首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Huntington's disease (HD), is a genetic neurodegenerative disease characterized by a DNA CAG triplet repeat expansion in the first exon of the disease gene, HD. CAG DNA expansion results in a polyglutamine tract expansion in mutant huntingtin protein. Wild-type and mutant full-length huntingtin have been detected in the nucleus, but elevated levels of mutant huntingtin and huntingtin amino-terminal proteolytic fragments are seen to accumulate in the nuclei of HD-affected neurons. The presence of huntingtin in both the nucleus and the cytoplasm suggested that huntingtin may be dynamic between these compartments. By live cell time-lapse video microscopy, we have been able to visualize polyglutamine-mediated aggregation and the transient nuclear localization of huntingtin over time in a striatal cell line. A classical nuclear localization signal could not be detected in huntingtin, but we have discovered a nuclear export signal (NES) in the carboxy-terminus of huntingtin. Leptomycin B treatment of clonal striatal cells enhanced the nuclear localization of huntingtin, and a mutant NES huntingtin displayed increased nuclear localization, indicating that huntingtin can shuttle to and from the nucleus. The huntingtin NES is strictly conserved among all huntingtin proteins from diverse species. This export signal may be important in Huntington's disease because this fragment of huntingtin is proteolytically cleaved away during HD. The huntingtin NES therefore defines a potential role for huntingtin as a member of a nucleocytoplasmic dynamic protein complex.  相似文献   

2.
Keap1 acts as a sensor for oxidative/electrophilic stress, an adaptor for Cullin-3-based ubiquitin ligase, and a regulator of Nrf2 activity through the interaction with Nrf2 Neh2 domain. However, the mechanism(s) of Nrf2 migration into the nucleus in response to stress remains largely unknown due to the lack of a reliable antibody for the detection of endogenous Keap1 molecule. Here, we report the generation of a new monoclonal antibody for the detection of endogenous Keap1 molecules. Immunocytochemical analysis of mouse embryonic fibroblasts with the antibody revealed that under normal, unstressed condition, Keap1 is localized primarily in the cytoplasm with minimal amount in the nucleus and endoplasmic reticulum. This subcellular localization profile of Keap1 appears unchanged after treatment of cells with diethyl maleate, an electrophile, and/or Leptomycin B, a nuclear export inhibitor. Subcellular fractionation analysis of mouse liver cells showed similar results. No substantial change in the subcellular distribution profile could be observed in cells isolated from butylated hydroxyanisole-treated mice. Analyses of sucrose density gradient centrifugation of mouse liver cells indicated that Keap1 appears to form multiprotein complexes in the cytoplasm. These results demonstrate that endogenous Keap1 remains mostly in the cytoplasm, and electrophiles promote nuclear accumulation of Nrf2 without altering the subcellular localization of Keap1.  相似文献   

3.
A unifying feature of the CAG expansion diseases is the formation of intracellular aggregates composed of the mutant polyglutamine-expanded protein. Despite the presence of aggregates in affected patients, the precise relationship between aggregates and disease pathogenesis is unresolved. Results from in vivo and in vitro studies of mutant huntingtin have lead to the hypothesis that nuclear localization of aggregates is critical for the pathology of Huntington's disease (HD). We tested this hypothesis using a 293T cell culture model system that compared the frequency and toxicity of cytoplasmic and nuclear huntingtin aggregates. We first assessed the mode of nuclear transport of N-terminal fragments of huntingtin, and show that the predicted endogenous NLS is not functional, providing data in support of passive nuclear transport. This result suggests that proteolysis is a necessary step for nuclear entry of huntingtin. Additionally, insertion of nuclear import or export sequences into huntingtin fragments containing 548 or 151 amino acids was used to reverse the normal localization of these proteins. Changing the subcellular localization of the fragments did not influence their total aggregate frequency. There were also no significant differences in toxicity associated with the presence of nuclear compared with cytoplasmic aggregates. The findings of nuclear and cytoplasmic aggregates in affected brains, together with these in vitro data, support the nucleus and cytosol as subcellular sites for pathogenesis in HD.   相似文献   

4.
Proteolysis of mutant huntingtin is crucial to the development of Huntington disease (HD). Specifically preventing proteolysis at the capase-6 (C6) consensus sequence at amino acid 586 of mutant huntingtin prevents the development of behavioural, motor and neuropathological features in a mouse model of HD. However, the mechanism underlying the selective toxicity of the 586 amino acid cleavage event is currently unknown. We have examined the subcellular localization of different caspase proteolytic fragments of huntingtin using neo-epitope antibodies. Our data suggest that the nucleus is the primary site of htt cleavage at amino acid 586. Endogenously cleaved 586 amino acid fragments are enriched in the nucleus of immortalized striatal cells and primary striatal neurons where they co-localize with active C6. Cell stress induced by staurosporine results in the nuclear translocation and activation of C6 and an increase in 586 amino acid fragments of huntingtin in the nucleus. In comparison, endogenous caspase-2/3-generated huntingtin 552 amino acid fragments localize to the perinuclear region. The different cellular itineraries of endogenously generated caspase products of huntingtin may provide an explanation for the selective toxicity of huntingtin fragments cleaved at amino acid 586.  相似文献   

5.
Li H  Wyman T  Yu ZX  Li SH  Li XJ 《Human molecular genetics》2003,12(16):2021-2030
In Huntington disease (HD), polyglutamine expansion causes the disease protein huntingtin to aggregate and accumulate in the nucleus and cytoplasm. The cytoplasmic huntingtin aggregates are found in axonal terminals and electrophysiological studies show that mutant huntingtin affects synaptic neurotransmission. However, the biochemical basis for huntingtin-mediated synaptic dysfunction is unclear. Using electron microscopy on sections of HD mouse brains, we found that axonal terminals containing huntingtin aggregates often had fewer synaptic vesicles than did normal axonal terminals. Subcellular fractionation and electron microscopy revealed that mutant huntingtin is co-localized with huntingtin-associated protein-1 (HAP1) in axonal terminals in the brains of HD transgenic mice. Mutant huntingtin binds more tightly to synaptic vesicles than does normal huntingtin, and it decreases the association of HAP1 with synaptic vesicles in HD mouse brains. Brain slices from HD transgenic mice that had axonal aggregates showed a significant decrease in [(3)H]glutamate release, suggesting that neurotransmitter release from synaptic vesicles was impaired. Taken together, these findings suggest that mutant huntingtin has an abnormal association with synaptic vesicles and this association impairs synaptic function.  相似文献   

6.
Characterization and localization of the Huntington disease gene product   总被引:15,自引:6,他引:9  
The recent identification of the Huntington's disease (HD) gene,enabled us to synthesize oligopeptides corresponding with thecarboxy-terminal end of the predicted HD-gene (IT15) product.Immunobiochemical studies with polyclonal antibodies directedagainst this synthetic peptide (position 3114–3141) onlymphobiastold cells from normal individuals and patients withHuntington disease, revealed the presence of a protein (huntingtin)with a molecular mass of approximately 330 kDa. Immunocytochemicalstudies showed a cytoplasmic localization of huntingtin in variouscell types including neurons. In most of the neuronal cellsthe protein was also present in the nucleus. No difference inmolecular mass or intracellular localization was found betweennormal and mutant cells.  相似文献   

7.
Huntingtin is a cytoplasmic protein of unknown function that associates with vesicle membranes and microtubules. Its protein interactions suggest that huntingtin has a role in endocytosis and organelle transport. In this study we sought to identify factors that regulate the transport of huntingtin in striatal neurons, which are the cells most affected in Huntington's disease. In clonal striatal cells derived from fusions of neuroblastoma and embryonic striatal neurons, huntingtin localization is diffuse and slightly punctate in the cytoplasm. When these neurons were differentiated by treatment with forskolin, huntingtin redistributed to perinuclear regions, discrete puncta along plasma membranes, and branch points and terminal growth cones in neurites. Huntingtin staining overlapped with clathrin, a coat protein involved in endocytosis. Immunoblot analysis of subcellular membrane fractions separated by differential centrifugation confirmed that huntingtin immunoreactivity in differentiated neurons markedly increased in membrane fractions enriched with clathrin and with huntingtin-interacting protein 1. Dopamine treatment altered the subcellular localization of huntingtin and increased its expression in clathrin-enriched membrane fractions. The dopamine-induced changes were blocked by the D1 antagonist SCH 23390 and were absent in a clonal cell line lacking D1 receptors. Results suggest that the transport of huntingtin and its co-expression in clathrin and huntingtin-interacting protein 1-enriched membranes is influenced by activation of adenylyl cyclase and stimulation of dopamine D1 receptors.  相似文献   

8.
9.
Both homozygous (L166P, M26I, deletion) and heterozygous mutations (D149A, A104T) in the DJ-1 gene have been identified in Parkinson's disease (PD) patients. The biochemical function and subcellular localization of DJ-1 protein have not been clarified. To date the localization of DJ-1 protein has largely been described in studies over-expressing tagged DJ-1 protein in vitro. It is not known whether the subcellular localization of over-expressed DJ-1 protein is identical to that of endogenously expressed DJ-1 protein both in vitro and in vivo. To clarify the subcellular localization and function of DJ-1, we generated three highly specific antibodies to DJ-1 protein and investigated the subcellular localization of endogenous DJ-1 protein in both mouse brain tissues and human neuroblastoma cells. We have found that DJ-1 is widely distributed and is highly expressed in the brain. By cell fractionation and immunogold electron microscopy, we have identified an endogenous pool of DJ-1 in mitochondrial matrix and inter-membrane space. To further investigate whether pathogenic mutations might prevent the distribution of DJ-1 to mitochondria, we generated human neuroblastoma cells stably transfected with wild-type (WT) or mutant (M26I, L166P, A104T, D149A) DJ-1 and performed mitochondrial fractionation and confocal co-localization imaging studies. When compared with WT and other mutants, L166P mutant exhibits largely reduced protein level. However, the pathogenic mutations do not alter the distribution of DJ-1 to mitochondria. Thus, DJ-1 is an integral mitochondrial protein that may have important functions in regulating mitochondrial physiology. Our findings of DJ-1's mitochondrial localization may have important implications for understanding the pathogenesis of PD.  相似文献   

10.
11.
Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31--33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.  相似文献   

12.
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expanding CAG repeat coding for polyglutamine in the huntingtin protein. Recent data have suggested the possibility that an N-terminal fragment of huntingtin may aggregate in neurons of patients with HD, both in the cytoplasm, forming dystrophic neurites, and in the nucleus, forming intranuclear neuronal inclusion bodies. An animal model of HD using the short N-terminal fragment of huntingtin has also been found to have intranuclear inclusions and this same fragment can aggregate in vitro . We have now developed a cell culture model demonstrating that N-terminal fragments of huntingtin with expanded glutamine repeats aggregate both in the cytoplasm and in the nucleus. Neuroblastoma cells transiently transfected with full-length huntingtin constructs with either a normal or expanded repeat had diffuse cytoplasmic localization of the protein. In contrast, cells transfected with truncated N-terminal fragments showed aggregation only if the glutamine repeat was expanded. The aggregates were often ubiquitinated. The shorter truncated product appeared to form more aggregates in the nucleus. Cells transfected with the expanded repeat construct but not the normal repeat construct showed enhanced toxicity to the apoptosis- inducing agent staurosporine. These data indicate that N-terminal truncated fragments of huntingtin with expanded glutamine repeats can aggregate in cells in culture and that this aggregation can be toxic to cells. This model will be useful for future experiments to test mechanisms of aggregation and toxicity and potentially for testing experimental therapeutic interventions.   相似文献   

13.
14.
The c-myc protein is thought to be a DNA-associated nuclear protein. However, immunohistochemical studies on normal or tumor tissues have shown conflicting findings on its subcellular distribution. By using various fixation procedures on cytospin preparations of HL60 cells, the authors found the subcellular distribution of the c-myc protein to be dependent on the method of fixation. When studying mouse tissues in frozen sections using a biotinylated monoclonal antibody against the c-myc protein, they found the protein to be widely distributed in various normal adult mouse tissues, in most cases localized to the nucleus. However, when these tissues were studied after formalin fixation and paraffin embedding, a loss of nuclear staining was observed concurrent with the appearance of c-myc protein immunoreactivity in the cytoplasm. It is concluded that immunohistochemical studies on the expression of this oncogene should take into consideration the effects of fixation when its subcellular distribution is being examined.  相似文献   

15.
Herpes simplex virus type 1 (HSV-1) UL3 protein is a nuclear protein. In this study, the molecular mechanism of the subcellular localization of UL3 was characterized by fluorescence microscopy in living cells. A nuclear localization signal (NLS) and a nuclear export signal (NES) were also identified. UL3 was demonstrated to target to the cytoplasm through the NES via chromosomal region maintenance 1 (CRM-1) dependent pathway, and to the nucleus through RanGTP-dependent mechanism. Heterokaryon assays confirmed that UL3 was capable of shuttling between the nucleus and the cytoplasm. These results demonstrate that the UL3 protein is a novel HSV-1 encoded nucleocytoplasmic shuttling protein.  相似文献   

16.
It has been reported that the ataxin-3 protein containing a polyglutamine sequence in the pathological range (61-84Q) is localized within the nucleus of neuronal cells, whereas ataxin-3 with a normal repeat length (12-37Q) is predominantly a cytoplasmic protein. In this study, the subcellular localization of the full-length ataxin-3 protein with a glutamine sequence in the normal range (Q3KQ22) was analysed in two mammalian cell lines. Using two affinity-purified polyclonal antibodies raised against the N- or C-terminal portion of ataxin-3, the protein was detected predominantly, but not exclusively, in the nucleus of COS-7 as well as neuroblastoma cells by immunofluorescence and confocal laser scanning microscopy (CLSM). The distribution of the protein in these cellular compartments was confirmed by biochemical subcellular fractionations. Furthermore, CLSM revealed that the ataxin- 3 protein present in the nucleus of neuroblastoma cells is associated with the inner nuclear matrix. Our results taken together with the finding of a nuclear localization signal in ataxin-3 indicate that the ataxin-3 protein per se translocates to the nucleus and that an expanded glutamine repeat is not essential for this transport.   相似文献   

17.
Ye C  Zhang Y  Wang W  Wang J  Li H 《Neuroscience letters》2008,442(1):63-68
Huntington's disease (HD) is an autosomal dominant inheritable neurodegenerative disorder caused by expansion of a polyglutamine repeat in the amino-terminal region of huntingtin. Polyglutamine expansion causes mutant huntingtin to aggregate and accumulate in the nuclei and cytoplasm of neurons. The aggregated amino-terminal fragments of mutant huntingtin are toxic to neuronal cells and may be involved in the neurodegeneration in HD patient brains. Although nuclear mutant huntingtin has been found to affect gene expression, the effect of cytoplasmic mutant huntingtin remains to be investigated. We established stably transfected mouse neuroblastoma (N2a) cells that express soluble amino-terminal fragments of huntingtin containing 20 (20Q) or 150 (150Q) glutamine repeats. In these stable cell lines, both 20Q and 150Q are diffusely distributed in the cytoplasm without aggregate formation. However, the stable 150Q cells are deficient in neurite outgrowth. Compared with wild-type N2a cells and cells stably expressing 20Q, stable 150Q cells also have decreased viability and are more susceptible to apoptotic stimulation. These findings suggest that the cytoplasmic soluble mutant huntingtin is also toxic to cells.  相似文献   

18.
Huntington's disease (HD) results from the expansion of a glutamine repeat near the N-terminus of huntingtin (htt). At post-mortem, neurons in the central nervous system of patients have been found to accumulate N-terminal fragments of mutant htt in nuclear and cytoplasmic inclusions. This pathology has been reproduced in transgenic mice expressing the first 171 amino acids of htt with 82 glutamines along with losses of motoric function, hypoactivity and abbreviated life-span. The relative contributions of nuclear versus cytoplasmic mutant htt to the pathogenesis of disease have not been clarified. To examine whether pathogenic processes in the nucleus disproportionately contribute to disease features in vivo, we fused a nuclear localization signal (NLS) derived from atrophin-1 to the N-terminus of an N171-82Q construct. Two lines of mice (lines 8A and 61) that were identified expressed NLS-N171-82Q at comparable levels and developed phenotypes identical to our previously described HD-N171-82Q mice. Western blot and immunohistochemical analyses revealed that NLS-N171-82Q fragments accumulate in nuclear, but not cytoplasmic, compartments. These data suggest that disruption of nuclear processes may account for many of the disease phenotypes displayed in the mouse models generated by expressing mutant N-terminal fragments of htt.  相似文献   

19.
Huntington's disease is caused by an expanded polyglutamine tract in huntingtin protein, leading to accumulation of huntingtin in the nuclei of striatal neurons. The 18 amino-acid amino-terminus of huntingtin is an amphipathic alpha helical membrane-binding domain that can reversibly target to vesicles and the endoplasmic reticulum (ER). The association of huntingtin to the ER is affected by ER stress. A single point mutation in huntingtin 1-18 predicted to disrupt this helical structure displayed striking phenotypes of complete inhibition of polyglutamine-mediated aggregation, increased huntingtin nuclear accumulation and greatly increased mutant huntingtin toxicity in a striatal-derived mouse cell line. Huntingtin vesicular interaction mediated by 1-18 is specific to late endosomes and autophagic vesicles. We propose that huntingtin has a normal biological function as an ER-associated protein that can translocate to the nucleus and back out in response to ER stress or other events. The increased nuclear entry of mutant huntingtin due to loss of ER-targeting results in increased toxicity.  相似文献   

20.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of a CAG repeat in a gene coding for a protein of unknown function. We have raised a polyclonal antibody against a 12 amino acid peptide (residues 2110-2121 of human huntingtin) which specifically recognises huntingtin on Western blots of human, rat and mouse brain. We have characterised huntingtin expression in the mouse. The protein was detected on Western blots of all mouse tissues examined, with the highest expression seen in brain. Human, mouse and rat brain were fractionated by differential centrifugation and discontinuous Percoll gradients. The fractions were analysed by Western blotting for huntingtin and synaptophysin (a synaptic vesicle localised protein). In mouse brain, huntingtin was localised in the soluble S3 fraction; in rat brain it was localised in the soluble S3 fraction and also in the membrane P2 and P3 fractions; in both normal and HD- affected human brain, huntingtin was membrane bound with a distribution essentially the same as that of synaptophysin. These observed differences in the subcellular localisation of huntingtin between mouse and human brain are important in the context of mouse models for HD.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号