首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of NFkappaB activation and its relationship to inflammatory mediators and apoptosis in the HIV-infected brain have remained uncertain. The cellular and regional distribution of NFkappaB, TNF-alpha, and apoptosis was examined in the frontal cortex (FC), deep white matter (DWM) and the basal ganglia (BG) of 17 patients with ADC. Nuclear staining for NFkappaB was localized predominantly to perivascular microglia/macrophages in the BG and DWM and correlated with ADC severity. Correlations were further found with HLA-DR, iNOS, TNF-alpha, and gp41 expression in these regions. The number of TUNEL-positive cells, particularly in the BG, correlated with ADC stage. Logistic regression analysis further showed a significant relationship between the likelihood of TUNEL staining in the BG and worsening cognitive impairment.  相似文献   

2.
3.
Within the brain, quinolinic acid (QUIN) is an important neurotoxin, especially in AIDS dementia complex (ADC). Its production by monocytic lineage cells is increased in the context of inflammation. However, it is not known whether QUIN promotes inflammation. Astrocytes are important in immunoregulation within the brain and so we chose to examine the effects of QUIN on the astrocyte. Using purified primary human fetal astrocyte cultures, we determined chemokine production using ELISA assays and RT-PCR and chemokine receptor expression using immunocytochemistry and RT-PCR with QUIN in comparison to TNFalpha, IL-1beta, and IFNgamma. We found that QUIN induces astrocytes to produce large quantities of MCP-1 (CCL2) and lesser amounts of RANTES (CCL5) and IL-8 (CXCL8). QUIN also increases SDF-1alpha (CXCL12), HuMIG (CXCL9), and fractalkine (CX(3)CL1) mRNA expression. Moreover, QUIN leads to upregulation of the chemokine receptor expression of CXCR4, CCR5, and CCR3 in human fetal astrocytes. Most of these effects were comparable to those induced by TNFalpha, IL-1beta, and IFNgamma. The present work represents the first evidence that QUIN induces chemokine and chemokine receptor expression in astrocytes and is at least as potent as classical mediators such as inflammatory cytokines. These results suggest that QUIN may be critical in the amplification of brain inflammation, particularly in ADC.  相似文献   

4.
Using immunohistochemistry, Western blot analysis, and RT-polymerase chain reaction, we studied the distribution of neuregulin-1 splice variant alpha (NRG-1alpha) and one of its putative receptors, ErbB-4 tyrosine kinase, in human brain. In the pre- and perinatal human brain immunoreactivity was confined to numerous neurons, with the highest cell density found in cortical gray matter, hypothalamus and cerebellum. In the adult brain, single cortical gray and white matter neurons showed NRG-1alpha immunoreactivity. Occasionally, immunoreactive oligodendrocytes were observed. NRG-1alpha-expressing neurons were also found in the hypothalamus, hippocampus, basal ganglia and brain stem. Application of two antibodies recognizing alpha and beta isoforms revealed a different distribution pattern in that many cortical and hippocampal pyramidal neurons were labeled. ErbB-4 immunoreactivity was expressed in both neurons and oligodendrocytes. Our data show that NRG-1alpha expression is lower in the adult human brain than in the developing brain, and, therefore, support a role for NRG-1alpha in brain development.  相似文献   

5.
Accumulating evidence supports a role of chemokines and their receptors in brain function. Up to now scarce evidence has been given of the neuroanatomical distribution of chemokine receptors. Although it is widely accepted that chemokine receptors are present on glial cells, especially in pathological conditions, it remains unclear whether they are constitutively present in normal rat brain and whether neurons have the potential to express such chemokine receptors. CXCR4, a G protein-coupled receptor for the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) was reported to have possible implications in brain development and AIDS-related dementia. By dual immunohistochemistry on brain sections, we clearly demonstrate that CXCR4 is constitutively expressed in adult rat brain, in glial cells (astrocytes, microglia but not oligodendrocytes) as well as in neurons. Neuronal expression of CXCR4 is mainly found in cerebral cortex, caudate putamen, globus pallidus, substantia innominata, supraoptic and paraventricular hypothalamic nuclei, ventromedial thalamic nucleus and substantia nigra. Using confocal microscopy, a differential distribution of CXCR4 in neuronal perikarya and dendrites can be observed according to the brain structure. Furthermore, this work demonstrates for the first time the coexistence of a chemokine receptor with classical neurotransmitters. A localization of CXCR4 is thus observed in neuronal cell bodies expressing choline acetyltransferase-immunoreactivity in the caudate putamen and substantia innominata, as well as in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. In conclusion, the constitutive neuronal CXCR4 expression suggests that SDF-1/CXCL12 could be involved in neuronal communication and possibly linked up with cholinergic and dopaminergic neurotransmission and related disorders.  相似文献   

6.
In Alzheimer's disease (AD) brains increased NO synthase (NOS) expression is found in reactive astrocytes surrounding amyloid plaques. We have recently shown that treatment with beta-amyloid peptides or IL-1beta down-regulates NO-sensitive soluble guanylyl cyclase (sGC) in cultured astrocytes and in adult rat brain. In this work, we have examined sGC activity and expression in postmortem brain tissue of AD patients and matched controls. No significant alteration was observed in basal or NO-stimulated sGC activity, nor in sGC beta1 and alpha1 subunit levels in cortical extracts of AD brains. Immunohistochemistry showed intense and widespread labeling of sGC beta1 in cortical and hippocampal neurons and white matter fibrillar astrocytes, while grey matter astrocytes were faintly stained. In AD, expression of sGC in neurons and fibrillar astrocytes is not altered but is markedly reduced in reactive astrocytes surrounding amyloid plaques. Immunostaining for sGC beta1 was also lacking in reactive astrocytes in cortex and subcortical white matter in Creutzfeldt-Jakob disease brains and in subacute and chronic plaques in multiple sclerosis (MS) brains. Thus, induction of astrocyte reactivity is associated with decreased capacity to generate cGMP in response to NO both in vitro and in vivo. This effect may be related to the development of the astroglial inflammatory response.  相似文献   

7.
8.
The chemokine stromal cell-derived factor-1 (SDF-1) regulates neuronal development via the chemokine receptor CXCR4. In the adult brain the SDF-1/CXCR4 system was implicated in neurogenesis, neuromodulation, brain inflammation, tumor growth, and HIV encephalopathy. Until the recent identification of RDC1/CXCR7 as the second SDF-1 receptor, CXCR4 was considered to be the only receptor for SDF-1. Here we provide the first map of CXCR7 mRNA expression in the embryonic and adult rat brain. At embryonic stages, CXCR7 and CXCR4 were codistributed in the germinative zone of the ganglionic eminences, caudate putamen, and along the routes of GABAergic precursors migrating toward the cortex. In the cortex, CXCR7 was identified in GABAergic precursors and in some reelin-expressing Cajal-Retzius cells. Unlike CXCR4, CXCR7 was abundant in neurons forming the cortical plate and sparse in the developing dentate gyrus and cerebellar external germinal layer. In the adult brain, CXCR7 was expressed by blood vessels, pyramidal cells in CA3, and mature dentate gyrus granule cells, which is reminiscent of the SDF-1 pattern. CXCR7 and CXCR4 overlapped in the wall of the four ventricles. Further neuronal structures expressing CXCR7 comprised the olfactory bulb, accumbens shell, supraoptic and ventromedial hypothalamic nuclei, medial thalamus, and brain stem motor nuclei. Also, GLAST-expressing astrocytes showed signals for CXCR7. Thus, CXCR4 and CXCR7 may cooperate or act independently in SDF-1-dependent neuronal development. In mature neurons and blood vessels CXCR7 appears to be the preponderant SDF-1-receptor.  相似文献   

9.
Hippocampal neurons express high levels of HIV chemokine co-receptors, activation of which causes injury or death in vitro. To determine if their in vivo expression correlates with injury, we evaluated neuronal CXCR4 and CCR5 immunoreactivity and reactive gliosis in autopsy hippocampus of 10 control cases, 11 AIDS cases without HIV encephalitis (HIVnE) or opportunistic infections/lymphomas (OI/L), and 11 AIDS cases with HIV encephalitis (HIVE). All groups had higher CXCR4 and CCR5 expression in CA3 and CA4 neurons than CA1 neurons (p < 0.05). HIVE cases had increased neuronal CXCR4 and decreased neuronal CCR5 expression as well as increased numbers of hippocampal GFAP-positive astrocytes and LN3-positive microglia. Changes were most severe in CA3 and CA4 and lowest in CA1 regions. These findings also were noted in the 4 HIVE cases with neither hippocampal HIVE nor brain OI/L and in the HIVnE groups. This study quantitates the regional distribution of hippocampal neuronal CXCR4 and CCR5 and shows their respective increase and decrease in AIDS. It suggests a relationship between neuronal loss and gliosis with intensity of neuronal chemokine expression and raises the possibility of a selective vulnerability of hippocampal neurons to AIDS-related injury.  相似文献   

10.
The stromal cell-derived factor-1 (SDF-1)/CXCL12 and its receptor CXCR4 are key modulators of immune functions. In the nervous system, SDF-1/CXCL12 is crucial for neuronal guidance in developing brain, intercellular communication and the neuropathogenesis of acquired immunodeficiency syndrome. However, cerebral functions of SDF-1/CXCL12 in adult brain are poorly understood. The understanding of its role in the adult brain needs a detailed neuroanatomical mapping of SDF-1/CXCL12. By dual immunohistochemistry we demonstrate that this chemokine is constitutively expressed not only in astrocytes and microglia but also in neurons, in discrete neuroanatomical regions. Indeed, neuronal expression of SDF-1/CXCL12 is mainly found in cerebral cortex, substantia innominata, globus pallidus, hippocampus, paraventricular and supraoptic hypothalamic nuclei, lateral hypothalamus, substantia nigra and oculomotor nuclei. Moreover, we provide the first evidence that SDF-1/CXCL12 is constitutively expressed in cholinergic neurons in the medial septum and substantia innominata and in dopaminergic neurons in substantia nigra pars compacta and the ventral tegmental area. Interestingly we also show, for the first time, a selective co-localization of SDF-1/CXCL12 with vasopressin-expressing neurons in the supraoptic and paraventricular hypothalamic nuclei. In addition, in the lateral hypothalamic area, SDF-1/CXCL12 was found to be located on melanin concentrating hormone-expressing neurons. Altogether, these original data suggest that SDF-1/CXCL12 could be a modulatory neuropeptide regulating both central cholinergic and dopaminergic systems. In addition, a key role for SDF-1/CXCL12 in neuroendocrine regulation of vasopressin-expressing neurons represents an exciting new field of research.  相似文献   

11.
Interleukin-1 beta is a key mediator of inflammation and stress in the central nervous system (CNS). This cytokine induces CNS glial cells to produce numerous additional cytokines and growth factors under inflammatory conditions. We have investigated regulation of the signal transducing type 1 interleukin-1 receptor (IL-1R1) in the CNS. In vivo, IL-1R1 was not detected in glial cells under basal conditions but was strongly induced after a stab lesion. Cultured astrocytes were used to identify specific signals that regulate expression of the receptor. IL-1R1 mRNA and protein were induced by inflammatory stimuli including tumor necrosis factor (TNF alpha) and IL-1 beta itself. Although expression of the receptor was not detected in glia under basal conditions in vivo, pyramidal neurons in the hippocampus expressed the IL-1 receptor in the normal, unlesioned brain. Cultured embryonic hippocampal neurons were used to investigate specific stimuli that regulate IL-1R1 in neurons. As in astrocytes, IL-1 and TNF alpha induced expression of IL-1R1. The expression of IL-1R1 in hippocampal neurons suggests a possible role for IL-1 in regulating neuronal function, and indicates that these neurons may be directly influenced by cytokines.  相似文献   

12.
Chemokine stromal cell-derived factor-1 (SDF-1, or CXCL12) plays an important role in brain development and functioning. Whole-cell patch clamp recordings were conducted on CA3 neurons in hippocampal slices prepared from neonatal rats between postnatal days 2 and 6 to study the modulatory effects of SDF-1alpha on network-driven, gamma-aminobutyric-acid-mediated giant depolarizing potentials (GDPs), a hallmark of the developing hippocampus. We found that SDF-1alpha, the only natural ligand for chemokine CXC motif receptor 4 (CXCR4), decreased GDP firing without significant effects on neuronal passive membrane properties in neonatal hippocampal neurons. The SDF-1alpha-mediated decrease in GDP firing was blocked by T140, a CXCR4 receptor antagonist, suggesting that SDF-1alpha modulates GDP firing via CXCR4. We also showed that endogenous SDF-1 exerts a tonic inhibitory action on GDPs in the developing hippocampus. As SDF-1/CXCR4 are highly expressed in the developing brain and GDPs are involved in activity-dependent synapse formation and functioning, the inhibitory action of SDF-1alpha on GDPs may reflect a potential mechanism for chemokine regulation of neural development in early neonatal life.  相似文献   

13.
Calbindin is a 28 kDa calcium-binding protein expressed in restricted neuronal populations in the mammalian brain where it may play a role in protecting neurons against excitotoxic insults. Recent findings indicate that electrical activity and some neurotrophic factors can induce the expression of calbindin in neurons. We now report that brain injury, effected by systemic administration of the excitotoxin kainate or mechanical trauma, induces expression of calbindin in cells of the corpus callosum and subcortical white matter. Immunohistochemical analysis using antibodies to the astrocyte-specific proteins (glial fibrillary acidic protein and S-100β) established the identity of calbindin immunoreactive cells as astrocytes. Because brain injury is known to induce the expression of several neurotrophic factors and cytokines, we employed cultures of hippocampal and neocortical astrocytes to test the hypothesis that such factors can induce expression of calbindin in astrocytes. Tumor necrosis factors (TNFβ and TNFβ), cytokines that are expressed in response to brain injury, induced the expression of calbindin in cultured rat hippocampal and neocortical astrocytes. Two neurotrophic factors, basic fibroblast growth factor and nerve growth factor, did not induce calbindin in astrocytes. TNF-treated, calbindin-expressing astrocytes were resistant to acidosis and calcium ionophore toxicity, suggesting that TNFs and calbindin may serve a cytoprotective role in astrocytes in the injured brain. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Stromal cell-derived factor 1alpha (SDF-1alpha), a chemoattractant for leucocytes and neurons, and its receptor, CXCR4 are expressed in subsets of neurons of specific brain areas. In rat lateral hypothalamic area (LHA) we show, using immunocytochemistry, that CXCR4 is localized within melanin-concentrating hormone (MCH)-expressing neurons, mainly involved in feeding behaviour regulation. We investigated whether SDF-1alpha may control MCH neuronal activity. Patch-clamp recordings in rat LHA slices revealed multiple effects of SDF-1alpha on the membrane potential of MCH neurons, indirect through glutamate/GABA release and direct through GIRK current activation. Moreover, SDF-1alpha at 0.1-1 nM decreased peak and discharge frequency of action potential evoked by current pulses. These effects were further confirmed in voltage-clamp experiments, SDF-1alpha depressing both potassium and sodium currents. At 10 nM, however, SDF-1alpha increased peak and discharge frequency of action potential evoked by current pulses. Using a specific CXCR4 antagonist, we demonstrated that only the depressing effect on AP discharge was mediated through CXCR4 while the opposite effect was indirect. Together, our studies reveal for the first time a direct effect of SDF-1alpha on voltage-dependent membrane currents of neurons in brain slices and suggest that this chemokine may regulate MCH neuron activity.  相似文献   

15.
The mechanism(s) by which HIV-1 affects neural injury in HIV-1-associated dementia (HAD) remains unknown. To ascertain the role that cellular and viral macrophage products play in HAD neurotoxicity, we explored one potential route for neuronal demise, CXCR4. CXCR4, expressed on lymphocytes and neurons, is both a part of neural development and a co-receptor for HIV-1. Its ligand, stromal cell-derived factor-1alpha (SDF-1alpha), affects neuronal viability. GTP binding protein (G-protein) linked signaling after neuronal exposure to SDF-1alpha, virus-infected monocyte-derived macrophage (MDM) secretory products, and virus was determined. In both human and rat neurons, CXCR4 was expressed at high levels. SDF-1alpha/beta was detected predominantly in astrocytes and at low levels in MDM. SDF-1beta/beta was expressed in HAD brain tissue and upregulated in astrocytes exposed to virus infected and/or immune activated MDM conditioned media (fluids). HIV-1-infected MDM secretions, virus and SDF-1beta induced a G inhibitory (Gi) protein-linked decrease in cyclic AMP (cAMP) and increase inositol 1,4, 5-trisphosphate (IP3) and intracellular calcium. Such effects were partially blocked by antibodies to CXCR4 or removal of virus from MDM fluids. Changes in G-protein-coupled signaling correlated, but were not directly linked, to increased neuronal synaptic transmission, Caspase 3 activation and apoptosis. These data, taken together, suggest that CXCR4-mediated signal transduction may be a potential mechanism for neuronal dysfunction during HAD.  相似文献   

16.
17.
The regional expression of immune-mediated and neurotoxic events in the human immunodeficiency virus (HIV)-infected brain in relationship to the acquired immunodeficiency syndrome (AIDS) dementia complex (ADC) and brain pathology remains uncertain. The extent of gp41, inducible nitric oxide synthase (iNOS), and HLA-DR expression was examined in the frontal lobe and basal ganglia of 25 patients at varying stages of ADC. The expression of gp41 and iNOS was present predominantly in perivascular cells and most often in the basal ganglia. Staining for gp41 correlated significantly with iNOS in the basal ganglia, whereas the severity of staining for gp41 and iNOS in the basal ganglia and white matter was significantly greater in subjects with moderate to severe dementia compared with those with milder impairment. The degree of macrophage staining in the white matter and basal ganglia also correlated significantly with ADC severity and was more abundant than gp41 or iNOS staining, particularly in the white matter. Logistic regression analysis revealed that staining for iNOS and gp41 increased linearly with ADC severity and was significantly more abundant in the basal ganglia compared with the white matter. Double-immunolabeling studies colocalized iNOS predominantly to macrophage/microglia and to gp41-positive cells. The expression of iNOS and gp41 in the basal ganglia combined with immune activation contributes to the development and progression of the clinical syndrome.  相似文献   

18.
The peroxiredoxin (Prx) protein is expressed widely in animal tissues and serves an antioxidant function associated with removal of cellular peroxides. We have cloned two Prx genes and observed differential expression of Prx-I and Prx-II (formerly NKEF-A and NKEF-B) in purified rat brain cell cultures (Sarafian et al. [1998] Mol. Chem. Neuropathol. 34:39-51). We have examined regional and cell-type-specific expression of Prx-I and Prx-II in paraffin sections of human brain using immunohistochemical methods. These studies revealed a clear segregation of expression of these two gene products in different brain cell types. In the cerebral cortex, cerebellum, basal ganglia, substantia nigra, and spinal cord, Prx-I was expressed primarily in astrocytes, while Prx-II was expressed exclusively in neurons. Prx-I was also prominently expressed in ependymal cells and subependymal matrix of substantia nigra and basal ganglia. Prx-II was not expressed at uniform density in all neurons. In general, small neurons such as cerebellar granule neurons displayed little or no staining, while large neurons, such as hippocampal pyramidal and Purkinje neurons were heavily stained. The absence of expression of Prx-I in neurons and the selective expression of Prx-II in large neurons suggest that these antioxidant enzymes serve distinct functional roles that may reflect the different functions and biochemical activities of these cell types. Restricted expression of these genes may also contribute to the selective vulnerability of these cells to a wide variety of neuropathologic conditions.  相似文献   

19.
Nicergoline, a drug used for the treatment of Alzheimer's disease and other types of dementia, was tested for its ability to protect neurons against beta-amyloid toxicity. Pure cultures of rat cortical neurons were challenged with a toxic fragment of beta-amyloid peptide (betaAP(25-35)) and toxicity was assessed after 24 h. Micromolar concentrations of nicergoline or its metabolite, MDL, attenuated betaAP(25-35)-induced neuronal death, whereas MMDL (another metabolite of nicergoline), the alpha1-adrenergic receptor antagonist, prazosin, or the serotonin 5HT-2 receptor antagonist, methysergide, were inactive. Nicergoline increased the basal levels of Bcl-2 and reduced the increase in Bax levels induced by beta-amyloid, indicating that the drug inhibits the execution of an apoptotic program in cortical neurons. In mixed cultures of rat cortical cells containing both neurons and astrocytes, nicergoline and MDL were more efficacious than in pure neuronal cultures in reducing beta-amyloid neurotoxicity. Experiments carried out in pure cultures of astrocytes showed that a component of neuroprotection was mediated by a mechanism of glial-neuronal interaction. The conditioned medium of cultured astrocytes treated with nicergoline or MDL for 72-96 h (collected 24 h after drug withdrawal) was neuroprotective when transferred to pure neuronal cultures challenged with beta-amyloid. In cultured astrocytes, nicergoline increased the intracellular levels of transforming-growth factor-beta and glial-derived neurotrophic factor, two trophic factors that are known to protect neurons against beta-amyloid toxicity. These results raise the possibility that nicergoline reduces neurodegeneration in the Alzheimer's brain.  相似文献   

20.
Stromal cell-derived factor 1 alpha (SDF-1alpha) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HIV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1beta following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1beta receptor antagonist (IL-1Ra) and IL-1beta siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1beta mRNA expression. These observations provide direct evidence that IL-1beta, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号