首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion‐weighted single‐shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 T. Increased off‐resonance effects and reduced transverse relaxation times at 7 T, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k‐space traversal using a multishot approach, which acquires a subset of k‐space data after each excitation, reduces these artifacts relative to conventional single‐shot acquisitions. However, corrections for motion‐induced phase errors are not straightforward in accelerated, diffusion‐weighted multishot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion‐weighted multishot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard sensitivity‐encoding (SENSE) algorithm to account for shot‐to‐shot phase errors; the method is called image reconstruction using image‐space sampling function (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2‐D navigator phase information is demonstrated for human diffusion‐weighted imaging studies at 7 T. The final reconstructed images show submillimeter in‐plane resolution with no ghosts and much reduced blurring and off‐resonance artifacts. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Readout segmentation (RS‐EPI) has been suggested as a promising variant to echo‐planar imaging (EPI) for high‐resolution imaging, particularly when combined with parallel imaging. This work details some of the technical aspects of diffusion‐weighted (DW)‐RS‐EPI, outlining a set of reconstruction methods and imaging parameters that can both minimize the scan time and afford high‐resolution diffusion imaging with reduced distortions. These methods include an efficient generalized autocalibrating partially parallel acquisition (GRAPPA) calibration for DW‐RS‐EPI data without scan time penalty, together with a variant for the phase correction of partial Fourier RS‐EPI data. In addition, the role of pulsatile and rigid‐body brain motion in DW‐RS‐EPI was assessed. Corrupt DW‐RS‐EPI data arising from pulsatile nonlinear brain motion had a prevalence of ~7% and were robustly identified via k‐space entropy metrics. For DW‐RS‐EPI data corrupted by rigid‐body motion, we showed that no blind overlap was required. The robustness of RS‐EPI toward phase errors and motion, together with its minimized distortions compared with EPI, enables the acquisition of exquisite 3 T DW images with matrix sizes close to 5122. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
While most diffusion‐weighted imaging (DWI) is acquired using single‐shot diffusion‐weighted spin‐echo echo‐planar imaging, steady‐state DWI is an alternative method with the potential to achieve higher‐resolution images with less distortion. Steady‐state DWI is, however, best suited to a segmented three‐dimensional acquisition and thus requires three‐dimensional navigation to fully correct for motion artifacts. In this paper, a method for three‐dimensional motion‐corrected steady‐state DWI is presented. The method uses a unique acquisition and reconstruction scheme named trajectory using radially batched internal navigator echoes (TURBINE). Steady‐state DWI with TURBINE uses slab‐selection and a short echo‐planar imaging (EPI) readout each pulse repetition time. Successive EPI readouts are rotated about the phase‐encode axis. For image reconstruction, batches of cardiac‐synchronized readouts are used to form three‐dimensional navigators from a fully sampled central k‐space cylinder. In vivo steady‐state DWI with TURBINE is demonstrated in human brain. Motion artifacts are corrected using refocusing reconstruction and TURBINE images prove less distorted compared to two‐dimensional single‐shot diffusion‐weighted‐spin‐EPI. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The main obstacle to high‐resolution (<1.5 mm isotropic) 3D diffusion‐weighted MRI is the differential motion‐induced phase error from shot‐to‐shot. In this work, the phase error is addressed with a hybrid 3D navigator approach that corrects motion‐induced phase in two ways. In the first, rigid‐body motion is corrected for every shot. In the second, repeatable nonrigid‐body pulsation is corrected for each portion of the cardiac cycle. These phase error corrections were implemented with a 3D diffusion‐weighted steady‐ state free precession pulse sequence and were shown to mitigate signal dropouts caused by shot‐to‐shot phase inconsistencies compared to a standard gridding reconstruction in healthy volunteers. The proposed approach resulted in diffusion contrast more similar to the contrast observed in the reference echo‐planer imaging scans than reconstruction of the same data without correction. Fractional anisotropy and Color fractional anisotropy maps generated with phase‐corrected data were also shown to be more similar to echo‐planer imaging reference scans than those generated without phase correction. Magn Reson Med 70:466–478, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The importance of diffusion‐weighted MRI in the assessment of acute stroke is well‐recognized, and quantitative maps of the apparent diffusion coefficient (ADC) are now widely used. Echo‐planar imaging provides a robust method of acquiring diffusion‐weighted images free of motion artifact. However, initial experience with clinical MRI systems indicates that calculation of artifact‐free ADC maps from a series of echo‐planar diffusion‐weighted images is not necessarily straight‐forward. One of the problems is that frequency shifts resulting from eddy currents can cause misregistration of base diffusion‐weighted images. In this study, an on‐line correction method that overcomes this problem is described, and phantom and human images that demonstrate the validity of the technique are presented. The method uses a non‐phase‐encoded reference scan to correct the phase of each echo in the echo train, and can provide ADC maps that are free of misregistration artifacts, without the need for off‐line postprocessing. Magn Reson Med 41:95‐102, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Simultaneous multislice Echo Planar Imaging (EPI) acquisition using parallel imaging can decrease the acquisition time for diffusion imaging and allow full‐brain, high‐resolution functional MRI (fMRI) acquisitions at a reduced repetition time (TR). However, the unaliasing of simultaneously acquired, closely spaced slices can be difficult, leading to a high g‐factor penalty. We introduce a method to create interslice image shifts in the phase encoding direction to increase the distance between aliasing pixels. The shift between the slices is induced using sign‐ and amplitude‐modulated slice‐select gradient blips simultaneous with the EPI phase encoding blips. This achieves the desired shifts but avoids an undesired “tilted voxel” blurring artifact associated with previous methods. We validate the method in 3× slice‐accelerated spin‐echo and gradient‐echo EPI at 3 T and 7 T using 32‐channel radio frequency (RF) coil brain arrays. The Monte‐Carlo simulated average g‐factor penalty of the 3‐fold slice‐accelerated acquisition with interslice shifts is <1% at 3 T (compared with 32% without slice shift). Combining 3× slice acceleration with 2× inplane acceleration, the g‐factor penalty becomes 19% at 3 T and 10% at 7 T (compared with 41% and 23% without slice shift). We demonstrate the potential of the method for accelerating diffusion imaging by comparing the fiber orientation uncertainty, where the 3‐fold faster acquisition showed no noticeable degradation. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.

Purpose

To describe and demonstrate a new technique that allows diffusion tensor imaging of small structures such as the spinal cord (SC) and optic nerve (ON) with contiguous slices and reduced image distortions using a narrow field of view (FOV).

Materials and Methods

Images were acquired with a modified single‐shot echo‐planar imaging (EPI) sequence that contains a refocusing radio frequency (RF) pulse in the presence of the phase‐encoding (rather than slice‐select) gradient. As a result, only a narrow volume may be both excited and refocused, removing the problem of signal aliasing for narrow FOVs. Two variants of this technique were developed: cardiac gating is included in the study of the SC to reduce pulsation artifacts, whereas inversion‐recovery (IR) cerebrospinal fluid (CSF) suppression is utilized in the study of the ON to eliminate partial volume effects. The technique was evaluated with phantoms, and mean diffusivity (MD) and fractional anisotropy (FA) measurements were made in the SC and ON of two healthy volunteers.

Results

The technique provides contiguous‐slice, reduced‐FOV images that do not suffer from aliasing and have reduced magnetic susceptibility artifacts. MD and FA values determined here lie within the ranges quoted in the literature.

Conclusion

Contiguous‐slice zonally orthogonal multislice (CO‐ZOOM‐EPI is a new technique for diffusion‐weighted imaging of small structures such as the ON and SC with high resolution and reduced distortions due to susceptibility variations. This technique is able to acquire contiguous slices that may allow further nerve‐tracking analyses. J. Magn. Reson. Imaging 2009;29:454–460. © 2009 Wiley‐Liss, Inc.  相似文献   

9.

Purpose

To obtain diffusion tensor images (DTI) over a large image volume rapidly with 3D isotropic spatial resolution, minimal spatial distortions, and reduced motion artifacts, a diffusion‐weighted steady‐state 3D projection (SS 3DPR) pulse sequence was developed.

Materials and Methods

A diffusion gradient was inserted in a SS 3DPR pulse sequence. The acquisition was synchronized to the cardiac cycle, linear phase errors were corrected along the readout direction, and each projection was weighted by measures of consistency with other data. A new iterative parallel imaging reconstruction method was also implemented for removing off‐resonance and undersampling artifacts simultaneously.

Results

The contrast and appearance of both the fractional anisotropy and eigenvector color maps were substantially improved after all correction techniques were applied. True 3D DTI datasets were obtained in vivo over the whole brain (240 mm field of view in all directions) with 1.87 mm isotropic spatial resolution, six diffusion encoding directions in under 19 minutes.

Conclusion

A true 3D DTI pulse sequence with high isotropic spatial resolution was developed for whole brain imaging in under 20 minutes. To minimize the effects of brain motion, a cardiac synchronized, multiecho, DW‐SSFP pulse sequence was implemented. Motion artifacts were further reduced by a combination of linear phase correction, corrupt projection detection and rejection, sampling density reweighting, and parallel imaging reconstruction. The combination of these methods greatly improved the quality of 3D DTI in the brain. J. Magn. Reson. Imaging 2009;29:1175–1184. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Diffusion weighted magnetic resonance images are often acquired with single shot multislice imaging sequences, because of their short scanning times and robustness to motion. To minimize noise and acquisition time, images are generally acquired with either anisotropic or isotropic low resolution voxels, which impedes subsequent posterior image processing and visualization. In this article, we propose a super‐resolution method for diffusion weighted imaging that combines anisotropic multislice images to enhance the spatial resolution of diffusion tensor data. Each diffusion weighted image is reconstructed from a set of arbitrarily oriented images with a low through‐plane resolution. The quality of the reconstructed diffusion weighted images was evaluated by diffusion tensor metrics and tractography. Experiments with simulated data, a hardware DTI phantom, as well as in vivo human brain data were conducted. Our results show a significant increase in spatial resolution of the diffusion tensor data while preserving high signal to noise ratio. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Single‐shot echo‐planar imaging (ss‐EPI) has not been used widely for diffusion‐weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross‐sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss‐EPI method. Reduced field‐of‐view (FOV) methods decrease the required readout duration for ss‐EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single‐shot diffusion‐weighted echo‐planar imaging (ss‐DWEPI) method is proposed, in which a 2D spatially selective echo‐planar RF excitation pulse and a 180° refocusing pulse reduce the FOV in the phase‐encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in‐plane resolutions (0.94 × 0.94 mm2 for sagittal and 0.62 × 0.62 mm2 for axial images) are achieved at 1.5 T, without the need for a longer readout. Magn Reson Med 60:468–473, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
High‐resolution functional MRI (fMRI) offers unique possibilities for studying human functional neuroanatomy. Although high‐resolution fMRI has proven its potential at 7 T, most fMRI studies are still performed at rather low spatial resolution at 3 T. We optimized and compared single‐shot two‐dimensional echo‐planar imaging (EPI) and multishot three‐dimensional EPI high‐resolution fMRI protocols. We extended image‐based physiological noise correction from two‐dimensional EPI to multishot three‐dimensional EPI. The functional sensitivity of both acquisition schemes was assessed in a visual fMRI experiment. The physiological noise correction increased the sensitivity significantly, can be easily applied, and requires simple recordings of pulse and respiration only. The combination of three‐dimensional EPI with physiological noise correction provides exceptional sensitivity for 1.5 mm high‐resolution fMRI at 3 T, increasing the temporal signal‐to‐noise ratio by more than 25% compared to two‐dimensional EPI. Magn Reson Med, 2013. © 2012 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.  相似文献   

13.
Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols.  相似文献   

14.
Diffusion tensor imaging is an important method for noninvasively acquiring structural information of the human brain. For advanced fiber tracking, the acquisition of diffusion‐weighted (DW) images has to be performed along many different spatial directions, resulting in long scan times. Therefore, the ultra‐fast imaging method, echo‐planar imaging (EPI), is mostly used, but this technique suffers from susceptibility‐induced image artefacts and geometric distortions. These problems become even more pronounced at very high magnetic field strengths. In this regard, DW, single‐shot STEAM is an interesting and rapid imaging alternative to EPI‐based methods. DW single‐shot STEAM enables the acquisition of artefact‐free images albeit at the expense of a reduced signal‐to‐noise ratio (SNR), which can be compensated by utilizing high magnetic fields. Here, the application of DW single‐shot STEAM at 4 Tesla is demonstrated. To optimize the SNR and the resolution properties, a new variable flip‐angle computational algorithm is introduced enabling accurate signal evolution computation with a precise calculation of transverse coherences. Omission of radiofrequency (RF) spoiling results in an approximate twofold increase of the DW signal by integration of the stable refocused transverse magnetization. The advantage of the approach is shown in simulations and in vivo experiments. Magn Reson Med 61:372–380, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The potential signal‐to‐noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single‐shot diffusion‐weighted echo‐planar imaging the challenge being reduced T2 and T2* relaxation times and increased B0 inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths—the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high‐resolution diffusion‐weighted echo‐planar imaging in combination with spin‐echo and stimulated‐echo acquisition is explored at 7 T and compared to 3 T. To this end, PI performance is simulated for coil arrays with a variable number of circular coil elements. Beyond that, simulations of the point spread function are performed to investigate the actual image resolution. When higher PI reduction factors are applied at 7 T to address increased image distortions, high‐resolution imaging benefits SNR‐wise only at relatively low PI reduction factors. On the contrary, it features generally higher image resolutions than at 3 T due to smaller point spread functions. The SNR simulations are confirmed by phantom experiments. Finally, high‐resolution in vivo images of a healthy volunteer are presented which demonstrate the feasibility of higher PI reduction factors at 7 T in practice. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Parallel imaging with accelerated acquisition was noted to pronounce Gibbs artifacts which appear as ripples propagated in the phase‐encoding (PE) direction near the susceptibility‐affected region in echo‐planar imaging (EPI). Using the extended EPI sequence, which collected extended readouts outside the regular data sampling time, the pronounced Gibbs artifact was analyzed and found to be caused by an increased echo shift in the pre‐echo time (TE) of accelerated parallel imaging. This was also confirmed by theoretical derivation of the echo shift caused by the inplane susceptibility gradient in the PE direction (ISGPE). A new EPI sequence was developed to reduce the Gibbs artifact and to restore the signal level toward that of nonaccelerated parallel imaging by asymmetrically accelerating only the post‐TE sampling time and by using the extended EPI in the pre‐TE. The nonaccelerated portion in the pre‐TE used the delay for the optimum blood oxygen level dependent (BOLD) sensitivity at 3 T, maintaining the same slice coverage as the symmetrical acceleration in both pre‐TE and post‐TE. The increased data sampling points resulted in an increase of the signal‐to‐noise ratio (SNR). The restored signal and enhanced SNR of the proposed method were confirmed to deliver a better BOLD functional MRI (fMRI) result in the breath holding experiment. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.

Purpose

To develop a novel approach for high‐resolution functional MRI (fMRI) using the conventional gradient‐echo sequence.

Materials and Methods

Echo‐planar imaging (EPI) techniques have generally been used for fMRI studies due to their fast imaging time. However, it is difficult for studying brain function at the submillimeter level using this sequence. In addition, EPI techniques have some drawbacks, such as Nyquist ghosts and geometric distortions in the reconstructed images, and subsequently require additional postprocessing to reduce these artifacts. One way of solving these problems is to acquire fMRI data by means of a conventional gradient‐echo imaging sequence instead of EPI. To provide a fast imaging time, the proposed method combines higher‐order generalized series (HGS) imaging with a parallel imaging technique which is called the HGS‐parallel technique.

Results

The proposed HGS‐parallel technique achieves a 12.8‐fold acceleration in imaging time without the cost of spatial resolution. The proposed method was verified through the application of fMRI studies on normal subjects.

Conclusion

This study suggests that the proposed method can be used for high‐resolution fMRI studies without the geometric distortion and the Nyquist ghost artifacts compared to EPI. J. Magn. Reson. Imaging 2009;29:924–936. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Multishot spiral imaging is a promising alternative to echo‐planar imaging for high‐resolution diffusion‐weighted imaging and diffusion tensor imaging. However, subject motion in the presence of diffusion‐weighting gradients causes phase inconsistencies among different shots, resulting in signal loss and aliasing artifacts in the reconstructed images. Such artifacts can be reduced using a variable‐density spiral trajectory or a navigator echo, however at the cost of a longer scan time. Here, a novel iterative phase correction method is proposed to inherently correct for the motion‐induced phase errors without requiring any additional scan time. In this initial study, numerical simulations and in vivo experiments are performed to demonstrate that the proposed method can effectively and efficiently correct for spatially linear phase errors caused by rigid‐body motion in multishot spiral diffusion‐weighted imaging of the human brain. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
High‐resolution, diffusion‐weighted (DW) MR microscopy is gaining increasing acceptance as a nondestructive histological tool for the study of fixed tissue samples. Spin‐echo sequences are popular for high‐field diffusion imaging due to their high tolerance to B0 field inhomogeneities. Volumetric DW rapid acquisition with relaxation enhancement (DW‐RARE) currently offers the best tradeoff between imaging efficiency and image quality, but is relatively sensitive to residual eddy‐current effects on the echo train phase, resulting in encoding direction‐dependent ghosting in the DW images. We introduce two efficient, image‐based phase corrections for ghost artifact reduction in DW‐RARE of fixed tissue samples, neither of which require navigator echo acquisition. Both methods rely on the phase difference in k‐space between the unweighted reference image and a given DW image and assume a constant, per‐echo phase error arising from residual eddy‐current effects in the absence of sample motion. Significant qualitative and quantitative ghost artifact reductions are demonstrated for individual DW and calculated diffusion tensor images. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.

Purpose:

To develop and implement a clinical DTI technique suitable for the pediatric setting that retrospectively corrects for large motion without the need for rescanning and/or reacquisition strategies, and to deliver high‐quality DTI images (both in the presence and absence of large motion) using procedures that reduce image noise and artifacts.

Materials and Methods:

We implemented an in‐house built generalized autocalibrating partially parallel acquisitions (GRAPPA)‐accelerated diffusion tensor (DT) echo‐planar imaging (EPI) sequence at 1.5T and 3T on 1600 patients between 1 month and 18 years old. To reconstruct the data, we developed a fully automated tailored reconstruction software that selects the best GRAPPA and ghost calibration weights; does 3D rigid‐body realignment with importance weighting; and employs phase correction and complex averaging to lower Rician noise and reduce phase artifacts. For select cases we investigated the use of an additional volume rejection criterion and b‐matrix correction for large motion.

Results:

The DTI image reconstruction procedures developed here were extremely robust in correcting for motion, failing on only three subjects, while providing the radiologists high‐quality data for routine evaluation.

Conclusion:

This work suggests that, apart from the rare instance of continuous motion throughout the scan, high‐quality DTI brain data can be acquired using our proposed integrated sequence and reconstruction that uses a retrospective approach to motion correction. In addition, we demonstrate a substantial improvement in overall image quality by combining phase correction with complex averaging, which reduces the Rician noise that biases noisy data. J. Magn. Reson. Imaging 2012;36:961–971. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号