pulse followed by imaging when blood water magnetization is zero. An uncertainty in VASO relates to the completeness of blood water nulling. Specifically, radio frequency (RF) coils produce a finite inversion volume, rendering the possibility of fresh, non‐nulled blood. Here, VASO‐functional MRI (fMRI) was performed for varying inversion volume and TR using body coil RF transmission. For thin inversion volume thickness (δtot < 10 mm), VASO signal changes were positive (ΔS/S = 2.1–2.6%). Signal changes were negative and varied in magnitude for intermediate inversion volumes (δtot = 100–300 mm), yet did not differ significantly (P > 0.05) for δtot > 300 mm. These data suggest that blood water is in steady state for δtot > 300 mm. In this appropriate range, long‐TR VASO data converged to a less negative value (ΔS/S = –1.4% ± 0.2%) than short‐TR data (ΔS/S = –2.2% ± 0.2%), implying that cerebral blood flow or transit‐state effects may influence VASO contrast at short TR. Magn Reson Med 61:473–480, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
PURPOSE: To measure the cerebral blood volume (CBV) dynamics during neural activation, a novel technique named vascular space occupancy (VASO)-based functional MRI (fMRI) was recently introduced for noninvasive CBV detection. However, its application is limited because of its low contrast-to-noise ratio (CNR) due to small signal change from the inverted blood. MATERIALS AND METHODS: In this study a new approach-VASO with tissue suppression (VAST)-is proposed to enhance CNR. This technique is compared with VASO and blood oxygenation level-dependent (BOLD) fMRI in block-design and event-related visual experiments. RESULTS: Based on acquired T(1) maps, 75.3% of the activated pixels detected by VAST are located in the cortical gray matter. Temporal characteristics of functional responses obtained by VAST were consistent with that of VASO. Although the baseline signal was decreased by the tissue suppression, the CNR of VAST was about 43% higher than VASO. CONCLUSION: With the improved sensitivity, VAST fMRI provides a useful alternative for mapping the spatial/temporal features of regional CBV changes during brain activation. However, the technical imperfectness of VAST, such as the nonideal inversion efficiency and physiological contaminations, limits its application to precise CBV quantification.  相似文献   

10.
Three‐point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin‐echo acquisition strategy (IDEAL‐GRASE) to provide a time‐efficient method for lipid–water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL‐GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high‐resolution T2 maps in addition to the water and fat images. The radial IDEAL‐GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Quantitative determination of cerebral blood volume (CBV) is important for understanding brain physiology and pathophysiology. In this work, a novel approach is presented for accurate measurement of absolute CBV (aCBV) using vascular-space-occupancy (VASO) MRI, a blood-nulling pulse sequence, in combination with the T(1) shortening property of Gd-DTPA. Two VASO images with identical imaging parameters are acquired before and after contrast agent injection, resulting in a subtracted image that reflects the amount of blood present in the brain, i.e., CBV. With an additional normalizing factor, aCBV in units of milliliters of blood per 100 mL of brain can be estimated. Experimental results at 1.5 and 3 T systems showed that aCBV maps with high spatial resolution can be obtained with high reproducibility. The averaged aCBV values in gray and white matter were 5.5 +/- 0.2 and 1.4 +/- 0.1 mL of blood/100 mL of brain, respectively. Compared to dynamic susceptibility contrast techniques, VASO MRI is based upon a relatively straightforward theory and the calculation of CBV does not require measurement of an arterial input function. In comparison with previous pre/postcontrast difference approaches, VASO MRI provides maximal signal difference between pre- and postcontrast situation and does not require the use of whole blood for signal normalization.  相似文献   

12.
Vascular‐space‐occupancy (VASO) MRI exploits the difference between blood and tissue T1 to null blood signal and measure cerebral blood volume changes using the residual tissue signal. VASO imaging is more difficult at higher field because of sensitivity loss due to the convergence of tissue and blood T1 values and increased contamination from blood‐oxygenation‐level‐dependent (BOLD) effects. In addition, compared to 3T, 7T MRI suffers from increased geometrical distortions, e.g., when using echo‐planar‐imaging, and from increased power deposition, the latter especially problematic for the spin‐echo‐train sequences commonly used for VASO MRI. Third, non‐steady‐state blood spin effects become substantial at 7T when only a head coil is available for radiofrequency transmit. In this study, the magnetization‐transfer‐enhanced‐VASO approach was applied to maximize tissue‐blood signal difference, which boosted signal‐to‐noise ratio by 149% ± 13% (n = 7) compared to VASO. Second, a 3D fast gradient‐echo sequence with low flip‐angle (7°) and short echo‐time (1.8 ms) was used to minimize the BOLD effect and to reduce image distortion and power deposition. Finally, a magnetization‐reset technique was combined with a motion‐sensitized‐driven‐equilibrium approach to suppress three types of non‐steady‐state spins. Our initial functional MRI results in normal human brains at 7T with this optimized VASO sequence showed better signal‐to‐noise ratio than at 3T. Magn Reson Med 69:1003–1013, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
During brain activation, local control of oxygen delivery is facilitated through microvascular dilatation and constriction. A new functional MRI (fMRI) methodology is reported that is sensitive to these microvascular adjustments. This contrast is accomplished by eliminating the blood signal in a manner that is independent of blood oxygenation and flow. As a consequence, changes in cerebral blood volume (CBV) can be assessed through changes in the remaining extravascular water signal (i.e., that of parenchymal tissue) without need for exogenous contrast agents or any other invasive procedures. The feasibility of this vascular space occupancy (VASO)-dependent functional MRI (fMRI) approach is demonstrated for visual stimulation, breath-hold (hypercapnia), and hyperventilation (hypocapnia). During visual stimulation and breath-hold, the VASO signal shows an inverse correlation with the stimulus paradigm, consistent with local vasodilatation. This effect is reversed during hyperventilation. Comparison of the hemodynamic responses of VASO-fMRI, cerebral blood flow (CBF)-based fMRI, and blood oxygenation level-dependent (BOLD) fMRI indicates both arteriolar and venular temporal characteristics in VASO. The effect of changes in water exchange rate and partial volume contamination with CSF were calculated to be negligible. At the commonly-used fMRI resolution of 3.75 x 3.75 x 5 mm(3), the contrast-to-noise-ratio (CNR) of VASO-fMRI was comparable to that of CBF-based fMRI, but a factor of 3 lower than for BOLD-fMRI. Arguments supporting a better gray matter localization for the VASO-fMRI approach compared to BOLD are provided.  相似文献   

14.
The aim of this study was to evaluate the sensitivity of gradient-and-spin-echo (GRASE) sequences to susceptibility effects. GRASE sequences with 21 and 33 echoes per echo train were compared with a T2-weighted FSE sequence with an echo train length of 5 by means of MRI in phantoms, volunteers (n = 10), and patients (n = 19) with old hemorrhagic brain lesions. All experiments were performed on a 1.0-T clinical MR system (Impact Expert, Siemens AG, Erlangen, Germany) with constant imaging parameters. Contrast-to-noise ratios (CNRs) of tubes doped with iron oxides at different concentrations, of brain areas with physiological iron deposition (red nucleus, substantia nigra), and of areas of old brain hemorrhage were calculated for FSE and GRASE pulse sequences. Areas of old brain hemorrhage were also qualitatively analyzed for the degree of visible susceptibility effects by blinded reading. The CNR of iron oxide tubes and iron-containing brain areas decreased with increasing echo trains of GRASE sequences. The CNR of GRASE sequences decreased when compared with CNR of their FSE counterparts (GRASE 21 echo trains 23.8 ± 0.8, FSE 5 echo trains 26.7 ± 0.9; p≤ 0.01). Qualitative analysis confirmed these measurements. FSE with an ETL of 5 demonstrated significantly stronger susceptibility effects than their GRASE counterpart with an ETL of 21. The results demonstrate that GRASE sequences do not necessarily compensate for the reduced sensitivity of FSE to susceptibility effects. The complex signal behavior of GRASE makes conventional SE, gradient echo, or FSE sequences containing shorter echo trains preferable when patients with intracranial hemorrhage are clinically evaluated. Received 12 November 1997; Revision received 18 April 1997; Accepted 1 September 1997  相似文献   

15.
Development of GRASE (gradient‐ and spin‐echo) pulse sequences for single‐shot 3D imaging has been motivated by physiologic studies of the brain. The duration of echo‐planar imaging (EPI) subsequences between RF refocusing pulses in the GRASE sequence is determinant of image distortions and susceptibility artifacts. To reduce these artifacts the regular Cartesian trajectory is modified to a circular trajectory in 2D and a cylindrical trajectory in 3D for reduced echo train time. Incorporation of “fly‐back” trajectories lengthened the time of the subsequences and proportionally increased susceptibility artifact but the unipolar readout gradients eliminate all ghost artifacts. The modified cylindrical trajectory reduced susceptibility artifact and distortion artifact while raising the signal‐to‐noise ratio in both phantom and human brain images. Magn Reson Med 60:976–980, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single‐shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal‐to‐noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through‐plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through‐plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm3 nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through‐plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Fuzzy cluster analysis (FCA) is a new exploratory method for analyzing fMRI data. Using simulated functional MRI (fMRI) data, the performance of FCA, as implemented in the software package Evident, was tested and a quantitative comparison with correlation analysis is presented. Furthermore, the fMRI model fit allows separation and quantification of flow and blood oxygen level dependent (BOLD) contributions in the human visual cortex. In gradient-recalled echo fMRI at 1.5 T (TR = 60 ms, TE = 42 ms, radiofrequency excitation flip angle [?] = 10°–60°) total signal enhancement in the human visual cortex, ie, flow-enhanced BOLD plus inflow contributions, on average varies from 5% to 10% in or close to the visual cortex (average cerebral blood volume [CBV] = 4%) and from 10% to 20% in areas containing medium-sized vessels (ie, average CBV = 12% per voxel), respectively. Inflow enhancement, however, is restricted to intravascular space (= CBV) and increases with increasing radiofrequency (RF) flip angle, whereas BOLD contributions may be obtained from a region up to three times larger and, applying an unspoiled gradient-echo (GRE) sequence, also show a flip angle dependency with a minimum at approximately 30°. This result suggests that a localized hemodynamic response from the microvasculature at 1.5 T maybe extracted via fuzzy clustering. In summary, fuzzy clustering of fMRI data, as realized in the Evident software, is a robust and efficient method to (a) separate functional brain activation from noise or other sources resulting in time-dependent signal changes as proven by simulated fMRI data analysis and in vivo data from the visual cortex, and (b) allows separation of different levels of activation even if the temporal pattern is indistinguishable. Combining fuzzy cluster separation of brain activation with appropriate model calculations allows quantification of flow and (flow-enhanced) BOLD contributions in areas with different vascularization.  相似文献   

18.

Purpose

To study the contrast agent dose sensitivity of hemodynamic parameters derived from brain dynamic susceptibility contrast MRI (DSC‐MRI).

Materials and Methods

Sequential DSC‐MRI (1.5T gradient‐echo echo‐planar imaging using an echo time of 61–64 msec) was performed using contrast agent doses of 0.1 and 0.2 mmol/kg delivered at a fixed rate of 5.0 mL/second in 12 normal subjects and 12 stroke patients.

Results

1) Arterial signal showed the expected doubling in relaxation response (ΔR2*) to dose doubling. 2) The brain signal showed a less than doubled ΔR2* response to dose doubling. 3) The 0.2 mmol/kg dose studies subtly underestimated cerebral blood volume (CBV) and cerebral blood flow (CBF) relative to the 0.1 mmol/kg studies. 4) In the range of low CBV and CBF, the 0.2 mmol/kg studies overestimated the CBV and CBF compared with the 0.1 mmol/kg studies. 5) The 0.1 mmol/kg studies reported larger ischemic volumes in stroke.

Conclusion

Subtle but statistically significant dose sensitivities were found. Therefore, it is advisable to carefully control the contrast agent dose when DSC‐MRI is used in clinical trials. The study also suggests that a 0.1 mmol/kg dose is adequate for hemodynamic measurements. J. Magn. Reson. Imaging 2009;29:52–64. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Functional MRI (fMRI) based on the detection of intermolecular double‐quantum coherences (iDQC) has previously been shown to provide pronounced activation signal. For fMRI in small animals at very high magnetic fields, the essential fast gradient echo‐based readout methods become problematic. Here, rapid intermolecular double‐quantum coherence (iDQC) imaging was implemented, combining the iDQC preparation sequence with a Turbo spin echo‐like readout. Four‐step phase cycling and a novel intensity‐ordered k‐space encoding scheme with separate acquisition of odd and even echoes were essential to optimize signal to noise ratio efficiency. Compared with a single echo readout of iDQC signal, acceleration of factor 16 was achieved in phantoms using the novel method at 17.6 Tesla. In vivo, echo trains consisting of 32 echoes were possible and images of the mouse brain were obtained in 30 s. The blood oxygen level dependent (BOLD) effect in the mouse brain upon change of breathing gas was observed as average signal change of (6.3 ± 1.1)% in iDQC images. Signal changes in conventional multi spin echo images were (4.4 ± 2.3)% and (8.3 ± 3.8)% with gradient echo methods. Combination of T2*‐weighting with the fast iDQC sequence may yield higher signal changes than with either method alone, and establish fast iDQC imaging a robust tool for high field fMRI in small animals. Magn Reson Med 60:850–859, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
A new method for ordering the phase-encoding gradient is proposed, and an application for short effective TE gradient-and spin-echo (GRASE) imaging is demonstrated. The proposed method calculates the phase-encoding order from the signal decay of a template scan (hence “template interactive phase-encoding” or TIPE). Computer simulations are used to compare the point spread functions of different phase-encoding orders giving short effective echo times (kb centric GRASE, centric GRASE, centric TIPE). The conventional centric phase-encoding order is also considered for GRASE. The conventional centric method is sensitive to both amplitude and phase modulation of the signal in K-space. The centric TIPE method gives the least amplitude modulation artifacts but is vulnerable to phase artifacts. The TIPE experiment was implemented on a 3 Tesla system. To the best of our knowledge, we present the first in vivo GRASE images at this field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号