首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.  相似文献   

2.
Soil mulch composite films composed of biodegradable materials are being increasingly used in agriculture. In this study, mulch films based on wheat straw fiber and an environmentally friendly modifier were prepared via in situ polymerization and tested as the ridge mulch for crops. The mechanical properties of the straw fiber film were significantly enhanced by the modification. In particular, the films exhibited a noticeable increase in dry and wet tensile strength from 2.35 to 4.15 and 0.41 to 1.51 kN/m, respectively, with increasing filler content from 0% to 25%. The contact angle of the straw also showed an improvement based on its hydrophilicity. The crystallinity of the modified film was higher than that of the unmodified film and increased with modifier content. The changes in chemical interaction of the straw fiber film were determined by Fourier transform infrared spectroscopy, and the thermal stability of the unmodified film was improved by in situ polymerization. Scanning electron microscopy images indicated that the modifier was uniformly dispersed in the fiber film, resulting in an improvement in its mechanical properties. The modified straw fiber films could be degraded after mulching for approximately 50 days. Overall, the superior properties of the modified straw fiber film lend it great potential for agricultural application.  相似文献   

3.
This paper describes the results obtained on the preparation of films composed of linter cellulose and the corresponding acetates. The acetylation was carried out in the LiCl/DMAc solvent system. Films were prepared from a LiCl/DMAc solution of cellulose acetates (degree of substitution, DS 0.8–2.9) mixed with linter cellulose (5, 10 and 15 wt %). Detailed characterization of the films revealed the following: (i) they exhibited fibrous structures on their surfaces. The strong tendency of the linter cellulose chains to aggregate in LiCl/DMAc suggests that these fibrous elements consist of cellulose chains, as can be deduced from SEM images of the film of cellulose proper; (ii) the cellulose acetate films obtained from samples with DS 2.1 and 2.9 exhibited microspheres on the surface, whose formation seems to be favored for acetates with higher DS; (iii) AFM analysis showed that, in general, the presence of cellulose increased both the asperity thickness and the surface roughness of the analyzed films, indicating that cellulose chains are at least partially organized in domains and not molecularly dispersed between acetate chains; and (iv) the films prepared from cellulose and acetates exhibited lower hygroscopicity than the acetate films, also suggesting that the cellulose chains are organized into domains, probably due to strong intermolecular interactions. The linter and sisal acetates (the latter from a prior study), and their respective films, were prepared using the same processes; however, the two sets of films presented more differences (as in humidity absorption, optical, and tensile properties) than similarities (as in some morphological aspects), most likely due to the different properties of the starting materials. Potential applications of the films prepared in tissue engineering scaffold coatings and/or drug delivery are mentioned.  相似文献   

4.
Preparing a lightweight yet high-strength bio-based structural material with sustainability and recyclability is highly desirable in advanced applications for architecture, new energy vehicles and spacecraft. In this study, we combined cellulose scaffold and aramid nanofiber (ANF) into a high-performance bulk material. Densification of cellulose microfibers containing ANF and hydrogen bonding between cellulose microfibers and ANF played a crucial role in enhanced physical and mechanical properties of the hybrid material. The prepared material showed excellent tensile strength (341.7 MPa vs. 57.0 MPa for natural wood), toughness (4.4 MJ/m3 vs. 0.4 MJ/m3 for natural wood) and Young’s modulus (24.7 GPa vs. 7.2 GPa for natural wood). Furthermore, due to low density, this material exhibited a superior specific strength of 285 MPa·cm3·g−1, which is remarkably higher than some traditional building materials, such as concrete, alloys. In addition, the cellulose scaffold was infiltrated with ANFs, which also improved the thermal stability of the hybrid material. The facile and top-down process is effective and scalable, and also allows one to fully utilize cellulose scaffolds to fabricate all kinds of advanced bio-based materials.  相似文献   

5.
In this study the pyrolysis of Norway spruce cones, a lignocellulosic biomass was made. The biochar product was obtained by means of the physical activation method. CO2 was used as the activating gas. The surface properties of biochars were characterized by the nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM/EDS), X-ray fluorescence energy dispersion spectroscopy (ED-XRF), thermal analysis (TGA/DTA), infrared spectroscopy (ATR FT-IR), Raman spectroscopy and the Boehm’s titration method as well as the point of zero charge (pHpzc). The adsorption capacity and the possibility of ammonia desorption (TPD) were also examined. It has been shown that spruce cones can be successfully used as a cheap precursor of well-developed surface biochars, characterized by a large pore volume and good sorption properties. All obtained activated biochars exhibit a largely microporous structure and an acidic character surface. The investigated activated materials have the specific surface areas from 112 to 1181 m2 g−1. The maximum NH3 adsorption capacity of the activated biochar was determined to be 5.18 mg g−1 (88.22 mmol g−1) at 0 °C. These results indicate the applicability of spruce cones as a cheap precursor for the sustainable production of the cost-effective and environmentally friendly biochar adsorbent.  相似文献   

6.
Packaging materials based on biodegradable polymers are a viable alternative to replace conventional plastic packaging from fossil origin. The type of plasticizer used in these materials affects their functionality and performance. The effect of different plasticizers such as glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in concentrations of 5%, 10%, and 15% (w/w) on the structural features and functional properties of starch/PVOH/chitosan films was evaluated. The incorporation of a plasticizer increased the thickness of the biodegradable composite films. Furthermore, the material plasticized with 30% (w/w) sorbitol had the highest elongation at break, lowest water vapor permeability, and better thermal resistance. The results obtained in this study suggest that maize starch/PVOH/chitosan biodegradable composite films are a promising packaging material, and that sorbitol is the most suitable plasticizer for this formulation.  相似文献   

7.
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m−2·atm−1·day−1 to 27.97 g·mm·m−2·atm−1·day−1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m−2·day−1·atm−1 to 0.026 cm3·mm·m−2·day−1·atm−1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.  相似文献   

8.
Aimed at improving the electromagnetic (EM) shielding and flame retardancy of cellulose materials, graphene (GE) nanoplates were introduced into cellulose matrix films by blending in 1-allyl-3-methylimidazolium chloride. The structure and performance of the obtained composite films were investigated using scanning electron microscopy, X-ray diffraction, thermogravimetric (TG) analysis, EM shielding effectiveness (SE), and combustion tests. GE introduction formed and stacked laminated structures in the films after drying due to controlled shrinkage of the cellulose matrix. The lamination of GE nanoplates into the films was beneficial for providing EM shielding due to multiple internal reflection of EM radiation; furthermore, they also increased flame resistance based on the “labyrinth effect.” The SE of these composite films increased gradually with increased GE content and reached 22.3 dB under an incident frequency of 1500 MHz. TG analysis indicated that these composite films possessed improved thermal stability due to GE addition. Reduced flammability was confirmed by their extended times to ignition or inability to be ignited, reduced heat release rates observed in cone calorimetry tests, and increased limiting oxygen index values. These films with improved EM shielding and flame retardancy could be considered potential candidates for multipurpose materials in various applications, such as electronics and radar evasion.  相似文献   

9.
Currently, the development of efficient and environmentally friendly flame-retardant thermoplastic polyurethane (TPU) composite materials has caused extensive research. Ammonium polyphosphate (APP) is used as a general intumescent flame retardant to improve the flame retardancy of TPU. In this paper, we developed a functionalized APP flame retardant (APP-Cu@PDA). Adding only 5 wt% of APP-Cu@PDA into TPU can significantly improve the flame-retardant’s performance of the composite material, reflected by a high LOI value of 28% with a UL-94 test of V-0 rating. Compared with pure TPU, the peak heat release rate, total heat release, peak smoke release rate, and total smoke release were reduced by 82%, 25%, 50%, and 29%, respectively. The improvements on the flame-retardant properties of the TPU/5%APP-Cu@PDA composites were due to the following explanations: Cu2+-chelated PDA has a certain catalytic effect on the carbonization process, which can promote the formation of complete carbon layers and hinder the transfer of heat and oxygen. In addition, after adding 5% APP-Cu@PDA, the tensile strength and elongation at the break of TPU composites did not decrease significantly. In summary, we developed a new flame-retardant APP-Cu@PDA, which has better flame-retardant properties than many reported TPU composites, and its preparation process is simple and environmentally friendly. This process can be applied to the industrial production of flame retardants in the future.  相似文献   

10.
Starch films can be used as materials for food packaging purposes. The goal of this study is to compare how the starch origin influence the selected starch film properties. The films were made from various starches such as that from maize, potato, oat, rice, and tapioca using 50%w of glycerine as a plasticizer. The obtained starch-based films were made using the well-known casting method from a starch solution in water. The properties of the films that were evaluated were tensile strength, water vapour transition rate, moisture content, wettability, and their surface free energy. Surface free energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelbe approach. The values of SFE in the range of 51.64 to 70.81 mJ∙m−2 for the oat starch-based film and the maize starch-based film. The films revealed worse mechanical properties than those of conventional plastics for packaging purposes. The results indicated that the poorest tensile strength was exhibited by the starch-based films made from oat (0.36 MPa) and tapioca (0.78 MPa) and the greatest tensile strength (1.49 MPa) from potato.  相似文献   

11.
The number of aged bridges among concrete structures is increasing. Therefore, to increase their lifespans, repair and reinforcement schemes ought to be implemented. This study selected various repair materials according to crack-surface treatment, crack-filling, and crack-injection methods. These repair materials were evaluated using various test methods proposed by the Korean Standards and the American Society for Testing and Materials for structure protection, structure restoration, and crack repair; the results were analyzed and compared. Consequently, the structure restoration material exhibited a similar freezing–thawing trend as that of chloride, while also exhibiting similar flexural, compressive, bond, and splitting-tensile strengths. However, chloride yielded performance differences (up to two-fold) depending on the type of material used for comparison. The crack-repair material yielded similar trends only for bond strength but yielded differences (up to 2–4-fold) in tensile, compressive, and flexural strengths depending on the material used for comparison. These results confirmed that crack-repair materials exhibit significant differences in performance depending on the manufacturer compared with structure protection and structure restoration materials. Therefore, it is expected that repair materials appropriate for usability, durability, and structure safety, while also being environmentally friendly, could be used in future bridge repairs based on these test evaluations.  相似文献   

12.
The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region.  相似文献   

13.
In this work, cotton textile materials were impregnated by immersion with three different nanocomposites: Ag/chitosan, Ag/polyvinylpyrrolidone, and ZnO/polyvinylpyrrolidone and irradiated with a 60Co gamma source. After the nanoparticles impregnation, the cotton materials were irradiated in a dry and wet state at 5 and 20 kGy radiation doses. The following methods were used for the characterization of the obtained cotton materials to reveal the modification of the textile materials: Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and thermogravimetry (TG). The obtained materials have good antibacterial properties. The microbiological tests have shown the best material results for the gamma irradition and Ag nanoparticles combined treatment. The objective was to create a more environmentally friendly approach for textile functionalization by eliminating toxic chemicals-based technology and replacing it with the eco-friendlier gamma technology.  相似文献   

14.
High-grade cellulose (97% α-cellulose content) of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS) of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4) generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.  相似文献   

15.
Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.  相似文献   

16.
An innovative antimicrobial technology for plastic surfaces is presented. We report the synthesis and scale-up of triangular silver nanoplates (TSNPs) and their integration into polycaprolactone (PCL) and polylactic acid (PLA) polymers through a solvent-casting technique. The TSNPs have a high geometric aspect ratio and strong local surface plasmon resonance (LSPR) response, which provides an effective tool for monitoring their integrity during processing and integration with the biodegradable plastics. An aqueous-based seed-mediated chemical method was used to synthesize the TSNPs, and characterisation was carried out using TEM and UV (Ultraviolet)-VIS (Visible) spectroscopy to measure LSPR profiles. The UV-VIS spectra of silver seeds and TSNPs exhibited characteristic peaks at 395 and 600 nm respectively. Synthesized TSNPs were coated with thiol-terminated polyethylene glycol (SH-PEG) and transferred into chloroform in order to effect compatibility with PCL and PLA. TSNP/PCL and TSNP/PLA composite films were prepared by solvent casting. The morphological structure, thermal, mechanical, and antimicrobial properties of the TSNP-incorporated composite films were evaluated. Results showed the TSNP-treated films had a rougher surface than the bare films. Insignificant changes in the thermal properties of TSNP-treated films compared to bare ones were also observed, which indicated the thermal stability of the composite films. The tensile strength and antimicrobial properties of the composite films were increased after TSNP incorporation. TSNP/PCL and TSNP/PLA films exhibited improved antimicrobial activity against Escherichia coli and Staphylococcus aureus with antimicrobial effect (AE) values ranging between 0.10 and 0.35. The obtained results and demonstrated TSNP production scalability validate the TSNP treated PCL and PLA films as a composite material with desirable antimicrobial effect for wide-ranging surface applications.  相似文献   

17.
The agricultural and forestry waste walnut shell and copolyester hot-melt adhesives (Co-PES) powder were selected as feedstock. A kind of low-cost, low-power consumption, and environmentally friendly walnut shell/Co-PES powder composites (WSPC) was used for selective laser sintering (SLS). Though analyzing the size and morphology of walnut shell particle (≤550 μm) as well as performing an analysis of surface roughness, density, and mechanical test of WSPC parts with different particle sizes, results showed that the optimal mechanical performance (tensile strength of 2.011 MPa, bending strength of 3.5 MPa, impact strength of 0.718 KJ/m2) as walnut shell powder particle size was 80 to 120 μm. When walnut shell powder particle diameter was 120 to 180 μm, the minimum value of surface roughness of WSPC parts was 15.711 μm and density was approximately the maximum (0.926 g/cm3).  相似文献   

18.
The Pr3+-doped solid solutions from (Ba,Ca)(Ti,Zr)O3 (BCTZO) system were successfully synthesized using an efficient and low-energy consuming route—the Pechini method combined with the sintering at relatively low temperature (1450 °C). The obtained materials were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were systematically studied. The Pr3+-doped BCTZO diphasic material generates intense and broad red photoluminescence (PL) emission at room temperature. The optical properties were significantly improved with the Ti4+ substitution by Zr4+ ions. As a result, the Pr3+-doped (Ba,Ca)(Ti,Zr)O3 ceramics is a promising candidate for environmentally friendly, multifunctional material by combining good dielectric and photoluminescent properties with prognosis for the manifestation of strong photoluminescent and mechanoluminescent effects.  相似文献   

19.
Novel biobased materials from fungal hyphae and cellulose fibers have been proposed to address the increasing demand for natural materials in personal protective equipment (PPE). Materials containing commercially available kraft fibers (KF), laboratory-made highly fibrillated hemp fibers (HF) and fungal fibers (FF) obtained from fruiting bodies of lignicolous basidiomycetes growing in nature were prepared using paper production techniques and evaluated for their mechanical and air permeability properties. SEM and microscopy revealed the network structure of materials. The tensile index of materials was in the range of 8–60 Nm/g and air permeability ranged from 32–23,990 mL/min, depending on the composition of materials. HF was the key component for strength; however, the addition of FF to compositions resulted in higher air permeability. Chemical composition analysis (Fourier-transform infrared spectroscopy) revealed the presence of natural polysaccharides, mainly cellulose and chitin, as well as the appropriate elemental distribution of components C, H and N. Biodegradation potential was proven by a 30-day-long composting in substrate, which resulted in an 8–62% drop in the C/N ratio. Conclusions were drawn about the appropriateness of fungal hyphae for use in papermaking-like technologies together with cellulose fibers. Developed materials can be considered as an alternative to synthetic melt and spun-blown materials for PPE.  相似文献   

20.
The possibility of using commercial bayberry tannin (BT) from a Chinese source as a cross-linker and functional additive to develop soybean protein isolate (SPI)-based films was explored in this study by using the solvent casting method. In particular, the impacts of BT loading on the tensile strength, microstructure, thermal stability, water resistance and antioxidant capacity were fully investigated. The results reveal that SPI incorporated with BT yielded a phenolic–protein hybrid whose relevant films exhibited an improvement in tensile strength of around two times greater compared with native SPI as a result of the formed interactions and covalent cross-links, which could be proven using FTIR spectroscopy. The introduction of BT also led to the compact microstructure of SPI–BT films and enhanced the thermal stability, while the water vapor permeability was reduced compared with the control SPI film, especially at high loading content of tannin. Additionally, the use of BT significantly promoted the antioxidant capacity of the SPI-based films according to DPPH radical scavenging assay results. On this basis, Chinese bayberry tannin is considered a promising natural cross-linker and multifunctional additive that can be dedicated to developing protein-derived films with antioxidant activity for food packaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号