首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
The mitochondrion plays vital roles in various aspects of cellular metabolism, ranging from energy transduction and apoptosis to the synthesis of important molecules such as heme. Mitochondria are also centrally involved in iron metabolism, as exemplified by disruptions in mitochondrial proteins that lead to perturbations in whole-cell iron processing. Recent investigations have identified a host of mitochondrial proteins (e.g., mitochondrial ferritin; mitoferrins 1 and 2; ABCBs 6, 7, and 10; and frataxin) that may play roles in the homeostasis of mitochondrial iron. These mitochondrial proteins appear to participate in one or more processes of iron storage, iron uptake, and heme and iron-sulfur cluster synthesis. In this review, we present and critically discuss the evidence suggesting that the mitochondrion may contribute to the regulation of whole-cell iron metabolism. Further, human diseases that arise from a dysregulation of these mitochondrial molecules reveal the ability of the mitochondrion to communicate with cytosolic iron metabolism to coordinate whole-cell iron processing and to fulfill the high demands of this organelle for iron. This review highlights new advances in understanding iron metabolism in terms of novel molecular players and diseases associated with its dysregulation.  相似文献   

2.
Friedreich’s ataxia is a cardio- and neurodegenerative disease due to decreased expression of the mitochondrial protein, frataxin. This defect results in mitochondrial iron-overload, and in this review, we discuss the mechanisms that lead to this iron accumulation. Using a conditional knockout mouse model where frataxin is deleted in the heart, it has been shown that this mutation leads to transferrin receptor-1 upregulation, resulting in increased iron uptake from transferrin. There is also marked downregulation of ferritin that is required for iron storage and decreased expression of the iron exporter, ferroportin1, leading to decreased cellular iron efflux. The increased mitochondrial iron uptake is facilitated by upregulation of the mitochondrial iron transporter, mitoferrin2. This stimulation of iron uptake probably attempts to rescue the deficit in mitochondrial iron metabolism that is due to downregulation of mitochondrial iron utilization, namely, heme and iron–sulfur cluster (ISC) synthesis and also iron storage (mitochondrial ferritin). The resultant decrease in heme and ISC synthesis means heme and ISCs are not exiting the mitochondrion for cytosolic use. Hence, increased mitochondrial iron uptake coupled with decreased utilization and release leads to mitochondrial iron-loading. More generally, disturbance of mitochondrial iron utilization in other diseases probably also results in similar compensatory alterations.  相似文献   

3.
Heme, the major functional form of iron, is synthesized in the mitochondria. Although disturbed heme metabolism causes mitochondrial decay, oxidative stress, and iron accumulation, all of which are hallmarks of ageing, heme has been little studied in nutritional deficiency, in ageing, or age-related disorders such as Alzheimer's disease (AD). Biosynthesis of heme requires Vitamin B(6), riboflavin, biotin, pantothenic acid, and lipoic acid and the minerals zinc, iron, and copper, micronutrients are essential for the production of succinyl-CoA, the precursor for porphyrins, by the TCA (Krebs) cycle. Only a small fraction of the porphyrins synthesized from succinyl-CoA are converted to heme, the rest are excreted out of the body together with the degradation products of heme (e.g. bilirubin). Therefore, the heme biosynthetic pathway causes a net loss of succinyl-CoA from the TCA cycle. The mitochondrial pool of succinyl-CoA may limit heme biosynthesis in deficiencies for micronutrients (e.g. iron or biotin deficiency). Ageing and AD are also associated with hypometabolism, increase in heme oxygenase-1, loss of complex IV, and iron accumulation. Heme is a common denominator for all these changes, suggesting that heme metabolism maybe altered in age-related disorders. Heme can also be a prooxidant: it converts less reactive oxidants to highly reactive free radicals. Free heme has high affinity for different cell structures (protein, membranes, and DNA), triggering site-directed oxidative damage. This review discusses heme metabolism as related to metabolic changes seen in ageing and age-related disorders and highlights the possible role in iron deficiency.  相似文献   

4.
Iron is an essential metal not only in oxygen delivery, but also in cell proliferation and drug metabolism, while it is a very toxic metal producing reactive oxygen species(ROS). In order to avoid the toxicity and shortage of iron, the level of iron is strictly regulated in the body and cells. The central player regulating the amount of iron in the body is hepcidin. Hepcidin inhibits the release of iron from enterocytes and macrophages by accelerating the degradation of ferroportin, which is an exporter of iron. The amount of cellular iron is regulated by the IRE (iron responsive element) and IRP (iron regulatory protein) system. IRP1 and 2, whose activities depend on the concentration of cellular iron, bind to IRE, and regulate the translation of iron-related genes, which have IRE in 5' or 3'-UTR to balance iron uptake and utilization. Iron is utilized for the generation of heme and the iron-sulfur (Fe-S) cluster in mitochondoria. Mutations of genes involved in heme biosynthesis, iron-sulfur (Fe-S) cluster biogenesis, or Fe-S cluster transport cause an accumulation of iron in mitochondoria, leading to the onset of inherited sideroblastic anemia. The most common inherited sideroblastic anemia is X-linked sideroblastic anemia (XLSA) caused by mutations of the erythroid-specific delta-aminolevulinate synthase gene (ALAS2), which is the first enzyme involved in heme biosynthesis in erythroid cells. However, there are still significant numbers of cases with genetically undefined, inherited sideroblastic anemia. Molecular analysis of these cases will contribute to the understanding of mitochondrial iron metabolism.  相似文献   

5.
Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.  相似文献   

6.
We have studied the flexed-tail (f) mouse to gain insight into mammalian mitochondrial iron metabolism. Flexed-tail animals have axial skeletal abnormalities and a transient embryonic and neonatal anemia characterized by pathologic intramitochondrial iron deposits in erythrocytes. Mitochondrial iron accumulation is the hallmark of sideroblastic anemias, which typically result from defects in heme biosynthesis or other pathways that lead to abnormal erythroid mitochondrial iron utilization. To clone the f gene, we used positional cloning techniques, and identified a frameshift mutation in a mitochondrial transmembrane protein. The mutated gene, Sfxn1, is the prototype of a novel family of evolutionarily conserved proteins present in eukaryotes.  相似文献   

7.
Maintenance of proper "labile iron" levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess "labile iron" is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation-reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation.  相似文献   

8.
Highly active cardiomyocytes need iron for their metabolic activity. In physiological conditions, iron turnover is a delicate process which is dependent on global iron supply and local autonomous regulatory mechanisms. Though less is known about the autonomous regulatory mechanisms, data suggest that these mechanisms can preserve cellular iron turnover even in the presence of systemic iron disturbance. Therefore, activity of local iron protein machinery and its relationship with global iron metabolism is important to understand cardiac iron metabolism in physiological conditions and in cardiac disease. Our knowledge in this respect has helped in designing therapeutic strategies for different cardiac diseases. This review is a synthesis of our current knowledge concerning the regulation of cardiac iron metabolism. In addition, different models of cardiac iron dysmetabolism will be discussed through the examples of heart failure (cardiomyocyte iron deficiency), myocardial infarction (acute changes in cardiac iron turnover), doxorubicin‐induced cardiotoxicity (cardiomyocyte iron overload in mitochondria), thalassaemia (cardiomyocyte cytosolic and mitochondrial iron overload) and Friedreich ataxia (asymmetric cytosolic/mitochondrial cardiac iron dysmetabolism). Finally, future perspectives will be discussed in order to resolve actual gaps in knowledge, which should be helpful in finding new treatment possibilities in different cardiac diseases.  相似文献   

9.
Brain iron metabolism: neurobiology and neurochemistry   总被引:5,自引:0,他引:5  
New findings obtained during the past years, especially the discovery of mutations in the genes associated with brain iron metabolism, have provided key insights into the homeostatic mechanisms of brain iron metabolism and the pathological mechanisms responsible for neurodegenerative diseases. The accumulated evidence demonstrates that misregulation in brain iron metabolism is one of the initial causes for neuronal death in some neurodegenerative disorders. The errors in brain iron metabolism found in these disorders have a multifactorial pathogenesis, including genetic and nongenetic factors. The disturbances of iron metabolism might occur at multiple levels, including iron uptake and release, storage, intracellular metabolism and regulation. It is the increased brain iron that triggers a cascade of deleterious events, leading to neuronal death in these diseases. In the article, the recent advances in studies on neurochemistry and neuropathophysiology of brain iron metabolism were reviewed.  相似文献   

10.
11.
Protein aggregation is a shared feature of many human neurodegenerative diseases and appears to be an inevitable consequence of excessive accumulation of misfolded proteins. Recent studies suggest that accumulation of fibrillar alpha-synuclein aggregates is associated with Parkinson's disease and other Lewy body diseases. Furthermore, the missense mutations in alpha-synuclein that are responsible for some early-onset familial types of the disease promote the aggregation process of this protein. Therefore, the mechanism underlying the cellular alpha-synuclein aggregation is of great importance in understanding the pathogenic process of these diseases. This review summarizes recent advances in our understanding of the mechanisms underlying alpha-synuclein aggregation and how the mitochondrial dysfunction plays a role in this process. Protein misfolding and aggregation in vivo can be suppressed and promoted by several factors, such as molecular chaperones, protein degradation systems, and free radicals. Many of these factors are under the control of normal mitochondrial function, prompting the speculation that mitochondrial dysfunction might cause the accumulation of protein aggregates. Recent studies indeed show that mitochondrial defects can lead to the aggregation of alpha-synuclein. In addition, potentially toxic effects of alpha-synuclein have been linked to the aggregated forms rather than the monomers, both in vitro and in cultured cells. Therefore, it is postulated that aggregation of alpha-synuclein might be one of many possible links that connect mitochondrial dysfunction to neurodegeneration.  相似文献   

12.
Multiple lines of evidence indicate that oxidative stress is an integral component of the pathogenesis of Alzheimer disease (AD). The precipitating cause of such oxidative stress may be misregulated iron homeostasis because there are profound alterations in heme oxygenase-1 (HO-1), redox-active iron, and iron regulatory proteins. In this regard, HasA, a recently characterized bacterial protein involved in heme acquisition and iron metabolism, may also be important in the generation of reactive oxygen species (ROS) given its ability to bind heme and render iron available for free radical generation through the Fenton reaction. To study further the role of heme binding and iron metabolism in AD, we show an abnormal localization of anti-HasA to the neurofibrillary pathology of AD, but not in normal-appearing neurons in the brains of cases of AD or in age-matched controls. These results suggest the increased presence in AD of a HasA homologue or protein sharing a common epitope with HasA, which we term HasAh. We conclude that heme binding of HasAh is a potential source of free soluble iron and therefore toxic free radicals in AD and in aging. This furthers the evidence that redox-active iron and subsequent Fenton reaction generating reactive oxygen are critical factors in the pathogenesis of AD.  相似文献   

13.
14.
Mitochondria are involved in the development of organ failure in critical care diseases. However, the mechanisms underlying mitochondrial dysfunction are not clear yet. Inducible hemoxygenase (HO-1), a member of the heat shock protein family, is upregulated in critical care diseases and considered to confer cytoprotection against oxidative stress. However, one of the products of HO-1 is Fe2+ which multiplies the damaging potential of reactive oxygen species catalyzing Fenton reaction. The aim of this study was to clarify the relevance of free iron metabolism to the oxidative damage of the liver in endotoxic shock and its impact on mitochondrial function. Endotoxic shock in rats was induced by injection of lipopolysaccharide (LPS) at a dose of 8 mg/kg (i.v.). We observed that the pro-inflammatory cytokine TNF-alpha and the liver necrosis marker aspartate aminotransferase were increased in blood, confirming inflammatory response to LPS and damage to liver tissue, respectively. The levels of free iron in the liver were significantly increased at 4 and 8 h after onset of endotoxic shock, which did not coincide with the decrease of transferrin iron levels in the blood, but rather with expression of the inducible form of heme oxygenase (HO-1). The proteins important for sequestering free iron (ferritin) and the export of iron out of the cells (ferroportin) were downregulated facilitating the accumulation of free iron in cells. The temporarily increased concentration of free iron in the liver correlated with the temporary impairment of both mitochondrial function and tissue ATP levels. Addition of exogenous iron ions to mitochondria isolated from control animals resulted in an impairment of mitochondrial respiration similar to that observed in endotoxic shock in vivo. Our data suggest that free iron released by HO-1 causes mitochondrial dysfunction in pathological situations accompanied by endotoxic shock.  相似文献   

15.
Tissue and blood ferritins and isoferritins   总被引:1,自引:0,他引:1  
Ferritins which can store excess iron are localised principally in tissue. Ferritins have on apoprotein shell which is composed of 24 sub-units, from 2 types of sub-units: "H" (molecular weight about 21 000) and "L" (molecular weight about 19 000) that assemble in different proportions and give multiple forms. Protein pattern depends on tissue nature. Since 1972, radio-immunology assays have shown very low serum ferritin levels. There is a good correlation between these levels and the amount of storage iron in the body. However it was demonstrated that elevation of serum ferritin could also occur without iron metabolism trouble by various mechanisms.  相似文献   

16.
The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath.  相似文献   

17.
Iron is an essential nutrient virtually almost all organisms including human, but at the same time, it is toxic because its high reactivity to molecular oxygen generates free radicals. Therefore, iron metabolism is tightly regulated. Recently, knowledge of roles that iron plays in our body as well as regulatory mechanism of iron metabolism in human body has been drastically expanded. Here I describe recent advance in our understanding on the regulation of iron metabolism and discuss its relationship to various diseases.  相似文献   

18.
19.
20.
Virtually all bacterial pathogens require iron to infect vertebrates. The most abundant source of iron within vertebrates is in the form of heme as a cofactor of hemoproteins. Many bacterial pathogens have elegant systems dedicated to the acquisition of heme from host hemoproteins. Once internalized, heme is either degraded to release free iron or used intact as a cofactor in catalases, cytochromes, and other bacterial hemoproteins. Paradoxically, the high redox potential of heme makes it a liability, as heme is toxic at high concentrations. Although a variety of mechanisms have been proposed to explain heme toxicity, the mechanisms by which heme kills bacteria are not well understood. Nonetheless, bacteria employ various strategies to protect against and eliminate heme toxicity. Factors involved in heme acquisition and detoxification have been found to contribute to virulence, underscoring the physiological relevance of heme stress during pathogenesis. Herein we describe the current understanding of the mechanisms of heme toxicity and how bacterial pathogens overcome the heme paradox during infection.Iron is an essential cofactor for many enzymes found within all kingdoms of life. Bacterial pathogens are no exception to this rule, and therefore, they must acquire iron from their hosts in order to cause disease. Iron is a transition metal that can cycle between redox states, making it a valuable cofactor for biological processes. Ferric iron is water insoluble, and as such, it requires specialized proteins to facilitate its mobilization and to maintain intracellular reservoirs. In mammalian species, lactoferrin and transferrin transport iron, while ferritin stores iron. The most abundant form of iron in vertebrates, however, is bound within a porphyrin ring as ferriprotoporphyrin IX (heme). Heme solubilizes iron and enhances its catalytic ability by 5 to 10 orders of magnitude (14, 111). This catalytic activity is harnessed by hemoproteins involved in oxygenation reactions, oxidative stress responses, electron transport, oxygen transport, oxygen sensing, and oxygen storage. While heme is a necessary prosthetic group for many proteins, it also has the potential to cause toxicity at high concentrations. This property of heme requires that the intracellular pool of heme be tightly regulated.Intracellular heme concentrations within vertebrates are tightly controlled by balancing the rates of heme biosynthesis and catabolism (87). Free heme released into the plasma by the dissolution of hemoproteins from lysed erythrocytes is quickly scavenged by albumin, hemopexin, and the serum lipocalin α1-microglobulin (13, 23, 44, 75). Any hemoglobin released into the serum is tightly bound by haptoglobin and subsequently cleared by tissue macrophages (51). It is evident that the vital yet reactive nature of heme requires that its production, degradation, and availability be carefully controlled in metazoans. Meeting these demands reduces heme-mediated toxicity and minimizes surplus free heme. Most bacterial pathogens that infect vertebrate tissues have systems dedicated to the acquisition of heme for use as a nutrient iron source. However, the toxicity of heme presents a paradox for microorganisms that satisfy their nutrient iron requirement through heme acquisition. This heme paradox is resolved through tightly regulated systems dedicated to balancing the acquisition of heme with the prevention of heme-mediated toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号