首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic instability is observed in the majority of human tumors. Dysregulation of the mitotic spindle checkpoint is thought to be one of the mechanisms that facilitate aneuploidy in tumor cells. Mutations in the mitotic spindle checkpoint kinase BLUB1 cause a dominant negative disruption of the spindle, leading to chromosome instability in cancer cell lines. However, little is known about chromosome 2q14, the genomic region containing BUB1, in human tumors. The BUB1 locus was evaluated in 32 colorectal cancer (CRC) and 20 non-small cell lung cancer (NSCLC) primary tumors using a panel of seven microsatellite repeats for 2q, two CA repeats in BUB1, and gene mutation analysis. The 2q locus was allelically stable in NSCLC but relatively unstable in colorectal primary tumors (20 of 32 tumors, 62.5%). In addition, 14.5% of CRC patients displayed instability within BUB1. Previously described BUB1 mutations and polymorphisms were rare (< 1%) in the CRC or NSCLC tumors. Our data demonstrate 2q and BUB1 allelic instability in CRC and indicate that mutations in BUB1 are rare causes of chromosome instability in CRC or NSCLC. Additional investigations may shed light on the mechanistic impact of the mitotic spindle checkpoint pathway in colorectal tumor initiation and progression.  相似文献   

2.
Tsuiki H  Nitta M  Tada M  Inagaki M  Ushio Y  Saya H 《Oncogene》2001,20(4):420-429
Checkpoint mechanism plays a crucial role in ensuring genomic integrity during cell cycle. Loss of checkpoint function is known to induce genomic instability and to alter ploidy of dividing cells. In this study, we examined mechanisms of hyperploid formation in glioma cells by treatment with nocodazole, which activates spindle assembly checkpoint by inhibiting microtubule polymerization. By prolonged nocodazole treatment, U251MG human glioma cell, which has a p53 mutation, underwent transient arrest at mitosis, and subsequently exited from mitotic arrest (termed 'mitotic slippage') followed by DNA replication without cytokinesis, resulting in hyperploid formation. Additionally, the heterogeneity in the number of centrosomes per cell increased during the hyperploid formation, suggesting that these hyperploid cells have genomic instability. By employing LN382 glioma cell that has a temperature-sensitive p53 mutation, we found that the activation of p53 prevents hyperploid formation after the prolonged nocodazole treatment. Furthermore, staurosporine, an inhibitor for a broad range of serine/threonine kinases including cdc2, was found to enhance hyperploid formation in U251MG cells by accelerating the induction of mitotic slippage. Interestingly, inhibitors specific for cdc2 kinase prevented the G2 to M transition but did not accelerate mitotic slippage, suggesting that staurosporine-sensitive kinases other than cdc2 are required for maintenance of spindle assembly checkpoint. Moreover, the enhancement of hyperploid formation by staurosporine was also blocked by p53-dependent G1 checkpoint. These results suggest that abrogation of G1 checkpoint is a critical factor for formation of hyperploid cells after the mitotic slippage.  相似文献   

3.
4.
CHFR is an E3 ubiquitin ligase and an early mitotic checkpoint protein implicated in many cancers and in the maintenance of genomic stability. To analyze the role of CHFR in genomic stability, by siRNA, we decreased its expression in genomically stable MCF10A cells. Lowered CHFR expression quickly led to increased aneuploidy due to many mitotic defects. First, we confirmed that CHFR interacts with the mitotic kinase Aurora A to regulate its expression. Furthermore, we found that decreased CHFR led to disorganized multipolar mitotic spindles. This was supported by the finding that CHFR interacts with α-tubulin and can regulate its ubiquitination in response to nocodazole and the amount of acetylated α-tubulin, a component of the mitotic spindle. Finally, we found a novel CHFR interacting protein, the spindle checkpoint protein MAD2. Decreased CHFR expression resulted in the mislocalization of both MAD2 and BUBR1 during mitosis and impaired MAD2/CDC20 complex formation. Further evidence of a compromised spindle checkpoint was the presence of misaligned metaphase chromosomes, lagging anaphase chromosomes, and defective cytokinesis in CHFR knockdown cells. Importantly, our results suggest a novel role for CHFR regulating chromosome segregation where decreased expression, as seen in cancer cells, contributes to genomic instability by impairing the spindle assembly checkpoint.  相似文献   

5.
To-Ho KW  Cheung HW  Ling MT  Wong YC  Wang X 《Oncogene》2008,27(3):347-357
The mitotic arrest deficient 2 (MAD2) is suggested to play a key role in a functional mitotic checkpoint because of its inhibitory effect on anaphase-promoting complex/cyclosome (APC/C) during mitosis. The binding of MAD2 to mitotic checkpoint regulators MAD1 and Cdc20 is thought to be crucial for its function and loss of which leads to functional inactivation of the MAD2 protein. However, little is known about the biological significance of this MAD2 mutant in human cells. In this study, we stably transfected a C-terminal-deleted MAD2 gene (MAD2DeltaC) into a human prostate epithelial cell line, Hpr-1 and studied its effect on chromosomal instability, cell proliferation, mitotic checkpoint control and soft agar colony-forming ability. We found that MAD2DeltaC was able to induce aneuploidy through promoting chromosomal duplication, which was a result of an impaired mitotic checkpoint and cytokinesis, suggesting a crucial role of MAD2-mediated mitotic checkpoint in chromosome stability in human cells. In addition, the MAD2DeltaC-transfected cells displayed anchorage-independent growth in soft agar after challenged by 7,12-dimethylbenz[A]anthracene (DMBA), demonstrating a cancer-promoting effect of a defective mitotic checkpoint in human cells. Furthermore, the DMBA-induced transformation was accompanied by a complete loss of DNA damage-induced p53 response and activation of the MAPK pathway in MAD2DeltaC cells. These results indicate that a defective mitotic checkpoint alone is not a direct cause of tumorigenesis, but it may predispose human cells to carcinogen-induced malignant transformation. The evidence presented here provides a link between MAD2 inactivation and malignant transformation of epithelial cells.  相似文献   

6.
7.
Factors that determine the biological and clinical behavior of prostate cancer are largely unknown. Prostate tumor progression is characterized by changes in cellular architecture, glandular organization, and genomic composition. These features are reflected in the Gleason grade of the tumor and in the development of aneuploidy. Cellular architecture and genomic stability are controlled in part by centrosomes, organelles that organize microtubule arrays including mitotic spindles. Here we demonstrate that centrosomes are structurally and numerically abnormal in the majority of prostate carcinomas. Centrosome abnormalities increase with increasing Gleason grade and with increasing levels of genomic instability. Selective induction of centrosome abnormalities by elevating levels of the centrosome protein pericentrin in prostate epithelial cell lines reproduces many of the phenotypic characteristics of high-grade prostate carcinoma. Cells that transiently or permanently express pericentrin exhibit severe centrosome and spindle defects, cellular disorganization, genomic instability, and enhanced growth in soft agar. On the basis of these observations, we propose a model in which centrosome dysfunction contributes to the progressive loss of cellular and glandular architecture and increasing genomic instability that accompany prostate cancer progression, dissemination, and lethality.  相似文献   

8.
Jiang Y  Zhang Y  Lees E  Seghezzi W 《Oncogene》2003,22(51):8293-8301
AuroraA, a mitotic kinase, is reported to be amplified and overexpressed in a variety of human tumors. Active mutants of AuroraA can transform mouse fibroblasts and form tumors in nude mice. However, the mechanism behind this oncogenic potential remains elusive. In this study, we investigated the consequences of AuroraA overexpression and showed that increased AuroraA levels compromise the mitotic spindle checkpoint triggered by nocodazole, a microtubule polymerization inhibitor. This is accomplished by disrupting the proper assembly of the mitotic checkpoint complex at the level of the Cdc20-BubR1 interaction. As a result, the spindle checkpoint complex fails to form and cells progress through mitosis without proper arrest in response to nocodazole. This ability to override the mitotic spindle checkpoint was found to be independent of AuroraA kinase activity. We conclude that maintenance of a functional balance between AuroraA and mitotic checkpoint proteins is essential for the proper progression through mitosis. This study therefore offers a possible explanation of how deregulation of AuroraA can contribute to genetic instability and tumorigenesis.  相似文献   

9.
The serine-threonine kinase gene AURORA-A is commonly amplified in epithelial malignancies. Here we show that elevated Aurora-A expression at levels that reflect cancer-associated gene amplification overrides the checkpoint mechanism that monitors mitotic spindle assembly, inducing resistance to the chemotherapeutic agent paclitaxel (Taxol). Cells overexpressing Aurora-A inappropriately enter anaphase despite defective spindle formation, and the persistence of Mad2 at the kinetochores, marking continued activation of the spindle assembly checkpoint. Mitosis is subsequently arrested by failure to complete cytokinesis, resulting in multinucleation. This abnormality is relieved by an inhibitory mutant of BUB1, linking the mitotic abnormalities provoked by Aurora-A overexpression to spindle checkpoint activity. Consistent with this conclusion, elevated Aurora-A expression causes resistance to apoptosis induced by Taxol in a human cancer cell line.  相似文献   

10.
The mitotic checkpoint ensures the fidelity of chromosomal segregation by delaying the onset of anaphase until all chromosomes are aligned on the metaphase plate. After sustained mitotic arrest, however, cells eventually exit mitosis without the mitotic checkpoint being silenced. These cells then undergo apoptosis, an event that is important for prevention of the chromosomal instability observed in human cancers. An interesting question is to establish the biochemical link between the mitotic checkpoint and the subsequent apoptotic cell death. Here, we found that following prolonged spindle damage, the mitotic checkpoint kinases such as Bub1 and BubR1 were cleaved through a mechanism sensitive to caspases inhibitor. Interestingly, the expression of these mutants resistant to caspases-dependent cleavage led to increased apoptosis after sustained mitotic arrest, and a correspondingly more efficient elimination of the polyploid population than that seen in cells expressing wild-type proteins. These findings provide the novel biochemical properties of mitotic checkpoint proteins through its cleavage by caspases-dependent manner.  相似文献   

11.
A CERTain role for ceramide in taxane-induced cell death   总被引:1,自引:0,他引:1  
Kolesnick R  Altieri D  Fuks Z 《Cancer cell》2007,11(6):473-475
An unexpected benefit of functional genomic screens is that at times they answer questions that they were not designed to ask. A siRNA screen reported by Swanton et al. in this issue of Cancer Cell reveals that silencing of spindle assembly checkpoint genes facilitates mitotic slippage, resulting in escape from taxane-induced cell death, aneuploidy, and chromosomal instability, hallmarks of taxane resistance. Unexpectedly, the screen disclosed that the sphingolipid ceramide is a key regulator of the taxane-mediated spindle assembly checkpoint and taxane-induced cell death. Ceramide metabolism thus serves as a legitimate target for modulation of taxane effect on tumors.  相似文献   

12.
Roles of BCCIP in chromosome stability and cytokinesis   总被引:1,自引:0,他引:1  
Meng X  Fan J  Shen Z 《Oncogene》2007,26(43):6253-6260
The BRCA2 gene is involved in recombinational DNA repair and cytokinesis. BRCA2 defects are associated with chromosomal abnormalities, which is a hallmark of genomic instability that contributes to tumorigenesis. Here, we show that downregulation of a BRCA2 interacting protein (BCCIP) in HT1080 cells leads to chromosomal polyploidization, centrosome amplification and abnormal mitotic spindle formation. The BCCIP knockdown cells can enter mitosis and retain spindle checkpoint, but fail to complete cytokinesis. Our data suggest an essential role of BCCIP in the maintenance of genomic integrity.  相似文献   

13.
14.
Ha GH  Baek KH  Kim HS  Jeong SJ  Kim CM  McKeon F  Lee CW 《Cancer research》2007,67(15):7155-7164
The mitotic spindle checkpoint plays a crucial role in regulating accurate chromosome segregation and preventing the adaptation of multiploid progeny cells. Recent reports have indicated that the induction of p53 by mitotic checkpoint activation is essential for protecting cells from abnormal chromosome ploidization caused by mitotic failure. However, although studies have shown that p53 deficiencies arrest mitosis, compromise apoptosis, and may cause profound aneuploidy, the molecular mechanisms leading to p53 induction following mitotic checkpoint activation remain unknown. Here, we show that the BubR1 mitotic checkpoint kinase interacts with p53 both in vitro and in vivo, with higher levels of interaction in mitotic cells. This interaction contributes to p53 phosphorylation. Silencing of BubR1 expression reduces the phosphorylation and stability of p53, whereas exogenous introduction of BubR1 proteins into BubR1-depleted cells recovers p53 stability. In addition, inhibition of BubR1 expression in the presence of a microtubule inhibitor accelerates chromosomal instability and polyploidy in p53-null cells. These results collectively suggest that p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation.  相似文献   

15.
Tumor cell proliferation is frequently associated with genetic or epigenetic alterations in key regulators of the cell cycle. Most known oncogenes and tumor suppressors target entry into the cell cycle and control the G(1)/S transition. However, tumor-associated alterations in spindle formation or chromosome segregation are also frequent and may result in chromosomal instability. In fact, a few centrosomal or mitotic proteins such as aurora A, polo-like kinase 1 and PTTG1 (securin) have been reported to act as oncogenes. Some spindle checkpoint regulators such as the BUB kinases or MAD2 protect cells from aberrant chromosome segregation and may therefore function as suppressors of malignant transformation. However, few cancer-associated mutations in these or other mitotic regulators have been described thus far and many of these molecules do not fit into the classical definition of 'oncogenes' or 'tumor suppressor genes'. In some cases, both over-expression and decreased expression of these genes result in mitotic arrest. Moreover, some mitotic regulators such as MAD2 are either up- or down-regulated depending on the tumor types and, in both cases, these alterations result in chromosomal imbalances and tumor development. Minor changes in protein levels that do not compromise cell viability might therefore be sufficient to dysregulate the mitotic cycle and induce genomic instability. Despite the limited knowledge on the molecular basis of these processes, the clinical success of mitotic poisons such as taxanes reinforces the interest in these molecules, their involvement in human cancer and the therapeutic opportunities to modulate their function in cancer treatment.  相似文献   

16.
Defects in chromosomes or mitotic spindles activate the spindle checkpoint, resulting in cell cycle arrest at prometaphase. The prolonged activation of spindle checkpoint generally leads to mitotic exit without segregation after a transient mitotic arrest and the consequent formation of tetraploid G(1) cells. These tetraploid cells are usually blocked to enter the subsequent S phase by the activation of p53/pRb pathway, which is referred to as the G(1) tetraploidy checkpoint. A human homologue of the Drosophila warts tumor suppressor, WARTS, is an evolutionarily conserved serine-threonine kinase and implicated in development of human tumors. We previously showed that WARTS plays a crucial role in controlling mitotic progression by forming a regulatory complex with zyxin, a regulator of actin filament assembly, on mitotic apparatus. However, when WARTS is activated during cell cycle and how the loss of WARTS function leads to tumorigenesis have not been elucidated. Here we show that WARTS is activated during mitosis in mammalian cells, and that overexpression of a kinase-inactive WARTS in Rat1 fibroblasts significantly induced mitotic delay. This delay resulted from prolonged activation of the spindle assembly checkpoint and was frequently followed by mitotic slippage and the development of tetraploidy. The resulting tetraploid cells then abrogated the G(1) tetraploidy checkpoint and entered S phase to achieve a DNA content of 8N. This impairment of G(1) tetraploidy checkpoint was caused as a consequence of failure to induce p53 expression by expressing a kinase-inactive WARTS. WARTS thus plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G(1) tetraploidy checkpoint.  相似文献   

17.
Vogel C  Kienitz A  Hofmann I  Müller R  Bastians H 《Oncogene》2004,23(41):6845-6853
Treatment of cells with microtubule inhibitors results in activation of the mitotic spindle assembly checkpoint, leading to mitotic arrest before anaphase. Upon prolonged treatment, however, cells can adapt and exit mitosis aberrantly, resulting in the occurrence of tetraploid cells in G1. Those cells subsequently arrest in postmitotic G1 due to the activation of a p53-dependent G1 checkpoint. Failure of the G1 checkpoint leads to endoreduplication and further polyploidization. Using HCT116 and isogenic p53-deficient or spindle checkpoint compromised derivatives, we show here that not only p53 but also a functional spindle assembly checkpoint is required for postmitotic G1 checkpoint function. During transient mitotic arrest, p53 stabilization and activation is triggered by a pathway independent of ATM/ATR, Chk1 and Chk2. We further show that a prolonged spindle checkpoint-mediated mitotic arrest is required for proper postmitotic G1 checkpoint function. In addition, we demonstrate that polyploid cells are inhibited to re-enter mitosis by an additional checkpoint acting in G2. Thus, during a normal cell cycle, polyploidization and subsequent aneuploidization is prevented by the function of the mitotic spindle checkpoint, a p53-dependent G1 checkpoint and an additional G2 checkpoint.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号