首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of parathyroid hormone/parathyroid hormone-related protein (PTH/PTHrP) on late events in chondrocyte differentiation were investigated by a dual in vitro model where conditions of suspension versus adhesion culturing are permissive either for apoptosis or for the further differentiation of hypertrophic chondrocytes to osteoblast- like cells. Chick embryo hypertrophic chondrocytes maintained in suspension synthesized type II and type X collagen and organized their extracellular matrix, forming a tissue highly reminiscent of true cartilage, which eventually mineralized. The formation of mineralized cartilage was associated with the expression of alkaline phosphatase (ALP), arrest of cell growth, and apoptosis, as observed in growth plates in vivo. In this system, PTH/PTHrP was found to repress type X collagen synthesis, ALP expression, and cartilage matrix mineralization. Cell proliferation was resumed, whereas apoptosis was blocked. Hypertrophic chondrocytes cultured in adherent conditions in the presence of retinoic acid underwent further differentiation to osteoblast-like cells (i.e., they resumed cell proliferation, switched to type I collagen synthesis, and produced a mineralizing bone-like matrix). In this system, PTH addition to culture completely inhibited the expression of ALP and matrix mineralization, whereas cell proliferation and expression of type I collagen were not affected. These data indicate that PTH/PTHrP inhibit both the mineralization of a cartilage-like matrix and apoptosis (mimicked in the suspension culture) and the production of a mineralizing bone-like matrix, characterizing further differentiation of hypertrophic chondrocytes to osteoblasts like cells (mimicked in adhesion culture). Treatment of chondrocyte cultures with PTH/PTHrP reverts cultured cells in states of differentiation earlier than hypertrophic chondrocytes (suspension), or earlier than mineralizing osteoblast-like cells (adhesion). However, withdrawal of hormonal stimulation redirects cells toward their distinct, microenvironment-dependent, terminal differentiation and fate.  相似文献   

3.
The fibroblast growth factor receptors (FGFRs), members of the tyrosine-kinase receptor family, are known to play a crucial role in the growth and development of cartilaginous tissues. The mandibular condylar cartilage has been suggested to have a characteristic growth pattern compared with the tibial growth plate cartilage, e.g., cell alignment, mode of proliferation and differentiation, and response to humoral and mechanical factors. To examine the mRNA expression and localization of fibroblast growth factor receptor (FGFR)-1, -2, and -3 in the condylar and tibial growth plate cartilages, reversed transcribed polymerase chain reaction (RT-PCR) assay and immunohistochemistry were carried out using growing rats. The enzymatically isolated rat condylar and tibial chondrocytes expressed mRNA of aggrecan and type II collagen, which are together known as the major cartilaginous extracellular matrices. Both types of cells expressed mRNA of FGFR-1, -2, and -3 by RT-PCR. In the neonatal rat, immunolocalization of FGFR-1, -2, and -3 was found in the middle of the condylar cartilage, mainly in the hypertrophic zone of the tibial cartilage. At 3 weeks old, the three FGFRs were broadly observed in both cartilages. At 8 weeks old, localization of FGFR-3 was absent in the hypertrophic cell layer of the condyle, whereas it was still broadly observed in the tibial growth plate cartilage. In the same stage, FGFR-1 and FGFR-2 showed similar localization in both cartilages to that at 3 weeks of age. All these observations suggest that FGFRs play an important role in the differential growth pattern of the condylar cartilage. Received: Jan. 14, 1999 / Accepted: March 3, 1999  相似文献   

4.
It is well established that parathyroid hormone-related protein (PTHrP) regulates chondrocytic differentiation and endochondral bone formation. Besides its effect on cartilage, PTHrP and its major receptor (type I PTH/PTHrP receptor) have been found in osteoblasts, suggesting an important role of PTHrP during the process of intramembranous bone formation. To clarify this issue, we examined intramembranous ossification in homozygous PTHrP-knockout mice histologically. We also analyzed phenotypic markers of osteoblasts and osteoclasts in vitro and in vivo. A well-organized branching and anastomosing pattern was seen in the wild-type mice. In contrast, marked disorganization of the branching pattern of bone trabeculae and irregularly aligned osteoblasts were recognized in the mandible and in the bone collar of the femur of neonatal homozygous mutant mice. In situ hybridization showed that most of the osteoblasts along the bone surfaces of the wild-type mice and some of the irregularly aligned osteoblastic cells in the homozygous mice expressed osteocalcin. Alkaline phosphatase (ALP) activity and expression of osteopontin messenger RNA (mRNA) in primary osteoblastic cells did not show significant differences between cultures derived from the mixture of heterozygous mutant and wild-type mice (+/? mice) and those from homozygous mutant mice. However, both mRNA and protein levels of osteocalcin in the osteoblastic cells of homozygous mutant mice were lower than those of +/? mice, and exogenous PTHrP treatment corrected this suppression. Immunohistochemical localization of characteristic markers of osteoclasts and ruffled border formation did not differ between genotypes. Cocultures of calvarial osteoblastic cells and spleen cells of homozygous mutant mice generated an equivalent number of tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear and multinucleated cells and of pit formation to that of +/? mice, suggesting that osteoclast differentiation is not impaired in the homozygous mutant mice. These results suggest that PTHrP is required not only for the regulation of cartilage formation but also for the normal intramembranous bone development.  相似文献   

5.
Connective tissue growth factor (CTGF) has been identified as a secretory protein encoded by an immediate early gene and is a member of the CCN family. In vitro CTGF directly regulates the proliferation and differentiation of chondrocytes; however, a previous study showed that it was localized only in the hypertrophic chondrocytes in the costal cartilages of E 18 mouse embryos. We described the expression of CTGF mRNA and protein in chondrocytes of different types of cartilages, including femoral growth plate cartilage, costal cartilage, femoral articular cartilage, mandibular condylar cartilage, and cartilage formed during the healing of mandibular ramus fractures revealed by in situ hybridization and immunohistochemistry. To characterize the CTGF-expressing cells, we also analyzed the distribution of the type I, type II, and type X collagen mRNA expression. Among these different types of cartilages we found distinct patterns of CTGF mRNA and protein expression. Growth plate cartilage and the costal cartilage showed localization of CTGF mRNA and protein in the hypertrophic chondrocytes that expressed type X collagen mRNA with less expression in proliferating chondrocytes that expressed type II collagen mRNA, whereas it was also expressed in the proliferating chondrocytes that expressed type I collagen mRNA in the condylar cartilage, the articular cartilage, and the cartilage appearing during fracture healing. In contrast, the growth plate cartilages or the costal cartilages were negative for type I collagen and showed sparse expression of CTGF mRNA in the proliferating chondrocytes. We found for the first time that CTGF mRNA could be differentially expressed in five different types of cartilage associated with those expressing type I collagen. Moreover, the spatial distribution of CTGF mRNA in the cartilages with type I collagen mRNA suggested its roles in the early differentiation, as well as in the proliferation and the terminal differentiation, of those cartilages.  相似文献   

6.
7.
The effect of aging on type I, II, and X collagen in the mandibular condyle was histologically and immunohistochemically assessed in 1−, 4−, 9−, and 16-month-old rats. Hypertrophic chondrocytes, observed in the 4-month-old rat, were absent in the 9-month-old. In 9- and 16-month-old rats, a mineralizing front ran parallel to the surface of the condyle, and the calcified cartilage was thicker than in the younger rats. Type I collagen was observed from the fibrous layer to the upper maturative cell layer in the 1- and 4-month-old rats. In the 9-month-old, the type I collagen-positive area extended to the whole cartilaginous region. In the 16-month-old, type I collagen took on an archlike configuration around the lacunae. Intense type II collagen reactivity in the maturative and hypertrophic cell layers of the 1-month-old rat was only slightly changed in the 4-month-old. In the 9-month-old rat, immunoreaction was detected from the proliferative cell layer; this extended to the whole cartilage in the 16-month-old. Type X collagen was localized in the hypertrophic cell layer in the 1-month-old and had expanded over the maturative cell layer in the 4-month-old rat. It was detected beneath the proliferative cell layer in the 16-month-old. Type X collagen was always observed in the area immediately above the mineralizing front of the cartilage matrix. Thus, our study indicated that mandibular condylar cartilage becomes fibrocartilage-like tissue with advancing age and that type X collagen may play a pivotal role in the progression of the mineralized front.  相似文献   

8.
The zone of progenitor cells of mandibular condyles of neonatal mice was kept in an organ culture system for up to 8 days. Qualitative and quantitative determinations indicated a pronounced proliferative activity during the initial phases of the culture followed by a differentiation phase and the acquisition of typical hyaline cartilage. The mature hypertrophic chondrocytes were found to be surrounded by cartilage-specific macromolecules such as type II collagen, cartilage proteoglycans, and cartilage anchorin. The extracellular mineralization proceeded along matrix vesicles as is usually noted in vivo. A unique finding in this study was the observation that explants comprising cartilage progenitor cells and their adjacent extracellular matrix succeeded in repairing the damaged condylar in vitro.  相似文献   

9.
G(s)alpha is a ubiquitously expressed G protein alpha-subunit that couples receptors to adenylyl cyclase. Mice with chondrocyte-specific ablation of the G(s)alpha gene had severe epiphyseal and growth plate abnormalities and ectopic cartilage formation within the metaphyseal region of the tibia. These results show that G(s)alpha negatively regulates chondrocyte differentiation and is the critical signaling mediator of the PTH/PTH-rP receptor in growth plate chondrocytes. INTRODUCTION: G(s)alpha is a ubiquitously expressed G protein alpha-subunit that mediates signaling through G protein-coupled receptors to activate the cAMP/protein kinase A signaling pathway. Although studies suggest an important role for G(s)alpha in regulating growth plate development, direct in vivo results examining this role are lacking. MATERIALS AND METHODS: The G(s)alpha gene was ablated in murine cartilage by mating mice with loxP sites surrounding the G(s)alpha promoter and first exon with collagen 2a1 promoter-Cre recombinase transgenic mice. Skeletal tissues were studied by gross and microscopic pathology, and gene expression was determined by in situ hybridization. RESULTS AND CONCLUSIONS: Mice with complete chondrocyte-specific G(s)alpha deficiency (homozygotes) died within minutes after birth and had severe epiphyseal and growth plate defects with shortening of the proliferative zone and accelerated hypertrophic differentiation of growth plate chondrocytes, a phenotype similar to that of PTH/PTH-related peptide (PTHrP) receptor knockout mice. Indian hedgehog and PTH/PTHrP receptor expression in prehypertrophic chondrocytes was unaffected in mutant mice. PTHrP expression in periarticular cartilage was increased in the mutant mice, probably because of the closer proximity of Ihh-secreting chondrocytes to the periarticular zone. In addition, these mice developed ectopic cartilage at the anterior side of the metaphyseal region in the tibia. Mice with partial G(s)alpha deficiency (heterozygotes) exhibited no phenotype. These results show that G(s)alpha negatively regulates chondrocyte differentiation and is the critical signaling mediator of the PTH/PTHrP receptor in epiphyseal and growth plate chondrocytes.  相似文献   

10.
Proteoglycans are suggested to regulate cell adhesion, differentiation and mineralization of hard tissues. In vitro studies have shown that many humoral and local factors regulate proteoglycan synthesis. Among them, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) have potent stimulating effects on proteoglycan synthesis. However, the exact role of PTHrP on the biosynthesis and metabolism of proteoglycans during skeletal development is not clear. To clarify this point, we examined bony and cartilaginous explants of newborn mice with disrupted PTHrP alleles. Ribs of homozygous PTHrP-knockout mice and wild-type littermates were dissected into bony and cartilaginous regions and metabolically labeled with [35S]sulfate in culture. Radiolabeled proteoglycans were analyzed by column chromatography. The elution profiles of [35S]-labeled proteoglycan from cartilaginous explants did not differ between homozygous PTHrP-knockout mice and wild-type littermates. However, the amount of labeled proteoglycan in homozygous PTHrP-knockout mice was only 4%–5% that of wild-type littermates. In contrast with cartilaginous explants, the amount of labeled proteoglycans in bony explants did not differ between the two genotypes. Interestingly, besides the common major peak (Kd = 0.10–0.16) observed in the bony explants of both genotypes, a minor peak (Kd = 0.42) was specifically present in homozygous PTHrP-knockout mice. This minor peak was earlier than that of free glycosaminoglycan (GAG) chains, suggesting that the core protein, but not GAG chain, was cleaved in the bony explants of homozygous PTHrP. These findings demonstrate a crucial and nonredundant role of PTHrP in the regulation of proteoglycan synthesis and metabolism during skeletal development. Received: February 21, 2000 / Accepted: June 16, 2000  相似文献   

11.
Growth plates of p57-null mice exhibit several abnormalities, including loss of collagen type X (CollX) expression. The phenotypic consequences of p57 expression were assessed in an in vitro model of hypertrophic differentiation. Adenoviral p57 expression was not sufficient for CollX expression but did augment induction of CollX by BMP-2. INTRODUCTION: During hypertrophic differentiation, chondrocytes pass from an actively proliferative state to a postmitotic, hypertrophic phenotype. The induction of growth arrest is a central feature of this phenotypic transition. Mice lacking the cyclin dependent-kinase inhibitor p57Kip2 exhibit several developmental abnormalities including chondrodysplasia. Although growth plate chondrocytes in p57-null mice undergo growth arrest, they do not express collagen type X, a specific marker of the hypertrophic phenotype. This study was carried out to investigate the link between p57 expression and the induction of collagen type X in chondrocytes and to determine whether p57 overexpression is sufficient for the induction of hypertrophic differentiation. MATERIALS AND METHODS: Neonatal rat epiphyseal or growth plate chondrocytes were maintained in an aggregate culture model, in defined, serum-free medium. Protein and mRNA levels were monitored by Western and Northern blot analyses, respectively. Proliferative activity was assessed by fluorescent measurement of total DNA and by 3H-thymidine incorporation rates. An adenoviral vector was used to assess the phenotypic consequences of p57 expression. RESULTS AND CONCLUSIONS: During in vitro hypertrophic differentiation, levels of p57 mRNA and protein were constant despite changes in chondrocyte proliferative activity and the induction of hypertrophic-specific genes in response to bone morphogenetic protein (BMP)-2. Adenoviral p57 overexpression induced growth arrest in prehypertrophic epiphyseal chondrocytes in a dose-dependent manner but was not sufficient for the induction of collagen type X, either alone or when coexpressed with the related CDKI p21Cip1. Similar results were obtained with more mature tibial growth plate chondrocytes. p57 overexpression did augment collagen type X induction by BMP-2. These data indicate that p57-mediated growth arrest is not sufficient for expression of the hypertrophic phenotype, but rather it occurs in parallel with other aspects of the differentiation pathway. Our findings also suggest a contributing role for p57 in the regulation of collagen type X expression in differentiating chondrocytes.  相似文献   

12.
During endochondral ossification, proliferative activity of chondrocytes is arrested and the cells undergo terminal hypertrophic differentiation. We examined the expression of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1 in permanent cartilage (xyphoid and articular cartilage) and in cartilage undergoing endochondral ossification (growth plate, epiphyseal ossification centers, and costochondral junctions) to determine if p21 is up-regulated in chondrocytes during hypertrophic differentiation. Northern blot analyses demonstrated expression of p21 in chondrocytes undergoing endochondral ossification and from sites of permanent cartilage. Quantitative analyses of Northern data showed an association between expression of the hypertrophic-specific marker, collagen type X, and the level of 21 expression. In situ hybridization of rodent femoropatellar joints and costochondral junctions localized p21 mRNA to chondrocytes within both the proliferative and hypertrophic zones of the growth plates, in chondrocytes involved in formation of the epiphyseal ossification centers, and in articular chondrocytes. Immunohistochemical analyses of p21 expression in the same tissues demonstrated comparatively higher levels of p21 protein in postmitotic chondrocytes. These data suggest that p21 is active in cell cycle regulation in chondrocytes, and that increased p21 expression is associated with hypertrophic differentiation. Received: 11 October 1996 / Accepted: 23 April 1997  相似文献   

13.
Leptin has been suggested to mediate a variety of actions, including bone development, via its ubiquitously expressed receptor (Ob-Rb). In this study, we investigated the role of leptin in endochondral ossification at the growth plate. The growth plates of wild-type and ob/ob mice were analyzed. Effects of leptin on chondrocyte gene expression, cell cycle, apoptosis and matrix mineralization were assessed using primary chondrocyte culture and the ATDC5 cell differentiation culture system. Immunohistochemistry and in situ hybridization showed that leptin was localized in prehypertrophic chondrocytes in normal mice and that Ob-Rb was localized in hypertrophic chondrocytes in normal and ob/ob mice. Growth plates of ob/ob mice were more fragile than those of wild-type mice in a mechanical test and were broken easily at the chondro-osseous junction. The growth plates of ob/ob mice showed disturbed columnar structure, decreased type X collagen expression, less organized collagen fibril arrangement, increased apoptosis and premature mineralization. Leptin administration in ob/ob mice led to an increase in femoral and humeral lengths and decrease in the proportional length of the calcified hypertrophic zone to the whole hypertrophic zone. In primary chondrocyte culture, the matrix mineralization in ob/ob chondrocytes was stronger than that of wild-type mice; this mineralization in both types of mice was abolished by the addition of exogenous leptin (10 ng/ml). During ATDC5 cell differentiation culture, exogenous leptin at a concentration of 1-10 ng/ml (equivalent to the normal serum concentration of leptin) altered type X collagen mRNA expression and suppressed apoptosis, cell growth and matrix calcification. In conclusion, we demonstrated that leptin modulates several events associated with terminal differentiation of chondrocytes. Our finding that the growth plates of ob/ob mice were fragile implies a disturbance in the differentiation/maturation process of growth plates due to depletion of leptin signaling in ob/ob mice. These findings suggest that peripheral leptin signaling plays an essential role in endochondral ossification at the growth plate.  相似文献   

14.
It is essential for terminal chondrocytes to die before the conversion of calcified cartilage to bone. We have previously demonstrated that apoptosis occurred in the terminal hypertrophic chondrocyte of the growth plate. However, the essential mechanism by which the differentiation of chondrocytes is regulated has not yet been characterized. The purpose of this study was to investigate the mechanism for regulating chondrocyte differentiation. We focused on PTHrP and p21 which regulated the differentiation of chondrocytes and investigated how these factors interacted with each other in chondrocyte differentiation in the growth plate. PTHrP was strongly positive on immunostaining at the interface between the proliferating and the upper zone of the hypertrophic chondrocytes, whereas p21 was negative. On the other hand, p21 was positive in the lower zone of hypertrophic chondrocytes. Furthermore, PTHrP up-regulated the cell proliferation and down-regulated the expression of the p21 messengers in SW-1353 chondrosarcoma cells. These findings indicated that PTHrP might be a negative regulator for p21 in the differentiation of chondrocytes. Received: 1 March 2000 / Accepted: 25 May 2000 / Online publication: 2 November 2000  相似文献   

15.
Interaction of chondrocytes with the surrounding matrix significantly influences differentiation and growth. These processes involve cell surface proteins, particularly integrins. The aim of this study was to compare the expression of integrins (alpha1, alpha2, alpha3, alpha5, alpha6, alphav, beta1, beta3, and beta5 subunits) together with matching binding proteins in human childhood and adolescent growth plate cartilage using immunohistochemistry. Integrin beta1 was detected in all chondrocytes of the growth plate cartilage, beta3 only in osteoclasts of the opening zone, and beta5 in hypertrophic chondrocytes and osteoblasts. Integrin alpha1, alpha2, and alpha5 subunits were expressed by chondrocytes in the proliferative and hypertrophic zone as well as in osteoblasts and osteoclasts. Integrin av and alpha6 subunits were present in chondrocytes of all zones, alpha3 only in osteoclasts. Collagen type II and fibronectin were seen throughout the growth plate, collagen type X in the hypertrophic zone, collagen type I in the ossifying trabecules. Laminin was expressed by chondrocytes in the resting zone and more weakly in the proliferative zone, collagen VI was present in the pericellular and interterritorial matrix in all zones of the growth plate. These results differ from previous reports on the distribution of integrins in the fetal growth plate. However, there was no difference in integrin expression in children before and during puberty. Our results indicate that integrin expression is not influenced by endocrine factors during sexual maturation and suggest that the process of skeletal maturation is not regulated via altered integrin expression.  相似文献   

16.
Morphological characterization of skeletal cells in Cbfa1-deficient mice   总被引:4,自引:0,他引:4  
Hoshi K  Komori T  Ozawa H 《BONE》1999,25(6):289-651
  相似文献   

17.
Age-dependent gene expression and protein synthesis associated with chondrocyte differentiation were evaluated in the epiphyseal growth plates of normal and tibial dyschondroplasia (TD)-afflicted chickens. In the normal growth plate, collagen type II gene is expressed mainly by chondrocytes at the upper zone of the growth plate and by the chondrocytes in the articular cartilage. Collagen type X and osteopontin (OPN) genes are expressed in the lower zone of the growth plate and in the zone of cartilage-to-bone transition. No age-dependent changes in the pattern of OPN and collagen type II or X gene expression were observed up to 20 days of age. In the TD-afflicted growth plates, the lesion is enlarged with age, and chondrocytes expressing the collagen type II gene were observed in the hypertrophic zone as early as 8 days posthatching. Abnormal expression of OPN and collagen type X genes was also observed starting at 13 days of age. At day 20, the entire TD lesion—which was significantly enlarged—was surrounded by collagen type II, collagen type X, and OPN expressing cells. The level of OPN in TD was reduced with increasing age, and at 20 days almost no OPN could be detected in either the upper or the lower hypertrophic zones. The level of bone sialoprotein (BSP) also diminished with increasing age in the TD growth plates. In contrast to OPN, the age-dependent reduction in BSP levels was mainly in the lower hypertrophic zone (LHZ), and at 20 days of age, BSP was barely detected in the LHZ, whereas in the upper hypertrophic zone, the levels of BSP were similar to those in normal growth plate. In summary, our results suggest that the primary event of the TD lesion occurs in cells of proliferative phenotype within the hypertrophic zone. These cells divide and form the TD lesion, which consists of cells that do not express the genes associated with hypertrophy. Received: 11 June 1997 / Accepted: 11 May 1998  相似文献   

18.
PTH has the potential to rescue disturbed bone growth in achondroplasia   总被引:1,自引:0,他引:1  
INTRODUCTION: Achondroplasia (Ach), the most common form of short-limb short stature, and related disorders are caused by constitutively active point mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Recent studies have provided a large body of evidence for the role of the proliferation and differentiation of chondrocytes in these disorders. Furthermore, a G380R mutation in FGFR3 (FGFR3(Ach)), which results in achondroplasia, induces apoptosis in the chondrogenic cell line ATDC5. This is associated with a decrease in the expression of PTHrP, which shares the same receptor with PTH, and it is significant that PTHrP rescues these cells from apoptosis. METHODS: Fetuses derived from transgenic mice expressing FGFR3(Ach) under the control of the type II collagen promoter (AchTG) or from wild-type mice were obtained on the 15th day of pregnancy. The femurs were collected from these specimens and cultured for 4 days with PTH. The effects of PTH treatment were then determined by morphometric and histological analyses, in situ hybridization of type X collagen mRNA, and the TUNEL assay. RESULTS: AchTG femurs showed suppressed growth compared with wild type (0.29+/-0.10 mm vs. 0.46+/-0.06 mm, respectively; p<0.05), particularly in cartilage. PTH treatments improved the growth velocity in the femurs of the AchTG (0.50+/-0.06 mm; p<0.01 vs. control). This was associated with the inhibition of both differentiation and apoptosis in chondrocytes. CONCLUSIONS: Our data suggest that PTH inhibits differentiation and apoptosis in chondrocytes and improves bone growth. These effects thus counterbalance the effects of FGFR3 mutations. PTH therefore is a potential therapeutic agent for achondroplasia.  相似文献   

19.
Miao D  Bai X  Panda DK  Karaplis AC  Goltzman D  McKee MD 《BONE》2004,34(4):638-647
X-linked hypophosphatemic rickets (HYP) in humans is caused by mutations in the PHEX gene. This gene mutation is also found in Hyp mice, the murine homologue of the human disease. At present, it is unknown why loss of Phex function leads to cartilage abnormalities in Hyp mice. In the present study, we compared in wild-type and Hyp mice Phex protein localization in cartilage of developing long bone as well as localization of skeletal matrix proteins and matrix metalloproteinase-9 (MMP-9). Also compared were chondrocyte apoptosis in the growth plate, mineralization and cartilage remnant retention in the metaphysis, and chondroclast/osteoclast characteristics in the primary spongiosa. Phex protein was detected in proliferating and hypertrophic chondrocytes in growth plate cartilage of wild-type mice, but not in Hyp mice. Hyp mice exhibited a widened and irregular hypertrophic zone in growth plate cartilage showing hypomineralization, increased cartilage remnants from the growth plate in both metaphyseal trabecular and cortical bone, and fewer and smaller chondroclasts/osteoclasts in the primary spongiosa. Increased link protein and C-propeptide of type II procollagen of Hyp mice reflected the increase in chondrocytes and matrix in the cartilaginous growth plate and in bone. In addition, growth plate osteocalcin and bone sialoprotein levels were decreased, while osteonectin was increased, in hypertrophic chondrocytes and cartilage matrix in Hyp mice. MMP-9 in hypertrophic chondrocytes was also reduced in Hyp mice and fewer apoptotic hypertrophic chondrocytes were detected. These findings suggest that Phex may control mineralization and removal of hypertrophic chondrocytes and cartilage matrix in growth plate by regulating the synthesis and deposition of certain bone matrix proteins and proteases such as MMP-9.  相似文献   

20.
Bone development is regulated by conserved signalling pathways that are linked to multifunctional growth factors and their high affinity receptors. Parathyroid hormone-related peptide (PTHrP) and fibroblast growth factor receptor 3 (FGFR3) have been shown to play pivotal, and sometimes complementary, roles in the replication, maturation and death of chondrocytes during endochondral bone formation. To gain further insight into how these pathways coordinate cartilage and bone development, we generated mice lacking expression of both PTHrP and FGFR3. The phenotype of compound mutant mice resembled that of their PTHrP-deficient littermates with respect to neonatal lethality, facial dysmorphism and foreshortening of the limbs. The absence of PTHrP in the developing epiphyseal cartilage of PTHrP-/- and PTHrP-/-/FGFR3-/- mice resulted in a dominant hypo-proliferative phenotype. However, abnormalities such as the presence of nonhypertrophic cells among hypertrophic chondrocytes and excessive apoptosis seen in the hypertrophic zone of PTHrP-/- mice were absent in the PTHrP-/-/FGFR3-/- mice. Furthermore, the absence of FGFR3 in single and compound mutant mice led to decreased expression of vascular endothelial growth factor (VEGF) and an increase in depth of hypertrophic chondrocytes. These observations indicate that FGFR3 deficiency can rescue some of the defects seen in PTHrP-deficient mice and that it plays an important role in the regulation of chondrocyte differentiation and hypertrophy. These studies support a dominant role for PTHrP in regulating the pool of proliferating cells during limb development and suggest that signalling by FGFR3 plays a more prominent role in cartilage maturation and vascular invasion at the chondro-osseous junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号