首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of mono (single type) and hybrid (mixed types) fibres on the workability, compressive strength, flexural strength, and toughness parameters of fly ash geopolymer mortar were studied. The ratio of sand to geopolymer paste of the mortar was 2.75. It was found that workability of mortar decreased more with the use of PP fibres due to its higher dispersion into individual filaments in geopolymer mortar compared to the bundled ARG and PVA fibres. Compressive strength increased by 14% for using 1% steel with 0.5% PP fibres compared to that of the control mixture, which was 48 MPa. However, 25 to 30% decrease of compressive strength was observed in the mortars using the low-modulus fibres. Generally, flexural strength followed the trend of compressive strength. Deflection hardening behaviours in terms of the ASTM C1609 toughness indices, namely I5, I10 and I20 were exhibited by the mortars using 1% steel mono fibres, 0.5% ARG with 0.5% steel and 1% PVA with 0.5% steel hybrid fibres. The toughness indices and residual strength factors of the mortars using the other mono or hybrid fibres at 1 or 1.5% dosage were relatively low. Therefore, multiple cracking and deflection hardening behaviours could be achieved in fly ash geopolymer mortars of high sand to binder ratio by using steel fibres in mono or hybrid forms with ARG and PVA fibres.  相似文献   

2.
Cracks in typical mortar constructions enhance water permeability and degrade ions into the structure, resulting in decreased mortar durability and strength. In this study, mortar samples are created that self-healed their cracks by precipitating calcium carbonate into them. Bacillus subtilus bacterium (10−7, 10−9 cells/mL), calcium lactate, fine aggregate, OPC-cement, water, and bagasse ash were used to make self-healing mortar samples. Calcium lactates were prepared from discarded eggshells and lactic acid to reduce the cost of self-healing mortars, and 5% control burnt bagasse ash was also employed as an OPC-cement alternative. In the presence of moisture, the bacterial spores in mortars become active and begin to feed the nutrient (calcium lactate). The calcium carbonate precipitates and plugs the fracture. Our experimental results demonstrated that cracks in self-healing mortars containing bagasse ash were largely healed after 3 days of curing, but this did not occur in conventional mortar samples. Cracks up to 0.6 mm in self-healing mortars were filled with calcite using 10−7 and 10−9 cell/mL bacteria concentrations. Images from an optical microscope, X-ray Diffraction (XRD), and a scanning electron microscope (SEM) were used to confirm the production of calcite in fractures. Furthermore, throughout the pre- and post-crack-development stages, self-healing mortars have higher compressive strength than conventional mortars. The precipitated calcium carbonates were primed to compact the samples by filling the void spaces in hardened mortar samples. When fissures developed in hardened mortars, bacteria became active in the presence of moisture, causing calcite to precipitate and fill the cracks. The compressive strength and flexural strength of self-healing mortar samples are higher than conventional mortars before cracks develop in the samples. After the healing process of the broken mortar parts (due to cracking), self-healing mortars containing 5% bagasse ash withstand a certain load and have greater flexural strength (100 kPa) than conventional mortars (zero kPa) at 28 days of cure. Self-healing mortars absorb less water than typical mortar samples. Mortar samples containing 10−7 bacteria cells/mL exhibit greater compressive strength, flexural strength, and self-healing ability. XRD and SEM were used to analyze mortar samples with healed fractures. XRD, FTIR, and SEM images were also used to validate the produced calcium lactate. Furthermore, the durability of mortars was evaluated using DTA-TGA analysis and water absorption tests.  相似文献   

3.
In this research, the mechanical properties of lightweight mortars containing different percentages of additional powder materials has been investigated using response surface methodology (RSM). Box–Behnken design, one of the RSM techniques, was used to study the effects of silica fume content (5, 10, and 15%), vermiculite/cement (V/C) ratio (4, 6, and 8), and temperature (300, 600, and 900 °C) on the ultrasonic pulse velocity (UPV), bending strength, and compressive strength of lightweight mortars. Design expert statistical software was accustomed to determining and evaluating the mix-design of materials in mortar mixtures and temperature effect on mortars. After preliminary experimental research of the relationships between independent and response variables, regression models were built. During the selection of the model parameters, F value, p-value, and R2 values of the statistical models were taken into account by using the backward elimination technique. The results showed a high correlation between the variables and responses. Multi-objective optimization results showed that the critical temperatures for different levels of silica fume (5–10–15%) were obtained as 371.6 °C, 306.3 °C, and 436 °C, respectively, when the V/C ratio kept constant as 4. According to the results obtained at high desirability levels, it is found that the UPS values varied in the range of 2480–2737 m/s, flexural strength of 3.13–3.81 MPa, and compressive strength of 9.9–11.5 MPa at these critical temperatures. As a result of this research, RSM is highly recommended to evaluate mechanical properties where concrete includes some additional powder materials and was exposed to high temperature.  相似文献   

4.
Soda residue (SR), a solid waste generated in the production of Na2CO3 during the ammonia soda process, with a high pH value of 12, can be used as an activator of alkali-activated ground granulated blast furnace slag (GGBFS) cementitious materials. Three groups of experiments on SR-activated GGBFS mortars were designed in this paper to assess the role of the dominant parameters on fluidity and compressive strength of mortars. The results indicate that for fluidity and mechanical properties, the optimal scheme of SR-activated GGBFS mortars is 16:84–24:76 S/G, 0.01 NaOH/b, 0.05 CaO/b, and 0.50 w/b, with fluidity and compressive strength (28 d) of the mortars being 181–195 mm and 32.3–35.4 MPa, respectively. Between 2.5–10% CaCl2 addition to CaO (5%)-SR (24%)-activated GGBFS mortar is beneficial to the improvement of the compressive strength of C2, whereas the addition of CaSO4 is harmful. The main hydration products of mortars are ettringite, Friedel’s slat, and CSH gels. The results provide a theoretical basis and data support for the utilization of SR.  相似文献   

5.
Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.  相似文献   

6.
This paper discusses studies regarding the impact of fine-ground glass additives on the hydration and properties of alumina cement pastes and mortars. Fine-ground glass was added to pastes and mortars instead of high-alumina cement and calcium aluminate cement in quantities of 5% and 10%. The findings are inconclusive as to the impact of glass on the properties of tested alumina cement types. The effect produced via the addition of glass instead of cement depends on the type of alumina cement used. Adding fine-ground glass to high-alumina cement enhances the paste’s density while improving paste and mortar strength. Using the same additive for calcium aluminate cement reduces its density and strength. The addition of glass to high-alumina cement adversely affects its strength at higher temperatures.  相似文献   

7.
In recent years, partial replacement of cement with bagasse ash has been given attention for construction application due to its pozzolanic characteristics. Sugarcane bagasse ash and fine bagasse particles are abundant byproducts of the sugar industries and are disposed of in landfills. Our study presents the effect of burning bagasse at different temperatures (300 °C and 600 °C) on the compressive strength and physical properties of bagasse ash-blended mortars. Experimental results have revealed that bagasse produced more amorphous silica with very low carbon contents when it was burned at 600 °C/2 h. The compressive strength of mortar was improved when 5% bagasse ash replaced ordinary portland cement (OPC) at early curing ages. The addition of 10% bagasse ash cement also increased the compressive strength of mortars at 14 and 28 days of curing. However, none of the bagasse ash-blended portland pozzolana cement (PPC) mortars have shown improvement on compressive strength with the addition of bagasse ash. Characterization of bagasse ash was done using XRD, DTA-TGA, SEM, and atomic absorption spectrometry. Moreover, durability of mortars was checked by measuring water absorption and apparent porosity for bagasse ash-blended mortars.  相似文献   

8.
This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.  相似文献   

9.
The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.  相似文献   

10.
Cement mortar can be colored using color additive technology to give colorful facades to the surfaces of buildings, and to beautify the environment. In this study, weight ratios of color powder/cement at 1:80, 1:40, and 1:27, and polyacrylic emulsion/cement at a ratio of 1:5 were added as pigments to cement mortar; the fresh properties, slump, slump flow, hardened properties, compressive strength, flexural strength, ultrasonic pulse velocity, durability, surface electrical resistivity and thermal conductivity of the colored cement mortar were then examined. The results showed that adding color powder/cement at 1:80 and polyacrylic emulsion/cement at 1:5 gives the best water/cement (W/C) ratio, which equals 0.5; this can effectively improve the hardness and durability of colored cement mortar. At 28 days of aging, the strength of the various colored cement mortars was maintained at 33.1–36.8 MPa. The acrylic-based emulsion significantly improved the flexural strength of the specimen. At 91 days of aging, all of the cement mortars exceeded the control group, with an anti-bay strength of 19.9–21.7 MPa, and the strength increased with aging. Adding appropriate amounts of inorganic color powder and mixing water can effectively enhance the fresh and hardened properties and durability of the colored cement mortar, while polyacrylic emulsion may significantly improve the test pieces and flexural strength, which increases with age. Moreover, natural α-Fe2O3 (rust layer) is formed on the surface of the colored cement mortar samples through the addition of inorganic color powder that contains Fe(III) ion; this prevents the intrusion of noxious ions and thus increases the durability. All of the test pieces of colored cement mortar in this study had a surface resistance of over 20 kΩ-cm on the seventh day of the test period, meaning good surface compactness. In addition, because the thermal conductivity of the added inorganic color powder was higher than that of cement, the thermal conductivity was significantly improved.  相似文献   

11.
The study reported the effect of granite sand on strength and microstructural developments in mortars prepare from OPC with a high coal fly ash (FA) content or from hybrid alkaline cements. The radiological behaviour of the resulting mortars was compared to materials prepared with siliceous sand (with particles sizes of <2 mm) and the relationship between such radiological findings and mortar microstructure and strength was explored. A new method for determining natural radionuclides and their activity concentration Index (ACI) on cement mortars (specifically to solid 5-cm cubic specimens) was applied and validated. The microstructural changes associated in mortars have no effect on mortar radiological content measurements. The mortars with granite sand exhibited very high ACI > 0.96, which would ultimately limit their use. A conclusion of interest is that where information is at hand on the starting materials (OPC, FA, sand, admixtures), their proportions in the mortar and the mixing liquid content (water or alkaline activators) their radiological content is accurately predicted. The inference is that a mortar’s radiological content and ACI can be known prior to mixing, providing a criterion for determining its viability. That in turn lowers environmental risks and the health hazards for people in contact with such materials.  相似文献   

12.
Limited research has focused on the effect of high temperatures on the textile-reinforced mortar (TRM)-to-masonry bond. In this study, masonry prisms that were furnished with double-layered TRM strips were tested under shear bond conditions after their exposure to 200 °C and 400 °C for 1 h using the single-lap/single-prism setup. A total of four TRM systems were applied sharing the same type of textile –a dry AR glass fiber one– and different matrices: two cementitious matrices, namely a normal-weight (TRCNM) and a lightweight (TRCLM) one, and two counterpart alkali-activated matrices (TRAANM and TRAALM) based on metakaolin and fly ash. Specimens’ exposure to elevated temperatures did not alter their failure mode which was due to the sleeve fibers’ rupture along with core fibers’ slippage from the mortar. The residual bond capacity of the TRM systems decreases almost linearly with increasing exposure temperature. The alkali-activated textile reinforced mortars outperformed their cement-based counterparts in terms of bond strength at every temperature. All systems retained close to 50% of their original shear bond strength after heating at 400 °C. Per the type of binder, lightweight matrices resulted in either comparable (cement-based systems) or better (alkali-activated systems) heat protection at the TRM/masonry interface.  相似文献   

13.
The purpose of this work was to study the possibility of neutralizing high-calcium fly ash expansion during hydration. The object of the study was the fly ash of Berezovskaya GRES, which is capable of independent setting and hardening. The test in the Le Chatelier molds showed that the divergence of indicator arms was 90–100 mm 1 day after mixing with water. The expansion and cracking of the fly ash could be completely prevented by silica fume addition in an amount of 42.9% by weight of the fly ash. At the same time, the compressive strength of specimens from the fly ash–sand paste in a ratio of 1:5 at the age of 28 days was 1.47 MPa. The isothermal heat release at a temperature of 20 °C for 10 days reached 500 kJ/kg. XRF and DTA results showed that free lime in the fly ash was completely hydrated in 11 days and gave the greatest expansion in the absence of silica fume. The presence of silica fume made the lime hydration incomplete and decreased the expansion. Unslaked free lime remained in the system. Exothermic data showed that silica fume inhibited CaO hydration from the reaction start.  相似文献   

14.
Growing concerns on global industrial greenhouse gas emissions have boosted research for developing alternative, less CO2 intensive binders for partial to complete replacement of ordinary Portland cement (OPC) clinker. Unlike slag and pozzolanic siliceous low-Ca class F fly ashes, the Ca- and S-rich class C ashes, particularly these formed in circulating fluidised bed combustion (CFBC) boilers, are typically not considered as viable cementitious materials for blending with or substituting the OPC. We studied the physical, chemical-mineralogical characteristics of the mechanically activated Ca-rich CFBC fly ash pastes and mortars with high volume OPC substitution rates to find potential alternatives for OPC in building materials and composites. Our findings indicate that compressive strength of pastes and mortars made with partial to complete replacement of the mechanically activated CFBC ash to OPC is comparable to OPC concrete, showing compared to OPC pastes reduction in compressive strength only by <10% at 50% and <20% at 75% replacement rates. Our results show that mechanically activated Ca-rich CFBC fly ash can be successfully used as an alternative CSA-cement type binder.  相似文献   

15.
The application of granulated copper slag (GCS) to partially replace cement is limited due to its low pozzolanic activity. In this paper, reconstituted granulated copper slag (RGCS) was obtained by adding alumina oxide (Al2O3) to liquid copper slag. Blended cement pastes were formulated by a partial substitute for ordinary Portland cement (OPC) with the RGCS (30 wt%). The pozzolanic activity, mechanical development, and the microstructure were characterized. The results show that 5–10 wt% Al2O3 contributes to the increase in magnetite precipitation in RGCS. The addition of Al2O3 alleviates the inhibition of C3S by RGCS and accelerates the dissociation of RGCS active molecules, thus increasing the exothermic rate and cumulative heat release of the blended cement pastes, which are the highest in the CSA10 paste with the highest Al2O3 content (10 wt%) in RGCS. The unconfined compressive strength (UCS) values of blended cement mortar with 10 wt% Al2O3 added to RGCS reach 27.3, 47.4, and 51.3 MPa after curing for 7, 28 and 90 d, respectively, which are the highest than other blended cement mortars, and even exceed that of OPC mortar at 90 d of curing. The pozzolanic activity of RGCS is enhanced with the increase in Al2O3 addition, as evidenced by more portlandite being consumed in the CSA10 paste, forming more C-S-H (II) gel with a higher Ca/Si ratio, and a more compact microstructure with fewer pores than other pastes. This work provided a novel, feasible, and clean way to enhance the pozzolanic activity of GCS when it was used as a supplementary cementitious material.  相似文献   

16.
Alkali-activated mortars and concretes have been gaining increased attention due to their potential for providing a more sustainable alternative to traditional ordinary Portland cement mixtures. In addition, the inclusion of high volumes of recycled materials in these traditional mortars and concretes has been shown to be particularly challenging. The compositions of the mixtures present in this paper were designed to make use of a hybrid alkali-activation model, as they were mostly composed of class F fly ash and calcium-rich precursors, namely, ordinary Portland cement and calcium hydroxide. Moreover, the viability of the addition of fine milled glass wastes and fine limestone powder, as a source of soluble silicates and as a filler, respectively, was also investigated. The optimization criterium for the design of fly ash-based alkali-activated mortar compositions was the maximization of both the compressive strength and environmental performance of the mortars. With this objective, two stages of optimization were conceived: one in which the inclusion of secondary precursors in ambient-cured mortar samples was implemented and, simultaneously, in which the compositions were tested for the determination of short-term compressive strength and another phase containing a deeper study on the effects of the addition of glass wastes on the compressive strength of mortar samples cured for 24 h at 80 °C and tested up to 28 days of curing. Furthermore, in both stages, the effects (on the compressive strength) of the inclusion of construction and demolition recycled aggregates were also investigated. The results show that a heat-cured fly ash-based mortar containing a 1% glass powder content (in relation to the binder weight) and a 10% replacement of natural aggregate for CDRA may display as much as a 28-day compressive strength of 31.4 MPa.  相似文献   

17.
At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0–10%), metakaolin (0–15%), and fly ash (0–30%). Binary, ternary, and quaternary pastes were prepared, and the specimens’ workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.  相似文献   

18.
Coral sand cement (CSC) mortar is increasingly used in reef projects, which is prepared by mixing coral sand with cement and water in certain proportions. Considering that early-age hydration behavior is closely related to the strength and durability of the mortar, the early-age hydration process and micro-morphology of CSC mortars with various water–cement ratios (W/C) and sand–cement ratios (S/C) were studied. A monitoring system based on FBG is proposed in this paper, which uses the high sensitivity and conformability of optical fiber to measure the hydration temperature and internal shrinkage strain simultaneously and continuously. The standard sand cement (SSC) mortar with the same sand gradation and mix proportion is also prepared for comparison. The micro-morphology is observed by a scanning electron microscope (SEM) for measurement results’ explanation. The results show that the variation of the hydration temperature and shrinkage strain with hydration time of both CSC mortars and SSC mortars follow a unimodal function. Differently, the peak hydration temperature for CSC is obviously lower than that of SSC. The peak temperature of CSC mortar decreases linearly with the increase in S/C, and the decrease rate of the peak temperature is higher for CSC with small W/C than that with higher W/C. For mortars with lower W/C, the peak shrinkage strain of CSC is larger than that of SSC. Meanwhile, for mortars with higher W/C, the peak shrinkage strain of CSC changes to be lower than that of SSC, which is attributed to the significant water absorption characteristic of CSC. Therefore, as an eco-friendly lightweight aggregate, CS is more suitable than SS for the design of high W/C and alleviating the hydration heat of mass concrete under the meeting of strength.  相似文献   

19.
The paper presents the experimental studies on the effect of the water containing micro-nano bubbles of various gases on the physico-mechanical properties of lime-cement mortars. In total, 7 types of mortars were prepared: with water containing the micro-nano bubbles of O2, O3 or CO2 as 50% or 100% substitute of ordinary mixing water (tap water) and the reference mortar prepared using tap water. In order to determine the influence of water with micro-nano bubbles of gases, the consistency of fresh mortar and the physical properties of hardened mortar, i.e., specific and apparent density, total porosity, water absorption by weight and capillary absorption, were established. The mechanical strength of the considered mortars was studied as well by conducting the tests for flexural and compressive strengths following 14, 28 and 56 days. Reduced workability and capillary absorption were observed in the modified mortars within the range of 0.9–8.5%. The mortars indicated an increase in the flexural strength after 28 days ranging from 3.4% to 23.5% and improved compressive strength in 1.2–31%, in comparison to the reference mortar. The conducted studies indicated increased flexural and compressive strengths along with the share of micro-nano bubbles of gases in the mixing water.  相似文献   

20.
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号