首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient acquisition strategies for magnetization‐prepared imaging based on the three‐dimensional (3D) stack‐of‐rings k‐space trajectory are presented in this work. The 3D stack‐of‐rings can be acquired with centric ordering in all three dimensions for greater efficiency in capturing the desired contrast. In addition, the 3D stack‐of‐rings naturally supports spherical coverage in k‐space for shorter scan times while achieving isotropic spatial resolution. While non‐Cartesian trajectories generally suffer from greater sensitivity to system imperfections, the 3D stack‐of‐rings can enhance magnetization‐prepared imaging with a high degree of robustness to timing delays and off‐resonance effects. As demonstrated with phantom scans, timing errors and gradient delays only cause a bulk rotation of the 3D stack‐of‐rings reconstruction. Furthermore, each ring can be acquired with a time‐efficient retracing design to resolve field inhomogeneities and enable fat/water separation. To demonstrate its effectiveness, the 3D stack‐of‐rings are considered for the case of inversion‐recovery‐prepared structural brain imaging. Experimental results show that the 3D stack‐of‐rings can achieve higher signal‐to‐noise ratio and higher contrast‐to‐noise ratio within a shorter scan time when compared to the standard inversion‐recovery‐prepared sequence based on 3D Cartesian encoding. The design principles used for this specific case of inversion‐recovery‐prepared brain imaging can be applied to other magnetization‐prepared imaging applications. Magn Reson Med 63:1210–1218, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
In MRI, the suppression of fat signal is very important for many applications. Multipoint Dixon based water–fat separation methods are commonly used due to its robustness to B0 homogeneity compared with other fat suppression methods, such as spectral fat saturation. The traditional Cartesian k‐space trajectory based multipoint Dixon technique is sensitive to motion, such as pulsatile blood flow, resulting in artifacts that compromise image quality. This work presents a three‐point Dixon water–fat separation method using undersampled BLADE (aka PROPELLER) for motion robustness and speed. A regularized iterative reconstruction method is then proposed for reducing the streaking artifacts coming from undersampling. In this study, the performance of the regularized iterative reconstruction method is first tested by simulations and on MR phantoms. The performance of the proposed technique is then evaluated in vivo by comparing it with conventional fat suppression methods on the human brain and knee. Experiments show that the presented method delivers reliable water–fat separation results. The reconstruction method suppresses streaking artifacts typical for undersampled BLADE acquisition schemes without missing fine structures in the image. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.

Purpose:

To develop a new pulse sequence called time‐resolved angiography with stochastic trajectories (TWIST) Dixon for dynamic contrast enhanced magnetic resonance imaging (DCE‐MRI).

Materials and Methods:

The method combines dual‐echo Dixon to generate separated water and fat images with a k‐space view‐sharing scheme developed for 3D TWIST. The performance of TWIST Dixon was compared with a volume interpolated breathhold examination (VIBE) sequence paired with spectrally selective adiabatic inversion Recovery (SPAIR) and quick fat‐sat (QFS) fat‐suppression techniques at 3.0T using quantitative measurements of fat‐suppression accuracy and signal‐to‐noise ratio (SNR) efficiency, as well as qualitative breast image evaluations.

Results:

The water fraction of a uniform phantom was calculated from the following images: 0.66 ± 0.03 for TWIST Dixon; 0.56 ± 0.23 for VIBE‐SPAIR, and 0.53 ± 0.14 for VIBE‐QFS, while the reference value is 0.70 measured by spectroscopy. For phantoms with contrast (Gd‐BOPTA) concentration ranging from 0–6 mM, TWIST Dixon also provides consistently higher SNR efficiency (3.2–18.9) compared with VIBE‐SPAIR (2.8–16.8) and VIBE‐QFS (2.4–12.5). Breast images acquired with TWIST Dixon at 3.0T show more robust and uniform fat suppression and superior overall image quality compared with VIBE‐SPAIR.

Conclusion:

The results from phantom and volunteer evaluation suggest that TWIST Dixon outperforms conventional methods in almost every aspect and it is a promising method for DCE‐MRI and contrast‐enhanced perfusion MRI, especially at higher field strength where fat suppression is challenging. J. Magn. Reson. Imaging 2012;36:483–491. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The concentric rings two-dimensional (2D) k-space trajectory provides an alternative way to sample polar data. By collecting 2D k-space data in a series of rings, many unique properties are observed. The concentric rings are inherently centric-ordered, provide a smooth weighting in k-space, and enable shorter total scan times. Due to these properties, the concentric rings are well-suited as a readout trajectory for magnetization-prepared studies. When non-Cartesian trajectories are used for MRI, off-resonance effects can cause blurring and degrade the image quality. For the concentric rings, off-resonance blur can be corrected by retracing rings near the center of k-space to obtain a field map with no extra excitations, and then employing multifrequency reconstruction. Simulations show that the concentric rings exhibit minimal effects due to T(2) (*) modulation, enable shorter scan times for a Nyquist-sampled dataset than projection-reconstruction imaging or Cartesian 2D Fourier transform (2DFT) imaging, and have more spatially distributed flow and motion properties than Cartesian sampling. Experimental results show that off-resonance blurring can be successfully corrected to obtain high-resolution images. Results also show that concentric rings effectively capture the intended contrast in a magnetization-prepared sequence.  相似文献   

5.

Purpose:

To develop and evaluate a multiphasic contrast‐enhanced MRI method called DIfferential Sub‐sampling with Cartesian Ordering (DISCO) for abdominal imaging.

Materials and Methods:

A three‐dimensional, variable density pseudo‐random k‐space segmentation scheme was developed and combined with a Dixon‐based fat‐water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three‐dimensional SPGR‐Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded.

Results:

There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively).

Conclusion:

DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio‐temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4–5 s. J. Magn. Reson. Imaging 2012;35:1484–1492. © 2012 Wiley Periodicals, Inc.  相似文献   

6.

Purpose

To integrate water‐fat–resolved spiral gradient‐echo imaging with off‐resonance correction into a clinical MR scanner and to evaluate its basic feasibility and performance.

Materials and Methods

Three‐point chemical shift imaging was implemented with forward and strongly T2*‐weighted reverse spiral sampling and with off‐resonance correction after water–fat separation. It was applied in a volunteer study on single breathhold abdominal imaging, which included a brief comparison with Cartesian sampling.

Results

Water‐fat–resolved, off‐resonance–corrected forward and reverse three‐dimensional interleaved spiral imaging was found to be feasible on a clinical MR scanner with only minor changes to the existing data acquisition and reconstruction, and to provide good image quality. Three‐point chemical shift encoded data thus support both, water–fat separation and off‐resonance correction with high accuracy.

Conclusion

The combination of chemical shift encoding and appropriate postprocessing could pave the way for water‐fat–resolved spiral imaging in clinical applications. J. Magn. Reson. Imaging 2010;32:1262–1267. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Three‐point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin‐echo acquisition strategy (IDEAL‐GRASE) to provide a time‐efficient method for lipid–water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL‐GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high‐resolution T2 maps in addition to the water and fat images. The radial IDEAL‐GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Purpose:

To compare qualitative and quantitative measures of the contrast‐enhanced dual‐echo Dixon technique with the commonly used standard three‐dimensional (3D) gradient echo (spectrally selective fat suppression) technique (SS‐FS) in breast MRI exams (bMRI).

Materials and Methods:

A total of 19 women, with prescheduled bMRI exam, were recruited to our study between 2006 and 2008. Dixon and standard SS‐SF techniques were used on both breasts of each patient. Image quality was rated in five categories: fat suppression quality, fat suppression uniformity, lesion margin clarity, lesion visibility, and axillary visibility. For quantitative assessment, we calculated the signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) of lesion to breast, SNR efficiency, and CNR efficiency.

Results:

Of 19 patients evaluated, 13 had a primary breast malignancy and 6 had benign lesions or negative exams. Dixon images were rated higher in four of five qualitative categories (P < 0.0001) and required a shorter scan time. Dixon images yielded significantly higher SNR (43.8) and CNR (40.1) values than did 3DGRE images (SNR = 34.8, CNR = 25.3; P < 0.05). SNR efficiency (36.30) and CNR efficiency (33.79) values for Dixon images were also higher than were 3DGRE images (SNR efficiency =25.7, CNR efficiency = 19.1; P < 0.05).

Conclusion:

Dixon images were superior to the standard SS‐SF images in both qualitative and quantitative assessment of 19 bMRI exams. The Dixon technique could replace standard SS‐SF technique in bMRI exam, after our findings have been confirmed in future studies with a larger sample size. J. Magn. Reson. Imaging 2010;31:889–894. ©2010 Wiley‐Liss, Inc.  相似文献   

9.
For non‐Cartesian data acquisition in MRI, k‐space trajectory infidelity due to eddy current effects and other hardware imperfections will blur and distort the reconstructed images. Even with the shielded gradients and eddy current compensation techniques of current scanners, the deviation between the actual k‐space trajectory and the requested trajectory remains a major reason for image artifacts in non‐Cartesian MRI. It is often not practical to measure the k‐space trajectory for each imaging slice. It has been reported that better image quality is achieved in radial scanning by correcting anisotropic delays on different physical gradient axes. In this article the delay model is applied in spiral k‐space trajectory estimation to reduce image artifacts. Then a novel estimation method combining the anisotropic delay model and a simple convolution eddy current model further reduces the artifact level in spiral image reconstruction. The root mean square error and peak error in both phantom and in vivo images reconstructed using the estimated trajectories are reduced substantially compared to the results achieved by only tuning delays. After a one‐time calibration, it is thus possible to get an accurate estimate of the spiral trajectory and a high‐quality image reconstruction for an arbitrary scan plane. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Fat deposition associated with myocardial infarction (MI) has been reported as a commonly occurring phenomenon. Magnetic resonance imaging (MRI) has the ability to efficiently detect MI using T1‐sensitive contrast‐enhanced sequences and fat via its resonant frequency shift. In this work, the feasibility of fat‐water separation applied to the conventional delayed hyperenhanced (DHE) MI imaging technique is demonstrated. A three‐point Dixon acquisition and reconstruction was combined with an inversion recovery gradient‐echo pulse sequence. This allowed fat‐water separation along with T1 sensitive imaging after injection of a gadolinium contrast agent. The technique is demonstrated in phantom experiments and three subjects with chronic MI. Areas of infarction were well defined as conventional hyperenhancement in water images. In two cases, fatty deposition was detected in fat images and confirmed by precontrast opposed‐phase imaging. Magn Reson Med 60:503–509, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Multi echo chemical shift‐based water–fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water–fat separation from undersampled data (CS‐WF), which combines compressed sensing and chemical shift‐based water–fat separation. Undersampling was applied in the k‐space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS‐WF reconstruction to improve the water–fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three‐echo water–fat imaging. The method is demonstrated on knee and abdominal in vivo data. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Chemical shift encoded techniques have received considerable attention recently because they can reliably separate water and fat in the presence of off‐resonance. The insensitivity to off‐resonance requires that data be acquired at multiple echo times, which increases the scan time as compared to a single echo acquisition. The increased scan time often requires that a compromise be made between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject motion. This work describes a combined parallel imaging and compressed sensing approach for accelerated water–fat separation. In addition, the use of multiscale cubic B‐splines for B0 field map estimation is introduced. The water and fat images and the B0 field map are estimated via an alternating minimization. Coil sensitivity information is derived from a calculated k‐space convolution kernel and l1‐regularization is imposed on the coil‐combined water and fat image estimates. Uniform water–fat separation is demonstrated from retrospectively undersampled data in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled acquisition of the knee at 8.6x acceleration. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Radial trajectories facilitate high‐resolution balanced steady state free precession (bSSFP) because the efficient gradients provide more time to extend the trajectory in k‐space. A number of radial bSSFP methods that support fat–water separation have been developed; however, most of these methods require an environment with limited B0 inhomogeneity. In this work, high‐resolution bSSFP with fat–water separation is achieved in more challenging B0 environments by combining a 3D radial trajectory with the IDEAL chemical species separation method. A method to maintain very high resolution within the timing constraints of bSSFP and IDEAL is described using a dual‐pass pulse sequence. The sampling of a unique set of radial lines at each echo time is investigated as a means to circumvent the longer scan time that IDEAL incurs as a multiecho acquisition. The manifestation of undersampling artifacts in this trajectory and their effect on chemical species separation are investigated in comparison to the case in which each echo samples the same set of radial lines. This new bSSFP method achieves 0.63 mm isotropic resolution in a 5‐min scan and is demonstrated in difficult in vivo imaging environments, including the breast and a knee with ACL reconstruction hardware at 1.5 T. Magn Reson Med 71:95–104, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Water–fat separation techniques play an important role in a variety of clinical and research applications. In particular, multiecho separation methods remain a topic of great interest due to their ability to resolve water and fat images in the presence of B0‐field inhomogeneity. However, these methods are inherently slow as they require multiple measurements. An accelerated technique with reduced k‐space sampling is desirable to decrease the scan time. This work presents a new method for water–fat separation from accelerated multiecho acquisitions. The proposed approach does not require the region‐growing or region‐merging schemes that are typically used for field map estimation. Instead, the water, fat, and field map signals are estimated directly from the undersampled k‐space measurements. In this work, up to 2.5×‐acceleration is demonstrated in a water–fat phantom, ankle, knee, and liver. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Recent advances have reduced scan time in three‐dimensional fast spin echo (3D‐FSE) imaging, including very long echo trains through refocusing flip angle (FA) modulation and 2D‐accelerated parallel imaging. This work describes a method to modulate refocusing FAs that produces sharp point spread functions (PSFs) from very long echo trains while exercising direct control over minimum, center‐k‐space, and maximum FAs in order to accommodate the presence of flow and motion, SNR requirements, and RF power limits. Additionally, a new method for ordering views to map signal modulation from the echo train into kykz space that enables nonrectangular k‐space grids and autocalibrating 2D‐accelerated parallel imaging is presented. With long echo trains and fewer echoes required to encode large matrices, large volumes with high in‐ and through‐plane resolution matrices may be acquired with scan times of 3–6 min, as demonstrated for volumetric brain, knee, and kidney imaging. Magn Reson Med 60:640–649, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
A new four‐dimensional magnetic resonance angiograpy (MRA) technique called contrast‐enhanced angiography with multiecho and radial k‐space is introduced, which accelerates the acquisition using multiecho while maintaining a high spatial resolution and increasing the signal‐to‐noise ratio (SNR). An acceleration factor of approximately 2 is achieved without parallel imaging or undersampling by multiecho (i.e., echo‐planar imaging) acquisition. SNR is gained from (1) longer pulse repetition times, which allow more time for T1 regrowth; (2) decreased specific absorption rate, which allows use of flip angles that maximize contrast at high field; and (3) minimized effects of a transient contrast bolus signal with a shorter temporal footprint. Simulations, phantom studies, and in vivo scans were performed. Contrast‐enhanced angiography with multiecho and radial k‐space can be combined with parallel imaging techniques such as Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) to provide additional 2‐fold acceleration in addition to higher SNR to trade off for parallel imaging. This technique can be useful in diagnosing vascular lesions where accurate dynamic information is necessary. Magn Reson Med 63:1520–1528, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.

Purpose:

To evaluate a single‐pass fast spoiled gradient echo (FSPGR) two‐point Dixon sequence and a gradient echo sequence with spectral fat suppression in their performance at 3 T for fat suppressed contrast‐enhanced bilateral breast imaging.

Materials and Methods:

Twenty patients were prospectively enrolled in an imaging protocol that included axial Dixon and 3D FSPGR with spectrally selective fat saturation sequences as part of patient care in this study. Qualitative analysis was performed retrospectively by two readers who scored the images for homogeneity and degree of fat saturation, severity of artifacts, and quality of normal anatomical structures. Enhancing lesions were scored according to the confidence with which American College of Radiology (ACR) BI‐RADS magnetic resonance imaging (MRI) features were identified.

Results:

The Dixon sequence showed superior fat saturation homogeneity, quality of posterior anatomical structures, and decreased artifact severity that were statistically significant (P < 0.0001). The degree of fat saturation was scored higher in the Dixon sequence, although the difference did not reach statistical significance. There were no significant differences between the 3D T1‐weighted FSPGR and Dixon groups for assessing lesion features.

Conclusion:

Our findings suggest that the Dixon technique is an effective fat suppression method for contrast‐enhanced breast MRI. The Dixon technique also seemed to provide better anatomical definition of posterior structures and improvement in severity of artifacts. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
As a noninvasive modality, MR is attractive for in vivo skin imaging. Its unique soft tissue contrast makes it an ideal imaging modality to study the skin water content and to resolve the different skin layers. In this work, the challenges of in vivo high‐resolution skin imaging are addressed. Three 3D Cartesian sequences are customized to achieve high‐resolution imaging and their respective performance is evaluated. The balanced steady‐state free precession (bSSFP) and gradient echo (GRE) sequences are fast but can be sensitive to off‐resonance artifacts. The fast large‐angle spin echo (FLASE) sequence provides a sharp depiction of the hypodermis structures but results in more specific absorption rate (SAR). The effect of increasing the field strength is assessed. As compared to 1.5 T, signal‐to‐noise ratio at 3 T slightly increases in the hypodermis and almost doubles in the dermis. The need for fat/water separation is acknowledged and a solution using an interleaved three‐point Dixon method and an iterative reconstruction is shown to be effective. The effects of motion are analyzed and two techniques to prevent motion and correct for it are evaluated. Images with 117 × 117 × 500 μm3 resolution are obtained in imaging times under 6 min. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Non‐Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non‐Cartesian trajectories can enable more efficient coverage of k‐space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non‐Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi‐coil phased arrays. This review will begin with an overview of non‐Cartesian k‐space trajectories and their sampling properties, followed by an in‐depth discussion of several selected non‐Cartesian parallel imaging algorithms. Three representative non‐Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non‐Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self‐Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non‐Cartesian parallel imaging will be covered. J. Magn. Reson. Imaging 2014;40:1022–1040 . © 2014 Wiley Periodicals, Inc.  相似文献   

20.

Purpose:

To model the theoretical signal‐to‐noise ratio (SNR) behavior of 3‐point chemical shift‐based water‐fat separation, using spectral modeling of fat, with experimental validation for spin‐echo and gradient‐echo imaging. The echo combination that achieves the best SNR performance for a given spectral model of fat was also investigated.

Materials and Methods:

Cramér‐Rao bound analysis was used to calculate the best possible SNR performance for a given echo combination. Experimental validation in a fat‐water phantom was performed and compared with theory. In vivo scans were performed to compare fat separation with and with out spectral modeling of fat.

Results:

Theoretical SNR calculations for methods that include spectral modeling of fat agree closely with experimental SNR measurements. Spectral modeling of fat more accurately separates fat and water signals, with only a slight decrease in the SNR performance of the water‐only image, although with a relatively large decrease in the fat SNR performance.

Conclusion:

The optimal echo combination that provides the best SNR performance for water using spectral modeling of fat is very similar to previous optimizations that modeled fat as a single peak. Therefore, the optimal echo spacing commonly used for single fat peak models is adequate for most applications that use spectral modeling of fat. J. Magn. Reson. Imaging 2010;32:493–500. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号