首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
The synthesis of zeolites from South African coal fly ash has been deemed a viable solution to the growing economical strain caused by the disposal of ash in the country. Two synthesis routes have been studied thus far namely the 2-step method and the fusion assisted process. Fly ash contains several elements originating from coal which is incorporated in the ash during combustion. It is vital to determine the final destination of these elements in order to unveil optimization opportunities for scale-up purposes. The aim of this study was to perform a material balance study on both synthesis routes to determine the distributional fate of these elements during the synthesis of zeolites. Zeolites were first synthesized by means of the two synthesis routes. The composition of all raw materials and products were determined after which an overall and elemental balance were performed. Results indicated that in the 2-step method almost all elements were concentrated in the solid zeolite product while during the fusion assisted route the elements mostly report to the solid waste. Toxic elements such as Pb, Hg, Al, As and Nb were found in both the supernatant waste and washing water resulting from each synthesis route. It has also been seen that large quantities of Si and Al are wasted in the supernatant waste. It is highly recommended that the opportunity to recycle this liquid waste be investigated for scale-up purposes. Results also indicate that efficiency whereby Si and Al are extracted from fused ash is exceptionally poor and should be optimized.  相似文献   

2.
Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.  相似文献   

3.
This study investigated a low-energy-consuming procedure for the synthesis of zeolite materials from coal fly ash (CFA). Materials containing zeolite phases, namely Na–X, Na–P1, and zeolite A, were produced from F–class fly ash, using NaOH dissolved in distilled water or in wastewater obtained from the wet flue gas desulphurization process, under atmospheric pressure at a temperature below 70 °C. The influence of temperature, exposure time, and alkaline solution concentration on the synthesized materials was tested. In addition, chemical, mineralogical, and textural properties of the obtained materials were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and cation exchange capacity (CEC). Cd(II), Ni(II), NH4+ cation, and Se(VI) anion sorption experiments were conducted to compare the sorption properties of the produced synthetic zeolites with those of the commercially available ones. Zeolitization resulted in an increase of CEC (up to 30 meq/100 g) compared to raw CFA and enhanced the ability of the material to adsorb the chosen ions. The obtained synthetic zeolites showed comparable or greater sorption properties than natural clinoptilolite and synthetic Na–P1. They were also capable of simultaneously removing cationic and anionic compounds. The structural, morphological, and textural properties of the final product indicated that it could potentially be used as an adsorbent for various types of environmental pollutants.  相似文献   

4.
Nowadays, using fly ash for zeolites production has become a well-known strategy aimed on sustainable development. During zeolite synthesis in a hydrothermal conversion large amount of post-reaction solution is generated. In this work, the solution was used as a substrate for Na-A and Na-X zeolites synthesis at laboratory and technical scale. Obtained materials were characterized using particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherm. Produced zeolites revealed high purity (>98%) and monomineral zeolitic phase composition. The SiO2 content was in the range 39–42% and 40–38%, whereas Al2O3 content was 23–22% and 25–26% for Na-X and Na-A, respectively. TEM and BET analyses revealed Na-X zeolite pores were almost identical to commercial 13X with SBET in the range 671–734 m2/g. FTIR indicated slight differences between materials obtained at laboratory and technical scale in Si-O-(Si/Al) bridges of the zeolitic skeleton. The results showed good replicability of the laboratory process in the larger scale. The proposed method allows for waste solution reusability with a view to highly pure zeolites production in line with circular economy assumptions.  相似文献   

5.
To study the physical and chemical properties of grout containing fly ash, Class II fly ash was used as a mineral admixture and mixed with silicate cement to produce grout, and the rheological properties, strength properties, hydration properties, and microscopic mechanism were studied. The results of the study showed the following. The incorporation of fly ash reduced the thixotropic area of the composite cement slurry, which facilitated pumping in the pipeline conveying process. The inclusion of fly ash reduced the yield stress and plastic viscosity of the cement paste, but the rheological index increased and then decreased with the increase in fly ash, and the composite paste had the lowest degree of shear thinning at 30% fly ash inclusion. The incorporation of fly ash reduced the hydration exothermic rate and total hydration exothermic amount of the composite slurry and prolonged the hydration induction period, but the promotion effect of fly ash on the hydration rate of cement was obvious at 10% fly ash admixture. The admixture of fly ash increased the empty volume of the composite slurry, but the effect on the most probable aperture was not significant, and the porosity of the system increased, resulting in a decrease in compressive strength. The effect of adding fly ash on the hydration products was reflected mainly by the C-S-H gel produced by cement hydration and the change in calcium alumina and Ca(OH)2. Fly ash does not directly participate in the hydration reaction of cement, but it can promote cement hydration and increase the reaction rate of cement. By analyzing the rheological properties, mechanical properties, and hydration properties of fly ash composite cement paste, the comprehensive analysis found that the rheological properties are excellent when the fly ash admixture is 20–30%, and the water–cement ratio can be reduced to improve the strength without affecting the pumping demand.  相似文献   

6.
Grog is an additive material that plays important roles in ceramic making. It improves the fabrication process of green bodies as well as the physical properties of fired bodies. Few low-cost materials and wastes have found their application as grog in recent years, thus encouraging the replacement of commercial grogs with cost-saving materials. Coal fly ash, a combustion waste produced by coal-fired power plant, has the potential to be converted into grog owing to its small particle sizes and high content of silica and alumina. In this study, grog was derived from coal fly ash and mixed with kaolin clay to produce ceramics. Effects of the grog addition on the resultant ceramics were investigated. It was found that, to a certain extent, the grog addition reduced the firing shrinkage and increased the total porosity of the ceramics. The dimensional stability of the ceramics at a firing temperature of 1200 °C was also not noticeably affected by the grog. However, the grog addition in general had negative effects on the biaxial flexural strength and refractoriness of the ceramics.  相似文献   

7.
In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.  相似文献   

8.
The applications of waste-derived fuel from paper mills in industrial boilers benefit the reduction of carbon emissions. However, the co-combustion of waste-derived fuel and coal causes significant changes in the characteristics of the ash and brings about the need to find possible means of the utilization of the ash produced. In this work fly, ash samples were collected from circulating fluidized bed (CFB) boilers co-combusting paper mill wastes with coal and analyzed in detail. The chemical, physical, and thermal characteristics of two different co-combustion fly ashes (CCFA) were investigated using X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetry (TG), and scanning electron microscope (SEM). The chemical composition of CCFA is largely affected by the fuel source type. Thermal analyses of CCFA show that the type of desulfurization system used by the boiler influences the form of sulfate present in the fly ash. The presence of calcium sulfite hemihydrate can cause a high loss in the ignition of CCFA. By comparing the physical requirements specified in the ASTM standard for coal fly ash to be used in concrete, the CCFA produced from paper mill wastes was found to show good potential as supplementary cementitious materials.  相似文献   

9.
In this research, phase transformation and the role of NaOH on the structure of coal fly ash (CFA) during an alkali-calcination process were identified by a combination of X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and deconvolution analysis. The variation in the different functional groups and structural parameters of the raw and post-alkali calcinated CFA were analysed by deconvolution of the FTIR results, conducted with a Gaussian approach. The results, firstly, provide a deep insight into the functional groups in CFA. In CFA systems, the vibration signals of Q0, Q1, Q2 and Q3 were detected and the dominant structural units associated with Si tetrahedron groups were isolated to Q3 and Q2. Deconvolution analysis of the band from 400 to 1400 cm−1 showed that the added NaOH resulted in an increase in Q1 at the cost of Q3 and Q2 and the degree of reaction of the CFA was, therefore, decreased. Concurrently, it was established that the changes in the Gaussian peak component were related to the calcination temperature and time that allowed us to tailor the model of the structural decomposition of CFA.  相似文献   

10.
This article analyses the possibility of using fly ash from the combustion of wood–sunflower biomass in a fluidized bed boiler as an additive to concrete. The research shows that fly ash applied in an amount of 10–30% can be added as a sand substitute for the production of concrete, without reducing quality (compression strength and low-temperature resistance) compared to control concrete. The 28-day compressive strength of concrete with fly ash increases with the amount of ash added (up to 30%), giving a strength 28% higher than the control concrete sample. The addition of fly ash reduces the extent to which the compression strength of concrete is lowered after low-temperature resistance tests by 22–82%. The addition of fly ash in the range of 10–30% causes a slight increase in the water absorption of concrete. Concretes containing the addition of fly ash from biomass combustion do not have a negative environmental impact with respect to the leaching of heavy metal ions into the environment.  相似文献   

11.
Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.  相似文献   

12.
This work shows the development and characterization of two zeolite structures by recycling PV glass and coal fly ash for the removal of cadmium, copper, and lead from synthetic solutions containing one or three cations. The materials were characterized in terms of crystalline structure (XRD), morphology (SEM, AFM), and specific surface. For increasing the heavy-metals removal efficiency, the adsorption conditions, such as substrate dosage, preliminary concentration, and contact time, were optimized. The pseudo-second-order kinetic model adsorption kinetics fit well to describe the activity of the zeolites ZFAGPV-A and ZFAGPV-S. The zeolite adsorption equilibrium data were expressed using Langmuir and Freundlich models. The highest adsorption capacities of the ZFAGPV-A zeolite are qmaxCd = 55.56 mg/g, qmaxCu = 60.11 mg/g, qmaxPb = 175.44 mg/g, and of ZFAGPV-S, are qmaxCd = 33.45 mg/g, qmaxCu = 54.95 mg/g, qmaxPb = 158.73 mg/g, respectively. This study demonstrated a new opportunity for waste recycling for applications in removing toxic heavy metals from wastewater.  相似文献   

13.
Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号