首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utility of [18F]fluoromethyl tosylate as an [18F]fluoromethylation reagent has been reexamined. The preparation of this potentially useful compound from the reaction of bis(tosyloxy) methane with 18F‐ was reported several years ago, but it had not found use as a labeling reagent. When the reported reaction of bis(tosyloxy) methane with 18F‐ was carried out, [18F]fluoromethyl tosylate was formed along with [18F]tosyl fluoride. The product ratio depended upon reaction conditions, with the yield of [18F]fluoromethyl tosylate usually in the range of 25–40%. Addition of a small amount of water to the reaction mixture resulted in a significant increase in the yield of [18F]fluoromethyl tosylate. Reaction conditions were defined that produced a yield of 71±6% of [18F]fluoromethyl tosylate (decay corrected). The product was conveniently purified by alumina chromatography. Reaction of [18F]fluoromethyl tosylate with the (des‐fluoromethyl) fluticasone propionate thioacid precursor produced [18F]fluticasone propionate in improved yield (16%, from fluoride in production‐scale runs) over other synthesis methods. Similarly, formation of [18F]choline, [18F]fluoromethionine and N‐([18F]fluoromethyl)spiperone from the reaction of [18F]fluoromethyl tosylate with corresponding precursors was examined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Automated synthetic procedures of [18F]fluoro‐[di‐deutero]methyl tosylate on a GE TRACERlab FX F‐N module and a non‐commercial synthesis module have been developed. The syntheses included azeotropic drying of the [18F]fluoride, nucleophilic 18F‐fluorination of bis(tosyloxy)‐[di‐deutero]methane, HPLC purification and subsequent formulation of the synthesized [18F]fluoro‐[di‐deutero]methyl tosylate (d2‐[18F]FMT) in organic solvents. Automation shortened the total synthesis time to 50 min, resulting in an average radiochemical yield of about 50% and high radiochemical purity (>98%). The possible application of this procedure to commercially available synthesis modules might be of significance for the production of deuterated 18F‐fluoromethylated imaging probes in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Microfluidics technology has emerged as a powerful tool for the radiosynthesis of positron emission tomography (PET) and single‐photon emission computed tomography radiolabeled compounds. In this work, we have exploited a continuous flow microfluidic system (Advion, Inc., USA) for the [18F]‐fluorine radiolabeling of the malonic acid derivative, [18F] 2‐(5‐fluoro‐pentyl)‐2‐methyl malonic acid ([18F]‐FPMA), also known as [18F]‐ML‐10, a radiotracer proposed as a potential apoptosis PET imaging agent. The radiosynthesis was developed using a new tosylated precursor. Radiofluorination was initially optimized by manual synthesis and served as a basis to optimize reaction parameters for the microfluidic radiosynthesis. Under optimized conditions, radio‐thin‐layer chromatography analysis showed 79% [18F]‐fluorine incorporation prior to hydrolysis and purification. Following hydrolysis, the [18F]‐FPMA was purified by C18 Sep‐Pak, and the final product was analyzed by radio‐HPLC (high‐performance liquid chromatography). This resulted in a decay‐corrected 60% radiochemical yield and ≥98% radiochemical purity. Biodistribution data demonstrated rapid blood clearance with less than 2% of intact [18F]‐FPMA radioactivity remaining in the circulation 60 min post‐injection. Most organs showed low accumulation of the radiotracer, and radioactivity was predominately cleared through kidneys (95% in 1 h). Radio‐HPLC analysis of plasma and urine samples showed a stable radiotracer at least up to 60 min post‐injection.  相似文献   

4.
A reaction pathway via oxidation of [18F]fluorobenzaldehydes offers a very useful tool for the no‐carrier‐added radiosynthesis of [18F]fluorophenols, a structural motive of several potential radiopharmaceuticals. A considerably improved chemoselectivity of the Baeyer‐Villiger oxidation (BVO) towards phenols was achieved, employing 2,2,2‐trifluoroethanol as reaction solvent in combination with Oxone or m‐CPBA as oxidation agent. The studies showed the necessity of H2SO4 addition, which appears to have a dual effect, acting as catalyst and desiccant. For example, 2‐[18F]fluorophenol was obtained with a RCY of 97% under optimised conditions of 80°C and 30‐minute reaction time. The changed performance of the BVO, which is in agreement with known reaction mechanisms via Criegee intermediates, provided the best results with regard to radiochemical yield (RCY) and chemoselectivity, i.e. formation of [18F]fluorophenols rather than [18F]fluorobenzoic acids. Thus, after a long history of the BVO, the new modification now allows an almost specific formation of phenols, even from electron‐deficient benzaldehydes. Further, the applicability of the tuned, chemoselective BVO to the n.c.a. level and to more complex compounds was demonstrated for the products n.c.a. 4‐[18F]fluorophenol (RCY 95%; relating to 4‐[18F]fluorobenzaldehyde) and 4‐[18F]fluoro‐m‐tyramine (RCY 32%; relating to [18F]fluoride), respectively.  相似文献   

5.
The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [18F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [18F]F2 have been achieved so far by using electrical discharge in the post‐target production of [18F]F2 gas from [18F]CH3F. We demonstrate that [18F]F2 is produced by illuminating a gas mixture of neon/F2/[18F]CH3F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [18F]F, amount of carrier F2, and number of 193‐nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [18F]F2‐derived [18F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [18F]F. The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories.  相似文献   

6.
Currently there is still a need for more potent amino acid analogues as tumour imaging agents for peripheral tumour imaging with PET as it was recently reported that the success of O‐(2′‐[18F]fluoroethyl)‐L ‐tyrosine ([18F]FET) is limited to brain, head and neck tumours. As the earlier described 2‐Amino‐3‐(2‐[18F]fluoromethyl‐phenyl)‐propionic acid (2‐[18F]FMP) suffered from intramolecular‐catalysed defluorination, we synthesized 2‐Amino‐3‐(4‐[18F]fluoromethyl‐phenyl)‐propionic acid (4‐[18F]FMP) as an alternative for tumour imaging with PET. Radiosynthesis of 4‐[18F]FMP, based on Br for [18F] aliphatic nucleophilic exchange, was performed with a customized modular Scintomics automatic synthesis hotboxthree system in a high overall yield of 30% and with a radiochemical purity of \gt 99%. 4‐[18F]FMP was found to be stable in its radiopharmaceutical formulation, even at high radioactivity concentrations. Additionally, for a comparative study, [18F]FET was synthesized using the same setup in 40% overall yield, with a radiochemical purity \gt 99%. The described automated radiosynthesis allows the production of two different amino acid analogues with minor alternations to the parameter settings of the automated system, rendering this unit versatile for both research and clinical practice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Four different no carrier added (n.c.a.) 4‐[18F]fluorophenylurea derivatives are synthesized as model compounds via two alternative routes. In both cases carbamate‐4‐nitrophenylesters are used as intermediates. Either n.c.a. 4‐[18F]fluoroaniline reacts with carbamates of several amines, or the carbamate of n.c.a. 4‐[18F]fluoroaniline is formed at first and an amine is added subsequently to yield the urea derivative. The choice of the appropriate way of reaction depends on the possibilities of precursor synthesis. The radiochemical yields reach up to 80% after 50 min of synthesis time while no radiochemical by‐products can be determined. These high yields were possible due to an optimized preparation of n.c.a. 4‐[18F]fluoroaniline with a radiochemical yield of up to 90%. From the various ways of its radiosynthesis, the substitution with n.c.a. [18F]fluoride on dinitrobenzene is chosen, using phosphorous acid and palladium black for reduction of the second nitro group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A synthesis method has been developed for the labelling of N‐(3‐[18F]fluoropropyl)‐2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane ([18F]β‐CFT‐FP), a potential radioligand for visualization of the dopamine transporters by positron emission tomography. The two‐step synthesis includes preparation of [18F]fluoropropyl tosylate and its use without purification in the fluoroalkylation of 2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane (nor‐β‐CFT). The final product is purified by HPLC. Optimization of the two synthesis steps resulted in a greater than 30% radiochemical yield of [18F]β‐CFT‐FP (decay corrected to end of bombardment). The synthesis time including HPLC‐purification was approximately 90 min. The radiochemical purity of the final product was higher than 99% and the specific radioactivity at the end of synthesis was typically 20 GBq/µmol. In comparison to alkylation by [18F]fluoropropyl bromide, the procedure described here results in an improved overall radiochemical yield of [18F]β‐CFT‐FP in a shorter time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
There is growing interest in the use of radiolabelled peptides as receptor targeting agents for diagnostic imaging of various cancer types using positron emission tomography. In this work, 1‐[3‐(2‐[18F]fluoropyridin‐3‐yloxy)propyl]pyrrole‐2,5‐dione ([18F]FPyME) has been used for parallel fluorine‐18 labelling of PEPHC1, a peptide selective towards the cancer‐specific mutation of the epidermal growth factor receptor (EGFRvIII), and a number of truncated and mutated analogues. Conjugation of the peptides with [18F]FPyME was achieved within 10 min in non‐decay‐corrected radiochemical yields of 30–50%. The high yield of the conjugation reaction combined with its short synthesis time allows the labelling of several peptides from a single batch of [18F]FPyME. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We developed three novel positron‐emission tomography (PET) probes, 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2[18F]fluoroethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([18F]BCPP‐EF), 2‐tert‐butyl‐4‐chloro‐5‐[6‐(4‐[18F]fluorobutoxy)‐pyridin‐3‐ylmethoxy]‐2H‐pyridazin‐3‐one ([18F]BCPP‐BF), and 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2‐[11C]methoxy‐ethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([11C]BCPP‐EM), for quantitative imaging of mitochondrial complex 1 (MC‐1) activity in vivo. These three PET probes were successfully labeled by nucleophilic [18F]fluorination or by [11C]methylation of their corresponding precursor with sufficient radioactivity yield, good radiochemical purity, and sufficiently high specific radioactivity for PET measurement. The specificity of these probes for binding to MC‐1 was assessed with rotenone, a specific MC‐1 inhibitor, by a rat brain slice imaging method in vitro. Rat whole‐body imaging by small‐animal PET demonstrated that all probes showed high uptake levels in the brain as well as in the heart sufficient to image them clearly. The rank order of uptake levels in the brain and the heart just after injection was as follows: high in [18F]BCPP‐BF, intermediate in [11C]BCPP‐EM, and low in [18F]BCPP‐EF. The kinetics of [18F]BCPP‐EF and [11C]BCPP‐EM provided a reversible binding pattern, whereas [18F]BCPP‐BF showed nonreversible accumulation‐type kinetics in the brain and heart. Metabolite analyses indicated that these three compounds were rapidly metabolized in the plasma but relatively stable in the rat brain up to 60 min post‐injection. The present study demonstrated that [18F]BCPP‐EF could be a useful PET probe for quantitative imaging of MC‐1 activity in the living brain by PET.  相似文献   

11.
The use of the key enzyme involved in carbon–fluorine bond formation in Streptomyces cattleya catalysing the formation of 5′‐fluoro‐5′‐deoxyadenosine (5′‐FDA) from fluoride ion and S‐adenosyl‐l‐methionine (SAM) was explored for its potential application in fluorine‐18 labelling of the adenosine derivative. Enzymatic radiolabelling of [18F]‐5′‐FDA was successfully carried out starting from SAM and [18F]HF when the concentration of the enzyme preparation was increased from sub‐mg/ml values to mg/ml values. The purity of the enzyme had no measurable effect on the radiochemical yield of the reaction and the radiochemical purity of [18F]‐5′‐FDA. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Radiolabeled prostate‐specific membrane antigen (PSMA) targeting PET‐tracers have become desirable radiopharmaceuticals for the imaging of prostate cancer (PC). Recently, the PET radiotracer [18F]PSMA‐1007 was introduced as an alternative to [68Ga]Ga‐PSMA‐11, for staging and diagnosing biochemically recurrent PC. We incorporated a one‐step procedure for [18F]PSMA‐1007 radiosynthesis, using both Synthra RNplus and GE TRACERlab FxFN automated modules, in accordance with the recently described radiolabeling procedure. Although the adapted [18F]PSMA‐1007 synthesis resulted in repeatable radiochemical yields (55 ± 5%, NDC), suboptimal radiochemical purities of 87 ± 8% were obtained using both modules. As described here, modifications made to the radiolabeling and the solid‐phase extraction purification steps reduced synthesis time to 32 minutes and improved radiochemical purity to 96.10%, using both modules, without shearing the radiochemical yield.  相似文献   

13.
An agonist PET tracer is of key interest for the imaging of the 5‐HT2A receptor, as exemplified by the previously reported success of [11C]Cimbi‐36. Fluorine‐18 holds several advantages over carbon‐11, making it the radionuclide of choice for clinical purposes. In this respect, an 18F‐labelled agonist 5‐HT2A receptor (5‐HT2AR) tracer is highly sought after. Herein, we report a 2‐step, 1‐pot labelling methodology of 2 tracer candidates. Both ligands display high in vitro affinities for the 5‐HT2AR. The compounds were synthesised from easily accessible labelling precursors, and radiolabelled in acceptable radiochemical yields, sufficient for in vivo studies in domestic pigs. PET images partially conformed to the expected brain distribution of the 5‐HT2AR; a notable exception however being significant uptake in the striatum and thalamus. Additionally, a within‐scan displacement challenge with a 5‐HT2AR antagonist was unsuccessful, indicating that the tracers cannot be considered optimal for neuroimaging of the 5‐HT2AR.  相似文献   

14.
To assess the potential of intermolecular hydroacylation reactions as a new fluorine‐18 labeling method, model reactions of [18F]fluorobenzaldehyde with three different olefins (1‐hexene ( 2a ), allylbenzene ( 2b ), and 3‐phenoxypropene ( 2c )) in the presence of Wilkinson's catalyst were performed. The procedure gave high radiochemical yields (38–62%) of [18F]fluorophenylketones with short reaction times (15 min). The intermolecular hydroacylation reaction provides a new method for the preparation of fluorine‐18 labeled compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Reproducible methods for [18F]radiolabeling of biological vectors are essential for the development of new [18F]radiopharmaceuticals. Molecules such as carbohydrates, peptides and proteins are challenging substrates that often require multi‐step indirect radiolabeling methods. With the goal of developing more robust, time saving, and less expensive procedures for indirect [18F]radiolabeling of such molecules, our group has synthesized ethynyl‐4‐[18F]fluorobenzene ([18F]2, [18F]EYFB) in a single step (14 ± 2% non‐decay corrected radiochemical yield (ndc RCY)) from a readily synthesized, shelf stable, inexpensive precursor. The alkyne‐functionalized synthon [18F]2 was then conjugated to two azido‐functionalized vector molecules via CuAAC reactions. The first ‘proof of principle’ conjugation of [18F]2 to 1‐azido‐1‐deoxy‐β‐d ‐glucopyranoside (3) gave the desired radiolabeled product [18F]4 in excellent radiochemical yield (76 ± 4% ndc RCY (11% overall)). As a second example, the conjugation of [18F]2 to matrix‐metalloproteinase inhibitor (5), which has potential in tumor imaging, gave the radiolabeled product [18F]6 in very good radiochemical yield (56 ± 12% ndc RCY (8% overall)). Total preparation time for [18F]4 and [18F]6 including [18F]F? drying, two‐step reaction (nucleophilic substitution and CuAAC conjugation), two HPLC purifications, and two solid phase extractions did not exceed 70 min. The radiochemical purity of synthon [18F]2 and the conjugated products, [18F]4 and [18F]6, were all greater than 98%. The specific activities of [18F]2 and [18F]6 were low, 5.97 and 0.17 MBq nmol?1, respectively.  相似文献   

16.
We have developed a new precursor, 3,17β‐O‐bis(methoxymethyl)‐16β‐O‐p‐nitrobenzenesulfonylestriol (14c) of 16α‐[18F]fluoroestradiol ([18F]FES). Although we could not selectively protect the C17 alcohol in the presence of the C16 alcohol, we were able to prepare and chromatographically isolate the desired C16 TBDMS, C17,C3‐dimethoxymethyl (diMOM) protected estriol derivative and convert into the ultimate fluorination precursor. The MOM protective group proved to be more quickly removed than the cyclic sulfate group. The di‐MOM protective precursor at the C3 and C17 alcohols instead of a cyclic sulfate group shortened hydrolysis time. We prepared three different sulfonate precursors at C16 alcohol. After checking their reactivity in the [18F]fluorination step and considering the stability of the precursors, we obtained the best results with nosylate precursor 14c.  相似文献   

17.
The availability of no‐carrier‐added (n.c.a.) 1‐bromo‐4‐[18F]fluorobenzene with high radiochemical yields is important for 18F‐arylation reactions using metallo‐organic 4‐[18F]fluorophenyl compounds (e.g. of lithium or magnesium) or Pd‐catalyzed coupling. In this study, different methods for the preparation of 1‐bromo‐4‐[18F]fluorobenzene by nucleophilic aromatic substitution reactions using n.c.a. [18F]fluoride were examined. Of six pathways compared, symmetrical bis‐(4‐bromphenyl)iodonium bromide proved most useful to achieve the title compound in a direct, one‐step nucleophilic substitution with a radiochemical yield (RCY) of 65% within 10 min. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
[18F]2‐Fluoroethyl‐p‐toluenesulfonate also called [18F]2‐fluoroethyl tosylate has been widely used for labeling radioligands for positron emission tomography (PET). [18F]2‐Fluoroethyl‐4‐bromobenzenesulfonate, also called [18F]2‐fluoroethyl brosylate ([18F]F(CH2)2OBs), was used as an alternative radiolabeling agent to prepare [18F]FEOHOMADAM, a fluoroethoxy derivative of HOMADAM, by O‐fluoroethylating the phenolic precursor. Purified by reverse‐phase HPLC, the no‐carrier‐added [18F]F(CH2)2OBs was obtained in an average radiochemical yield (RCY) of 35%. The reaction of the purified and dried [18F]F(CH2)2OBs with the phenolic precursor was performed by heating in DMF and successfully produced [18F]FEOHOMADAM, after HPLC purification, in RCY of 21%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Imaging the serotonin 2A neuroreceptor with positron emission tomography has been carried out with [11C]MDL 100907 and [18F]altanserin for years. Recently, the MDL 100907 analogue [18F]MH.MZ was developed by combining the increased selectivity profile of MDL 100907 and the favourable radiophysical properties of fluorine‐18. Here, we want to report the synthesis of [18F]MH.MZ via direct radiofluorination. Unfortunately, the direct radiofluorination did not have any significant benefits over the indirect labelling method. This is mainly because the precursor for the direct labelling approach is not completely stable and slowly decomposes. However, only one HPLC separation is necessary for the direct 18F‐nucleophilic labelling procedure, and accordingly, automation is easier. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Although 3′‐deoxy‐3′‐[18F]fluorothymidine ([18F]FLT) is a prospective radiopharmaceutical for the imaging of proliferating tumor cell, it is difficult to prepare large amount of [18F]FLT. We herein describe the preparation of [18F]FLT in an ionic liquid, [bmim][OTf] (1‐butyl‐3‐methyl‐imidazolium trifluoromethanesulfonate). At optimized condition, [18F]fluorinationin ionic liquid with 5 µl of 1 M KHCO3 and 5 mg of the precursor yielded 61.5 ± 4.3% (n=10). Total elapsed time was about 70 min including HPLC purification. The rapid synthesis of [18F]FLT can be achieved by removing all evaporation steps. Overall radiochemical yield and radiochemical purity were 30 ± 5% and >95%, respectively. This method can use a small amount of a nitrobenzenesulfonate precursor and can be adapted for automated production. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号