首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spondyloepimetaphyseal dysplasias (SEMDs), which comprise a heterogeneous group of autosomal-dominant, autosomal-recessive and X-linked recessive disorders, are characterized by anomalies of the spine, the epiphyses and metaphyses of the long bones, resulting in short stature and osteoarthritic changes of the joints. UFSP2 gene encodes a highly conserved cysteine protease which cleaves two C-terminal residues from ubiquitin-fold modifier 1, an ubiquitin-like post-translational modifier protein. In 2018, Di Rocco, M reported for the first time that a novel heterozygous variant exon 11: c.1277A > C of the UFSP2 gene was the cause to spondyloepimetaphyseal dysplasia mainly manifested as: short stature, anterior vertebral dysplasia, hip dysplasia, flat vertebra, spinal metaphyseal dysplasia, irregular acetabular apex, distal femoral metaphyseal dysplasia, proximal tibial metaphyseal dysplasia, osteoarthritis and so on. In this report, we describe a boy with spondyloepimetaphyseal dysplasia due to a novel mutation exon 11: c.1283A > G (leading to p. H428R) of the UFSP2 gene. This is the second report to describe children with SEMDs associated with an UFSP2 variant. However, it is the first to describe a UFSP2 gene mutation exon 11: c.1283A > G (leading to p. H428R). Our findings of a novel heterozygous mutation of UFSP2 gene add to the list of 2 reported heterozygous mutations of UFSP2 which led to hereditary osteopathy.  相似文献   

2.
Spondylo-epimetaphyseal dysplasia Matrilin 3 type (SEMD) is a rare autosomal recessive skeletal dysplasia characterized by short stature, abnormalities in the vertebral bodies and long bones, especially the lower limbs. We enrolled a consanguineous family from Pakistan in which multiple siblings suffered from severe skeletal dysplasia. The six affected subjects ranged in heights from 100 to 136 cm (~-6 standard deviation). Lower limb abnormalities with variable varus and valgus deformities and joint dysplasia were predominant features of the clinical presentation. Whole exome sequencing (WES) followed by Sanger sequencing identified a missense variant, c.542G > A, p.(Arg181Gln) in MATN3 as the genetic cause of the disorder. The variant was homozygous in all affected individuals while the obligate carriers had normal heights with no skeletal symptoms, consistent with a recessive pattern of inheritance. Multiple sequence alignment revealed that MATN3 domain affected by the variant is highly conserved in orthologous proteins. The c.542G > A, p.(Arg181Gln) variant is only the fourth variant in MATN3 causing an autosomal recessive disorder and thus expands the genotypic spectrum.  相似文献   

3.
Metaphyseal anadysplasia 1 (MIM# 602111) belongs to a heterogeneous group of skeletal diseases characterized by an autosomal dominant form of growth defects due to metaphyseal changes with epiphyseal involvement similar to other metaphyseal disorders. Matrix metalloproteinase 13 encoded by MMP13 presumably plays important roles in bone formation and growth, and pathogenic variants in MMP13 have been identified to cause metaphyseal anadysplasia 1. Only six pathogenic variants in MMP13 have been previously reported worldwide. The genotype-phenotype correlation of MMP13-related disorders has not been fully understood. Here we reported the identification of a previously unreported pathogenic heterozygous de novo variant NM_002427.3:c.212T > C/p.Met71Thr in MMP13 in a Chinese male pediatric patient with metaphyseal anadysplasia 1 and additional phenotypes, including mild rickets-like changes observed on upper long bone metaphyses and patchy bone defects on the spine vertebrae particularly resolved by childhood. Our findings not only expand genotype and phenotype spectrums of MMP13-related disorders but also offer further information for precise diagnosis and classification of metaphyseal anadysplasia disorders.  相似文献   

4.
Iliac crest growth cartilage biopsy in spondyloepimetaphyseal dysplasia (SEMD) showed an endoplasmic reticulum storage disorder of epiphyseal and physeal chondrocytes. Biochemical analyses of iliac crest cartilage extracellular matrix showed no signs of deficits in any of the structural collagens types II, IX, or XI. The physis was abnormal by light microscopy with chondrocyte columnation replaced by clone-like cell accumulations surrounded by widened acellular cartilage septae. The rough endoplasmic reticulum (RER) of most chondrocytes was dilated. In some cells the RER contained homogeneous material but in most there were abnormal electron-dense accumulations. In some the material was seen in small amounts adjacent to the edge of the RER. In others, increasingly large amounts were seen that were randomly oriented and diffusely marginated. In many cells, assembly had progressed to well-marginated collections of wavy rod-like structures with a circular orientation parallel to the outer edges of the RER. The electron-dense accumulations measured from 34 to 40 nm in diameter. Mutations have prevented normal processing of collagen such that exit from the RER is abnormally slowed and abnormal self-assembly occurs within the dilated cisternae.  相似文献   

5.
6.
Acromesomelic dysplasia is genetically heterogeneous group of skeletal disorders characterized by short stature and acromelia and mesomelia of limbs. Acromesomelic dysplasia segregates in an autosomal recessive pattern and is caused by biallelic sequence variants in three genes (NPR2, GDF5, and BMPR1B). A consanguineous family of Pakistani origin segregating a subtype of acromesomelic dysplasia called Hunter–Thompson was clinically and genetically evaluated. Genotyping of microsatellite markers and linkage analysis revealed a 7.78 Mb homozygous region on chromosome 4q22.3, which harbors BMPR1B. Sequence analysis of the gene revealed a novel homozygous missense variant (c.1190T > G, p.Met397Arg) that segregates with the disease phenotype within the family and produced a Logarithm of odds (LOD) score of 3.9 with the disease phenotype. This study reports on the first familial case of acromesomelic dysplasia Hunter–Thompson type. It is also the first report of BMPR1B underlying the etiology of acromesomelic dysplasia Hunter–Thompson type.  相似文献   

7.
8.
Craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-1 (CFSMR1; OMIM#213980) is a rare autosomal recessive disorder characterized by the clinical triad of developmental delay and/or intellectual disability, a typical facial gestalt with brachycephaly, highly-arched bushy eyebrows, synophrys, hypertelorism, wide nasal bridge, and short nose, as well as multiple vertebrae and rib malformations, such as bifid and fused ribs and abnormal vertebral segmentation and fusion. Biallelic loss-of-function variants in TMCO1 cause CFSMR1. We report on two unrelated Egyptian patients with a phenotype suggestive of CFSMR. Single whole-exome sequencing in patient 1 and Sanger sequencing of TMCO1 in patient 2 revealed the same homozygous TMCO1 nonsense variant c.187C > T/p.(Arg63*) in both affected individuals; patients’ healthy parents were heterozygous carriers of the variant. Congenital hearing loss in patients 1 and 2 is an occasional finding in individuals affected by CFSMR. Camptodactyly and syndactyly, which were noted in patient 2, have not or rarely been reported in CFSMR. Review of the literature revealed a total of 30 individuals with the clinically recognizable and unique phenotype of CFSMR1, including the patients reported here, who all carried biallelic TMCO1 variants. Six different TMCO1 variants have been reported in the 30 patients from 14 families, comprising three nonsense, two 2-bp deletions, and a splice donor site variant. All disease-associated TMCO1 variants likely represent null alleles resulting in absence of the encoded protein. TMCO1 has been proposed to act as a Ca2+ channel, while other data revealed TMCO1 as a mitochondrial protein and a component of the translocon at the endoplasmic reticulum, a cellular machinery important for the biogenesis of multi-pass membrane proteins. RAB5IF/C20orf24 has recently been identified as causative gene for craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-2 (CFSMR2; OMIM#616994). Heterodimerization of RAB5IF/C20orf24 and TMCO1 and their interdependence may suggest a pathophysiological role of ER-mitochondria interaction underlying CFSMR.  相似文献   

9.
Osteosclerotic metaphyseal dysplasia (OSMD) is a very rare autosomal-recessive disorder and a distinctive type of osteopetrosis, characterized mainly by skeletal fractures and deformity, osteosclerosis, and sometimes hypotonia, developmental delay, and seizures. Sequence variants in the leucine-rich repeat kinase 1 (LRRK1) gene underlying OSMD have been reported previously. In the present study, we investigated a 14-year-old girl suspected with OSMD in a consanguineous family of Iranian origin segregating the disease in an autosomal-recessive manner. The patient had severe short stature, multiple sclerotic lesions, sandwich vertebrae, Erlenmeyer flask deformity, and looser zones. The multifocal active bony pathology suggested multifocal bony inflammation or multiple looser fractures. Whole-exome sequencing followed by Sanger sequencing confirmation revealed a novel homozygous stop gain mutation (c.G2785T, p.E929X) in the LRRK1 gene. This is the first mutation in the LRRK1 gene, underlying OSMD, in the Iranian population and the third case worldwide. The mutation is located in the C terminal of the Roc domain, distinct from domains affected in the previous two LRRK1 mutations. Additionally, a new group of clinical indications different from the two previous cases is discussed.  相似文献   

10.
Comprehensive genealogical investigations have been undertaken in eight families in the Afrikaans-speaking community of South Africa, in which at least one person had spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL). All eight families had ancestral links with two females. These women had multiple marriages and cohabitations during the late 17th and early 18th centuries and they were 12 generations removed from the affected individuals. The identification of these common progenitors confirmed the syndromic homogeneity of SEMDJL in South Africa and permitted recognition of numerous obligate heterozygotes, thus facilitating biomolecular investigations of the basic defect.  相似文献   

11.
12.
《Genetics in medicine》2023,25(10):100920
PurposeSkeletal dysplasia are heterogeneous conditions affecting the skeleton. Common nutrition issues include feeding difficulties, obesity, and metabolic complications. This systematic scoping review aimed to identify key nutrition issues, management strategies, and gaps in knowledge regarding nutrition in skeletal dysplasia.MethodsThe databases Ovid MEDLINE, Ovid EMBASE, Ebsco CINAHL, Scopus, and Cochrane Central Register of Controlled Trials and Database of Systematic Reviews were searched. Reference lists and citing literature for included studies were searched. Eligible studies included participants with skeletal dysplasia and described: anthropometry, body composition, nutrition-related biochemistry, clinical issues, dietary intake, measured energy or nutrition requirements, or nutrition interventions.ResultsThe literature search identified 8509 references from which 138 studies were included (130 observational, 3 intervention, 2 systematic reviews, and 3 clinical guidelines). Across 17 diagnoses identified, most studies described osteogenesis imperfecta (n = 50) and achondroplasia or hypochondroplasia (n = 47). Nutrition-related clinical issues, biochemistry, obesity, and metabolic complications were most commonly reported, and few studies measured energy requirements (n = 5).ConclusionNutrition-related comorbidities are documented in skeletal dysplasia; yet, evidence to guide management is scarce. Evidence describing nutrition in rarer skeletal dysplasia conditions is lacking. Advances in skeletal dysplasia nutrition knowledge is needed to optimize broader health outcomes.  相似文献   

13.
Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4‐related clinical characterization.  相似文献   

14.
Summary The results of histologic, microradiographic and electron microscopic investigations carried out on two bone biopsies pertaining to a case of craniodiaphyseal dysplasia are reported. They show that the affected skeletal segments are chiefly characterized by enhancement of bone volume, and defective calcification of the bone matrix. Moreover, interstitial calcification of skeletal muscle has been found.This investigation has been partly supported by grants of the Italian National Research Council  相似文献   

15.
The etiology of nonimmune hydrops fetalis is extensive and includes genetic disorders. We describe a term‐born female neonate with late onset extensive nonimmune hydrops, that is, polyhydramnios, edema, and congenital bilateral chylothorax. This newborn was successfully treated with repetitive thoracocentesis, total parenteral feeding, octreotide intravenously and finally surgical pleurodesis and corticosteroids. A genetic cause seemed plausible as the maternal history revealed a fatal nonimmune hydrops fetalis. A homozygous truncating variant in GDF2 (c.451C>T, p.(Arg151*)) was detected with exome sequencing. Genetic analysis of tissue obtained from the deceased fetal sibling revealed the same homozygous variant. The parents and two healthy siblings were heterozygous for the GDF2 variant. Skin and lung biopsies in the index patient, as well as the revised lung biopsy of the deceased fetal sibling, showed lymphatic dysplasia and lymphangiectasia. To the best of our knowledge, this is the first report of an association between a homozygous variant in GDF2 with lymphatic dysplasia, hydrothorax and nonimmune hydrops fetalis.  相似文献   

16.
We describe a large inbred kindred from a remote area of Pakistan, comprising eight generations, with a distinct form of spondyloepimetaphyseal dysplasia (SEMD). We evaluated 16 affected individuals: 11 males and 5 females. Analysis of the pedigree strongly suggests autosomal recessive inheritance, and consanguineous loops could account for all the affected individuals being homozygous for the abnormal allele. The clinical findings included short stature evident at birth, short bowed lower limbs, mild brachydactyly, kyphoscoliosis, an abnormal gait, enlarged knee joints, precocious osteoarthropathy, and normal intelligence. Radiographs demonstrated delayed epiphyseal ossification at the hips and knees, platyspondyly with irregular end plates and narrowed joint spaces, diffuse, early osteoarthritic changes, primarily in the spine and hands, and mild brachydactyly. Mild metaphyseal abnormalities were seen predominantly at hips and knees. This distinctive phenotype is distinct from other autosomal recessive forms of SEMD because of the mild degree of metaphyseal involvement, the type of brachydactyly, and the absence of loose joints or other clinical findings. Am. J. Med. Genet. 78:468–473, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Acromesomelic dysplasia are a heterogeneous group of disorders with variable spectrum and severity of skeletal anomalies in the affected individuals. Acromesomelic dysplasia type Maroteaux (AMDM) is characterized by extreme shortening of the forelimbs and disproportionate short stature. Several homozygous inactivating mutations in NPR2 have been identified in different AMDM patients. We report five novel variants in affected individuals in four different families. These include two nonsense and three missense variants. This study broadens the genotypic spectrum of NPR2 mutations in individuals with AMDM and also describes the intra- and inter-familial phenotypic variability due to NPR2 variants.  相似文献   

18.
19.
第二髋关节与髋臼发育不良   总被引:3,自引:0,他引:3  
目的探索第二髋关节与髋臼发育不良的关系。方法观察髋臼周围旋转和周旋转联合转子间外翻截骨治疗髋臼发育不良15例15髋,术前、后X线片影像变化。A组髋臼发育不良15例15髋,测量马蹄角,计算平均值 计算术前、后角度差平均值。B组正常10例10髋马蹄角做对照。结果髋部截骨术使马蹄角与头赘相关节-启动第二髋关节。马蹄角均值:A组术前30.80±3.93°,术后19.27±1.58°,术前、后角度差11.53±3.74°。B组20.00±1.77°。A组术后与B组比较,统计学无差异。A组术前与A组术后和B组比较,差异显著。结论圆形股骨头、马蹄角〉23°,行髋臼周围前外侧12°旋转截骨术 椭圆形股骨头、马蹄角﹤23°,行转子间外翻30°截骨术 椭圆形股骨头、马蹄角〉23°,行联合截骨术。  相似文献   

20.
Biallelic loss of function variants in the TMCO1 gene have been previously demonstrated to result in cerebrofaciothoracic dysplasia (CFTD; MIM #213980). The phenotype of this condition includes severe intellectual disability, as well as distinctive craniofacial features, including brachycephaly, synophrys, arched eyebrows, “cupid's bow” upper lip, and microdontia. In addition, nonspecific skeletal anomalies are common, including bifid ribs, scoliosis, and spinal fusion. Only 19 molecularly confirmed patients have been previously described. Here, we present four patients with CFTD, including three brothers from a Pakistani background and an additional unrelated white Scottish patient. All share the characteristic craniofacial appearance, with severe intellectual disability and skeletal abnormalities. We further define the phenotype with comparison to the published literature, and present images to define the dysmorphic features in a previously unreported ethnic group. All of our patient series are homozygous for the same c.292_293del (p.Ser98*) TMCO1 pathogenic variant, which has been previously reported only in an isolated Amish population. Thus we provide evidence that CFTD may be more common than previously thought. The patients presented here further delineate the phenotypic spectrum of CFTD and provide evidence for a recurrent pathogenic variant in TMCO1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号