首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preclinically, the combination of an SSRI and 5-HT autoreceptor antagonist has been shown to reduce the time to onset of anxiolytic activity compared to an SSRI alone. In accordance with this, clinical data suggest the coadministration of an SSRI and (+/-) pindolol can decrease the time to onset of anxiolytic/antidepressant activity. Thus, the dual-acting novel SSRI and 5-HT(1A/B) receptor antagonist, SB-649915-B, has been assessed in acute and chronic preclinical models of anxiolysis. SB-649915-B (0.1-1.0 mg/kg, i.p.) significantly reduced ultrasonic vocalization in male rat pups separated from their mothers (ED(50) of 0.17 mg/kg). In the marmoset human threat test SB-649915-B (3.0 and 10 mg/kg, s.c.) significantly reduced the number of postures with no effect on locomotion. In the rat high light social interaction (SI), SB-649915-B (1.0-7.5 mg/kg, t.i.d.) and paroxetine (3.0 mg/kg, once daily) were orally administered for 4, 7, and 21 days. Ex vivo inhibition of [(3)H]5-HT uptake was also measured following SI. SB-649915-B and paroxetine had no effect on SI after 4 days. In contrast to paroxetine, SB-649915-B (1.0 and 3.0 mg/kg, p.o., t.i.d.) significantly (p<0.05) increased SI time with no effect on locomotion, indicative of an anxiolytic-like profile on day 7. Anxiolysis was maintained after chronic (21 days) administration by which time paroxetine also increased SI significantly. 5-HT uptake was inhibited by SB-649915-B at all time points to a similar magnitude as that seen with paroxetine. In conclusion, SB-649915-B is acutely anxiolytic and reduces the latency to onset of anxiolytic behavior compared to paroxetine in the SI model.  相似文献   

2.
A novel compound, SB-272183 (5-Chloro-2, 3-dihydro-6-[4-methylpiperazin-1-yl]-1[4-pyridin-4-yl]napth-1-ylaminocarbonyl]-1H-indole), has been shown to have high affinity for human 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with pK(i) values of 8.0, 8.1 and 8.7 respectively and is at least 30 fold selective over a range of other receptors. [(35)S]-GTPgammaS binding studies showed that SB-272183 acts as a partial agonist at human recombinant 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with intrinsic activities of 0.4, 0.4 and 0.8 respectively, compared to 5-HT. SB-272183 inhibited 5-HT-induced stimulation of [(35)S]-GTPgammaS binding at human 5-HT(1A) and 5-HT(1B) receptors to give pA(2) values of 8.2 and 8.5 respectively. However, from [(35)S]-GTPgammaS autoradiographic studies in rat and human dorsal raphe nucleus, SB-272183 did not display intrinsic activity up to 10 microM but did block 5-HT-induced stimulation of [(35)S]-GTPgammaS binding. From electrophysiological studies in rat raphe slices in vitro, SB-272183 did not effect cell firing rate up to 1 microM but was able to attenuate (+)8-OH-DPAT-induced inhibition of cell firing to give an apparent pK(b) of 7.1. SB-272183 potentiated electrically-stimulated [(3)H]-5-HT release from rat and guinea-pig cortical slices at 100 and 1000 nM, similar to results previously obtained with the 5-HT(1B) and 5-HT(1D) receptor antagonist, GR127935. Fast cyclic voltammetry studies in rat dorsal raphe nucleus showed that SB-272183 could block sumatriptan-induced inhibition of 5-HT efflux, with an apparent pK(b) of 7.2, but did not effect basal efflux up to 1 microM. These studies show that, in vitro, SB-272183 acts as an antagonist at native tissue 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors.  相似文献   

3.
An increase in brain serotonin (5-HT) levels is thought to be a key mechanism of action responsible for generating antidepressant efficacy. It has been proven that selective serotonin reuptake inhibitors are effective antidepressants, but the delay to therapeutic onset of these agents is thought to be due to the time required for 5-HT1A, and possibly 5-HT1B, autoreceptors to desensitize. Therefore, an agent incorporating 5-HT reuptake inhibition coupled with 5-HT1A and/or 5-HT1B autoreceptor antagonism may provide a fast-acting clinical agent. The current studies review the profile of SB-649915 (6-[(1-{2-[(2-methylquinolin-5-yl)oxy]ethyl}piperidin-4-yl)methyl]-2H-1,4-benzoxazin-3(4H)-one), a novel compound with high affinity for human (h) 5-HT1A and 5-HT1B receptors (pKi values of 8.6 and 8.0, respectively) as well as the (h) 5-HT transporter (SERT) (pKi value of 9.3). SB-649915 behaved as an antagonist at both 5-HT1A and 5-HT1B receptors in vitro and in vivo, reversing 5-HT, (+)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and SKF99101-induced functional/behavioral responses. Furthermore, it inhibited [3H]5-HT reuptake in rat cortical synaptosomes, in vitro and ex vivo. In electrophysiological studies SB-649915 had no effect on rat dorsal raphe neuronal cell firing per se, but reversed 8-OH-DPAT-induced inhibition of firing both in vitro and in vivo. In addition, in a microdialysis study, it produced an acute increase in extracellular 5-HT in forebrain structures of the rat. Finally, SB-649915 demonstrated acute anxiolytic activity in both rodent and non-human primate and reduced the latency to onset of anxiolytic behavior, compared to paroxetine, in the rat social interaction paradigm. In summary, SB-649915 is a novel, potent 5-HT1A/1B autoreceptor antagonist, and 5-HT reuptake inhibitor. This particular pharmacological profile provides a novel mechanism that could offer fast-acting antidepressant activity.  相似文献   

4.
A novel compound, SB-236057 (1'-ethyl-5-(2'-methyl-4'-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl- 4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperid ine]) has been shown to have high affinity for human 5-hydroxytryptamine1B (5-HT1B) receptors (pKi = 8.2) and displays over 75 or more-fold selectivity for the human 5-HT1B receptor over other 5-HT receptors, including the human 5-HT1D receptor, and a range of other receptors, ion channels and enzymes. In functional studies using [35S]GTPgammaS binding, SB-236057 displayed negative intrinsic activity (pEC50 = 8.0) at human 5-HT1B receptors stably expressed in Chinese Hamster Ovary (CHO) cells and caused a rightward shift of agonist concentration response curves consistent with competitive antagonism (pA2 = 8.9). SB-236057 potentiated [3H]5-HT release from electrically stimulated guinea pig or human cortical slices. SB-236057 also abolished the inhibitory effect of exogenously superfused 5-HT on electrically-stimulated release from slices of the guinea pig cortex. These studies using SB-236057 confirm that, in both the guinea pig and human cerebral cortex, the terminal 5-HT autoreceptor is of the 5-HT1B subtype.  相似文献   

5.
Zacopride, a potent 5-HT3 antagonist   总被引:6,自引:0,他引:6  
The substituted benzamide derivative zacopride was found to antagonize competitively the effects of 5-hydroxytryptamine (5-HT) on the guinea-pig ileum, the rabbit vagus nerve and the von Bezold Jarisch reflex in the rat. The potency of zacopride was comparable with that of ICS 205-930 and it is concluded that zacopride possesses 5-HT3 receptor antagonizing properties.  相似文献   

6.
The effects of selective serotonin re-uptake inhibitor (SSRI), paroxetine, and 5-HT1A, 5-HT1B and 5-HT1B/1D receptor antagonists on in vivo extracellular 5-HT levels in the guinea-pig frontal cortex and dorsal hippocampus were investigated using the technique of microdialysis. The aim of the study was to further investigate the autoreceptor roles of the 5-HT1A, 5-HT1B and 5-HT1D receptors in the median vs dorsal raphe nuclei. In the frontal cortex, 5-HT1A (WAY 100635, 1 mg/kg i.p.) or 5-HT1B (SB-224289, 4 mg/kg i.p.) receptor antagonists had no effect on extracellular levels of 5-HT, whilst the mixed 5-HT1B/1D receptor antagonist (GR 127935, 0.3 mg/kg i.p) produced a significant decrease in extracellular 5-HT levels. Paroxetine (10 microM) significantly increased extracellular 5-HT levels when perfused locally into the cortex. Administration of SB-224289, followed 120 min later by WAY 100635, had no effect on extracellular 5-HT levels. In contrast, sequential administration of either WAY 100635 and GR 127935, or SB-224289 and paroxetine significantly increased extracellular 5-HT levels. In the dorsal hippocampus, whilst 5-HT1A receptor antagonism elicited by administration of WAY 100635 had no effect, both 5-HT1B and mixed 5-HT1B/1D receptor blockade significantly increased extracellular 5-HT levels. Administration of SB-224289 followed 120 min later with WAY 100635, or WAY 100635 followed 30 min later with GR 127935, potentiated the effect of the three compounds alone, significantly increasing extracellular 5-HT levels. These data demonstrate that to simultaneously increase extracellular 5-HT in both frontal cortex and dorsal hippocampus of the guinea-pig brain concurrent 5-HTA1A, 5-HT1B and 5-HT1D receptor blockade is required. Whereas in the dorsal hippocampus, 5-HT1B receptor blockade is sufficient to elicit an increase in extracellular 5-HT levels.  相似文献   

7.
8.
SB-271046, potently displaced [(3)H]-LSD and [(125)I]-SB-258585 from human 5-HT(6) receptors recombinantly expressed in HeLa cells in vitro (pK(i) 8.92 and 9.09 respectively). SB-271046 also displaced [(125)I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pK(i) 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT(6) receptor vs. 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT(6) receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA(2) of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of < or =0.1 mg kg(-1) p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC(50) of 0.16 microM) and brain concentrations of 0.01-0.04 microM at C(max). These data, together with the observed anticonvulsant activity of other selective 5-HT(6) receptor antagonists, SB-258510 (10 mg kg(-1), 2-6 h pre-test) and Ro 04-6790 (1-30 mg kg(-1), 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT(6) receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT(6) receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT(6) receptors.  相似文献   

9.
1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.  相似文献   

10.

Background and purpose

As a combination of 5-HT selective reuptake inhibitor (SSRI) with 5-HT1A receptor antagonism may yield a rapidly acting antidepressant, WAY-211612, a compound with both SSRI and 5-HT1A receptor antagonist activities, was evaluated in preclinical models.

Experimental approach

Occupancy studies confirmed the mechanism of action of WAY-211612, while its in vivo profile was characterized in microdialysis and behavioural models.

Key results

WAY-211612 inhibited 5-HT reuptake (Ki = 1.5 nmol·L−1; KB = 17.7 nmol·L−1) and exhibited full 5-HT1A receptor antagonist activity (Ki = 1.2 nmol·L−1; KB = 6.3 nmol·L−1; Imax 100% in adenyl cyclase assays; KB = 19.8 nmol·L−1; Imax 100% in GTPγS). WAY-211612 (3 and 30 mg·kg−1, po) occupied 5-HT reuptake sites in rat prefrontal cortex (56.6% and 73.6% respectively) and hippocampus (52.2% and 78.5%), and 5-HT1A receptors in the prefrontal cortex (6.7% and 44.7%), hippocampus (8.3% and 48.6%) and dorsal raphe (15% and 83%). Acute or chronic treatment with WAY-211612 (3–30 mg·kg−1, po) raised levels of cortical 5-HT approximately twofold, as also observed with a combination of an SSRI (fluoxetine; 30 mg·kg−1, s.c.) and a 5-HT1A antagonist (WAY-100635; 0.3 mg·kg−1, s.c). WAY-211612 (3.3–30 mg·kg−1, s.c.) decreased aggressive behaviour in the resident-intruder model, while increasing the number of punished crossings (3–30 mg·kg−1, i.p. and 10–56 mg·kg−1, po) in the mouse four-plate model and decreased adjunctive drinking behaviour (56 mg·kg−1, i.p.) in the rat scheduled-induced polydipsia model.

Conclusions and implications

These findings suggest that WAY-211612 may represent a novel antidepressant.  相似文献   

11.
Rationale The delay in onset and treatment resistance of subpopulations of depressed patients to conventional serotonin reuptake inhibitors has lead to new drug development strategies to produce agents with improved antidepressant efficacy. Objectives We report the in vivo characterization of the novel 5-HT1A/1B autoreceptor antagonist/5-HT transporter inhibitor (6-[(1-{2-[(2-methyl-5-quinolinyl)oxy]ethyl}-4-piperidinyl)methyl]-2H-1,4-benzoxazin-3(4H)-one), SB-649915-B. Materials and methods Ex vivo binding was used to ascertain 5-HT1A receptor and serotonin transporter occupancy. 8-OH-DPAT-induced hyperlocomotion and SKF-99101-induced elevation of seizure threshold were used as markers of central blockade of 5-HT1A and 5-HT1B receptors, respectively. In vivo electrophysiology in the rat dorsal raphe and microdialysis in freely moving guinea pigs and rats were used to evaluate the functional outcome of SB-649915-B. Results SB-649915-B (1–10 mg/kg p.o.) produced a dose-related inhibition of 5-HT1A receptor radioligand binding and inhibited ex vivo [3H]5-HT uptake in both guinea pig and rat cortex. SB-649915-B (0.1–10 mg/kg p.o.) reversed both 8-OH-DPAT-induced hyperlocomotor activity and SKF-99101-induced elevation of seizure threshold in the rat, demonstrating in vivo blockade of both 5-HT1A and 5-HT1B receptors, respectively. SB-649915-B (0.1–3 mg/kg i.v.) produced no change in raphe 5-HT neuronal cell firing per se but attenuated the inhibitory effect of 8-OH-DPAT. Acute administration of SB-649915-B resulted in increases (approximately two- to threefold) in extracellular 5-HT in the cortex of rats and the dentate gyrus and cortex of guinea pigs. Conclusions Based on these data, one may speculate that the 5-HT autoreceptor antagonist/5-HT transport inhibitor SB-649915-B will have therapeutic efficacy in the treatment of affective disorders with the potential for a faster onset of action compared to current selective serotonin reuptake inhibitors.  相似文献   

12.
1 Tegaserod (Zelnorm) is a potent 5-hydroxytryptamine4 (5-HT4) receptor agonist with clinical efficacy in disorders associated with reduced gastrointestinal motility and transit. The present study investigated the interaction of tegaserod with 5-HT2 receptors, and compared its potency in this respect to its 5-HT4 receptor agonist activity. 2 Tegaserod had significant binding affinity for human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors (pKi=7.5, 8.4 and 7.0, respectively). The 5-HT2B receptor-binding affinity of tegaserod was identical to that at human recombinant 5-HT4(c) receptors (mean pKi=8.4) in human embryonic kidney-293 (HEK-293) cells stably transfected with the human 5-HT4(c) receptor. 3 Tegaserod (0.1-3 microm) inhibited 5-HT-mediated contraction of the rat isolated stomach fundus potently (pA2=8.3), consistent with 5-HT(2B) receptor antagonist activity. Tegaserod produced, with similar potency, an elevation of adenosine 3',5' cyclic monophosphate in HEK-293 cells stably transfected with the human 5-HT4(c) receptor (mean pEC50=8.6), as well as 5-HT4) receptor-mediated relaxation of the rat isolated oesophagus (mean pEC50=8.2) and contraction of the guinea-pig isolated colon (mean pEC50=8.3). 4 Following subcutaneous administration, tegaserod (0.3 or 1 mg kg(-1)) inhibited contractions of the stomach fundus in anaesthetized rats in response to intravenous dosing of alpha-methyl 5-HT (0.03 mg kg(-1)) and BW 723C86 (0.3 mg kg(-1)), selective 5-HT2B receptor agonists. At similar doses, tegaserod (1 and 3 mg kg(-1) subcutaneously) evoked a 5-HT4 receptor-mediated increase in colonic transit in conscious guinea-pigs. 5 The data from this study indicate that tegaserod antagonizes 5-HT2B receptors at concentrations similar to those that activate 5-HT4 receptors. It remains to be determined whether this 5-HT2B receptor antagonist activity of tegaserod contributes to its clinical profile.  相似文献   

13.
The selective serotonin re-uptake inhibitors (SSRIs) are increasingly being used to treat depression and anxiety disorders. Gastrointestinal (GI) symptoms are the main side effects, probably resulting from the stimulation of central or peripheral 5-HT receptors. The present double-blind, placebo-controlled study was undertaken to see if the GI side effects of fluvoxamine could be attenuated by the co-administration of the 5-HT(3) antagonist ondansetron. The results demonstrate that, in volunteers, a single 100 mg oral dose of fluvoxamine can produce GI symptoms. Co-administration of ondansetron significantly reduced peak nausea and GI side effects, compared with placebo.  相似文献   

14.
The purpose of the present study was to characterize the 5-HT autoreceptor in the lumbar spinal cord of the rat. The effect of selective 5-HT1A and 5-HT1B agonists on K+-evoked release of [3H]5-HT and the binding of [3H]5-HT were examined. The 5-HT1B compounds, mCPP and quipazine were more potent than exogenous 5-HT at decreasing K+-evoked release of [3H]5-HT in slices of spinal cord. The pEC40 values of 5-HT agonists tested, determined from release assays, significantly correlated with the relative affinities (pKD's) of these compounds for the binding of [3H]5-HT to the 5-HT1B receptor subtype in the presence of 2 microM 8-OHDPAT, as determined from radioligand binding studies (r = 0.98, P = 0.003). Conversely, the potencies of the 5-HT1A agonists 5-MeODMT and 8-OHDPAT, at the 5-HT autoreceptor, were negatively correlated (r = -0.77, P less than 0.10) with their potencies at displacing [3H]5-HT from the 5-HT1A subsite (binding of [3H]5-HT in the presence of 1 microM mCPP). Thus, the 5-HT autoreceptor in spinal cord appears to bear a significant pharmacological similarity to the 5-HT1B binding site. Further testing of the present results requires the development of new 5-HT1 agonists which are selective (1000-fold difference) for the 5-HT1A and 5-HT1B subsites.  相似文献   

15.
N-(2,5-Dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulfonamide (SB-357134) potently inhibited [125I]SB-258585 and [3H]LSD binding in a HeLa cell line expressing human 5-HT(6) receptors (pK(i)=8.6 and 8.54, respectively). Furthermore, SB-357134 inhibited [125I]SB-258585 binding in human caudate--putamen and in rat and pig striatum membranes (pK(i)=8.82, 8.44, and 8.61, respectively). SB-357134 displayed over 200-fold selectivity for the 5-HT(6) receptor versus 72 other receptors and enzymes. 5-HT-stimulated cyclic AMP (cAMP) accumulation in human 5-HT(6) receptors was competitively antagonised by SB-357134 (pA(2)=7.63). SB-357134 inhibited ex vivo [125I]SB-258585 binding in the rat with an ED(50) of 4.9 +/- 1.3 mg/kg po, 4 h postdose. In the rat maximal electroshock seizure threshold (MEST) test, SB-357134 produced a potent and dose-dependent increase in seizure threshold, with a minimum effective dose of 0.1 mg/kg po. At 10 mg/kg po, maximum activity occurred between 4 and 6 h postdose. Good exposure was observed with SB-357134 at 10 mg/kg po, reaching maximal blood and brain concentrations of 4.3 +/- 0.2 and 1.3 +/- 0.06 microM, respectively, 1 h postdose. In addition, SB-357134 (10 mg/kg po) enhanced memory and learning following chronic administration (twice a day for 7 days) in the rat water maze. Overall, these studies demonstrate that SB-357134 is a potent, selective, brain penetrant, and orally active 5-HT(6) receptor antagonist.  相似文献   

16.
17.
A series of pindolol derivatives (n = 7) was analyzed in radioligand binding, biochemical and behavioral studies. Three of these drugs (Compounds A, B, and C) are extremely potent (i.e., Ki values less than 1.0 nM) at 5-hydroxytryptamine1A (5-HT1A) sites labeled by [3H] 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Moreover, these drugs are selective in that they are approximately an order of magnitude less potent at beta-adrenergic receptors labeled by 3H-dihydroalprenolol (DHA). Compound A (N1-(bromoacetyl)-N8-[3-(4-indolyloxy)-2-hydroxypropyl]-(Z)-1,8-di amino-p- methane) is also significantly less potent at 10 other neurotransmitter receptor sites analyzed. In addition, Compound A (10(-10) M to 10(-3) M) has no effect on baseline forskolin-stimulated adenylate cycalse activity in rat hippocampus. By contrast, nanomolar concentrations of the drug significantly (p less than 0.01) reverse 8-OH-DPAT-induced inhibition of forskolin-stimulated activity. In behavioral studies. Compound A (0.5 mg/kg) alone has no effect on baseline measures of reciprocal forepaw treading in the rat. Pretreatment with Compound A, however, significantly (p less than 0.05) inhibits the reciprocal forepaw treading induced by 8-OH-DPAT. These data suggest that Compound A is a potent and selective antagonist of 5-HT1A receptors in the CNS.  相似文献   

18.
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.  相似文献   

19.
Recently, a series of 5-HT7 receptor antagonists have been developed (24,29,36,68). Among them SB-258741, R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine, (compound "13" in 36,37) was one of the most potent and specific compounds. Due to a lack of specific ligands the pharmacology of 5-HT7 receptor antagonists is still relatively unexplored. It has been suggested, however, that 5-HT7 receptor ligands could be useful in the therapy of various disorders such as sleep disorders, schizophrenia, depression, migraine, epilepsy, pain, or memory impairment. Many of these conceivable indications are not supported by pharmacological data. It is, therefore, of particular interest to review the data generated from studies of one of these most potent and specific 5-HT7 receptor antagonists, SB-258741, with a goal of testing the validity of the proposed clinical indications. In this review, the author describes pharmacology of this compound in order to define its potential clinical use. The available safety pharmacology data are discussed in an attempt to predict potential side effects of specific 5-HT7 receptor antagonists.  相似文献   

20.
N-(diethylamino-ethyl)-4-chloro-5-cyano-2-methoxy-benzamide-hydrochloride (CGP 25454A) is a new benzamide derivative now in clinical trials in patients with major depression. Here we describe some basic neurochemical and behavioural properties in animal experiments. In vitro, CGP 25454A increased the field-stimulated [3H]- and [14C]-overflow from rat striatal slices preloaded with [3H]dopamine and [14C] choline, indicating that CGP 25454A was able to enhance the release of both dopamine (DA) and acetylcholine (ACh). However, CGP 25454A was 12.9 times more potent in increasing, by 1/6 of the apparent maximal increase, the release of [3H]DA than that of [14C]ACh. In vivo, CGP 25454A increased [3H]spiperone binding to receptors of the D2 family in rat striatum by 90–110% (ED50: 13 mg/kg i.p.). As a similar increase in [3H]spiperone binding was found with a variety of agents which increase the synaptic concentration of endogenous DA, the effect of CGP 25454A most probably reflects an enhanced release of DA under in vivo conditions. At 30–100 mg/kg, CGP 25454A inhibited [3H]spiperone binding in the pituitary of the same animals as a result of a blockade of postsynaptic DA receptors. This dual mode of action was also apparent in terms of behavioral changes. At doses as low as 5–10 mg/kg, CGP 25454A produced a weak stimulation, suggested by a trend of increased spontaneous rearing and corroborated by a significant potentiation of the elevated rearing induced by (+)-amphetamine. By contrast, at doses of 30–100 mg/kg, it exerted clear-cut sedative and neuroleptic-like properties. These data obtained from three different experimental approaches suggest that CGP 25454A selectively blocks presynaptic DA autoreceptors in the lower dose range whereas at higher doses it also blocks the postsynaptic receptors. Correspondence to: S. Bischoff at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号