首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Infant formula feeding, compared with human milk, has been associated with development of a distinct infant gut microbiome, but no previous study has examined effects of formula with added sugars. This work examined differences in gut microbiota among 91 Hispanic infants who consumed human milk [at breast (BB) vs. pumped in bottle (BP)] and 2 kinds of infant formula [(traditional lactose-based (TF) vs. lactose-reduced with added sugar (ASF)]. At 1 and 6 months, infant stool was collected to characterize gut microbiota. At 6 months, mothers completed 24-hour dietary recalls and questionnaires to determine infant consumption of human milk (BB vs. BP) or formula (TF vs. ASF). Linear regression models were used to determine associations of milk consumption type and microbial features at 6 months. Infants in the formula groups exhibited a significantly more ‘mature’ microbiome than infants in the human milk groups with the most pronounced differences observed between the ASF vs. BB groups. In the ASF group, we observed reduced log-normalized abundance of Bifidobacteriaceae (TF-BB Mean Difference = ?0.71, ASF-BB Mean Difference = ?1.10), and increased abundance of Lachnospiraceae (TF-BB Mean Difference = +0.89, ASF-BB Mean Difference = +1.20). We also observed a higher Community Phenotype Index of propionate, most likely produced by Lachnospiraceae, in the ASF group (TF-BB Mean Difference = +0.27, ASF-BB Mean Difference = +0.36). This study provides the first evidence that consumption of infant formula with added sugar may have a stronger association than birth delivery mode, infant caloric intake, and maternal BMI on the infant’s microbiome at 6 months of age.  相似文献   

2.
ABSTRACT

Bacteria in human milk could directly seed the infant intestinal microbiota, while information about how milk microbiota develops during lactation and how geographic location, gestational hypertensive status, and maternal age influence this process is limited. Here, we collected human milk samples from mothers of term infants at the first day, 2 weeks, and 6 weeks postpartum from 117 longitudinally followed-up mothers (age: 28.7 ± 3.6 y) recruited from three cities in China. We found that milk microbial diversity and richness were the highest in colostrum but gradually decreased over lactation. Microbial composition changed across lactation and exhibited more discrete compositional patterns in 2-week and 6-week milk samples compared with colostrum samples. At phylum level, the abundance of Proteobacteria increased during lactation, while Firmicutes showed the opposite trend. At genus level, Staphylococcus, Streptococcus, Acinetobacter, Pseudomonas, and Lactobacillus were predominant in colostrum samples and showed distinct variations across lactation. Maternal geographic location was significantly associated with the milk microbiota development and the abundance of predominant genus. In addition, milk from mothers with gestational prehypertension had a different and less diverse microbial community at genus level in early lactation times, and contained less Lactobacillus in the 2-week milk samples than those from normotensive mothers. Findings of our study outlined the human milk microbial diversity and community development over lactation, and underscored the importance of maternal geographic locations and gestational hypertensive status on milk microbiota, which might have important implications in the establishment of the infant intestinal microbiota via breastfeeding.  相似文献   

3.
ABSTRACT

In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009–2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19–0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.  相似文献   

4.
Mammalian body surfaces are inhabited by vast numbers of microbes, the commensal microbiota, which help the host to digest food, provide nutrients, and mature its immune system. For a long time, postnatal colonization was believed to be the main stimulus for microbial-induced immune development. Using a model of reversible colonization of germ-free mice during gestation, we recently showed that the microbial shaping of the neonatal immune system begins even before birth through molecular signals derived from the microbiota of the mother. Maternal microbiota was important to mature intestinal innate immune cells and to alter intestinal gene expression profiles in the offspring. These changes prepare the newborn for postnatal colonization. The majority of the gestational colonization-dependent effects required maternal antibodies. Here, we discuss and provide further evidence how maternal antibodies are important players in transferring a signal originating from the maternal intestinal microbiota to the offspring.  相似文献   

5.
The gut microbiota contributes to the regulation of glucose metabolism in pregnancy. Abundance of the genus Collinsella is positively correlated with circulating insulin; however, it is unclear what determines Collinsella abundance. This study aims to validate the correlation between Collinsella and insulin and to elucidate if macronutrient intake alters Collinsella abundance and gut microbiota composition.

Gut microbiota profiles were assessed by 16S rRNA sequencing in 57 overweight and 73 obese pregnant women from the SPRING (Study of PRobiotics IN Gestational diabetes) trial at 16 weeks gestation and correlated with metabolic hormone levels and macronutrient intake. Gut microbiota composition in the top and bottom 10% of dietary fiber intake was evaluated through network analysis.

Collinsella abundance correlated positively with circulating insulin (rho = 0.30, p = 0.0006), independent of maternal BMI, but negatively with dietary fiber intake (rho = ?0.20, p = 0.025) in this cohort. Low dietary fiber intake was associated with a gut microbiota favoring lactate fermentation while high fiber intake promotes short-chain fatty acid-producing bacteria.

Low dietary fiber may enable overgrowth of Collinsella and alter the overall fermentation pattern in gut microbiota. This suggests that dietary choices during pregnancy can modify the nutritional ecology of the gut microbiota, with potential deleterious effects on the metabolic and inflammatory health of the host.

Trial registration: ANZCTR 12611001208998, registered 23/11/2011  相似文献   

6.
The gut microbial community greatly changes in early life, influencing infant health and subsequent host physiology, notably through its collective metabolism, including host–microbiota interplay of bile acid (BA) metabolism. However, little is known regarding how the development of the intestinal microbial community is associated with maturation of intestinal BA metabolism. To address this, we monitored the succession of gut bacterial community and its association with fecal BA profile in the first 3 y of ten healthy Japanese infants. The BA profiles were classified into four types, defined by high content of conjugated primary BA (Con type), unconjugated primary BA (chenodeoxycholic acid and cholic acid) (Pri type), ursodeoxycholic acid (Urs type), and deoxycholic and lithocholic acid (Sec type). Most subjects begun with Con type or Pri type profiles during lactation and eventually transited to Sec type through Urs type after the start of solid food intake. Con type and Pri type were associated with Enterobacteriaceae-dominant microbiota corresponding to the neonatal type or Bifidobacterium-dominant microbiota corresponding to lactation type, respectively. Urs type subjects were strongly associated with Ruminococcus gnavus colonization, mostly occurring between Pri type and Sec type. Sec type was associated with adult-type complex microbiota dominated by a variety of Firmicutes and Bacteroidetes species. Addressing the link of the common developmental passage of intestinal BA metabolism with infant’s health and subsequent host physiology requires further study.  相似文献   

7.
《Gut microbes》2013,4(4):352-365
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life.  相似文献   

8.
Microbial ecology and host-microbiota interactions during early life stages   总被引:1,自引:0,他引:1  
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life.  相似文献   

9.

Background and aims

Phenylalanine (Phe) restricted diet, combined with Phe-free l-amino acid supplementation, is the mainstay of treatment for phenylketonuria (PKU). Being the diet a key factor modulating gut microbiota composition, the aim of the present paper was to compare dietary intakes, gut microbiota biodiversity and short chain fatty acids (SCFAs) production in children with PKU, on low-Phe diet, and in children with mild hyperphenylalaninemia (MHP), on unrestricted diet.

Methods and Results

We enrolled 21 PKU and 21 MHP children matched for gender, age and body mass index z-score. Dietary intakes, including glycemic index (GI) and glycemic load (GL), and fecal microbiota analyses, by means of denaturing gradient gel electrophoresis (DGGE) and Real-time PCR were assessed. Fecal SCFAs were quantified by gas chromatographic analysis.

Results

We observed an increased carbohydrate (% of total energy), fiber and vegetables intakes (g/day) in PKU compared with MHP children (p = 0.047), as well a higher daily GI and GL (maximum p < 0.001).Compared with MHP, PKU showed a lower degree of microbial diversity and a decrease in fecal butyrate content (p = 0.02). Accordingly, two of the most abundant butyrate-producing genera, Faecalibacterium spp. and Roseburia spp., were found significantly depleted in PKU children (p = 0.02 and p = 0.03, respectively).

Conclusion

The low-Phe diet, characterized by a higher carbohydrate intake, increases GI and GL, resulting in a different quality of substrates for microbial fermentation. Further analyses, thoroughly evaluating microbial species altered by PKU diet are needed to better investigate gut microbiota in PKU children and to eventually pave the way for pre/probiotic supplementations.  相似文献   

10.
ABSTRACT

The early-life gut microbiota is associated with potential development of diseases in adulthood. The sterile womb paradigm has been challenged by recent reports that revealed the presence of the meconium, amniotic fluid, and placenta microbiome. This study aimed to explore the maternal origin of the microbiota of neonate meconium by using the PacBio single-molecule real-time circular consensus sequencing technology. Such technology could produce high fidelity reads of full-length 16S rRNA genes, improving the sensitivity and specificity of taxonomic profiling. It also reduced the risk of false positives. This study analyzed the full-length 16S rRNA-based microbiota of maternal samples (amniotic fluid, feces, vaginal fluid, saliva) and first-pass meconium of 39 maternal-neonate pairs. Alpha- and beta-diversity analyses revealed sample type-specific microbiota features. Most sample types were dominated by sequences representing different genera (Lactobacillus and Curvibacter in the amniotic fluid and vaginal fluid microbiota; Bacillus and Escherichia/Shigella in the meconium microbiota; Bacteroides and Faecalibacterium in the maternal fecal microbiota; Streptococcus and Prevotella in the maternal saliva microbiota). Moreover, specific operational taxonomic units (OTUs) were identified in all sample types. Dyad analysis revealed common OTUs between the meconium microbiota and microbiota of multiple maternal samples. The meconium microbiota shared more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Our results strongly suggested that the meconium microbiota was seeded from multiple maternal body sites, and the amniotic fluid microbiota contributed most to the seeding of the meconium microbiota among the investigated maternal body sites.  相似文献   

11.
The purpose of the study was to examine in vivo placental transfer of metformin, its association with neonatal outcome in metformin-treated gestational diabetes (GDM) patients, and influence of metformin exposure on maternal glycemic control and weight gain. Two hundred and seventeen GDM patients were randomized to metformin or insulin in Turku University Hospital, Finland. Metformin concentrations were determined by mass spectrometry in maternal serum at 36 gestational weeks (gw) and at birth, and in umbilical cord blood. Main outcome measures were birth weight, gw at birth, umbilical artery pH and neonatal hypoglycemia, maternal weight gain, HbA1c and fructosamine concentration. Median umbilical cord/maternal serum metformin concentration ratio was 0.73. There were no differences in birth weight measured in grams or SD units (p = 0.49), or gw at birth (p always ≥0.49) between insulin- and metformin-treated patients stratified by trough metformin concentration tertiles measured at 36 gw. Rate of neonatal hypoglycemia (p = 0.92) and umbilical artery pH value (p = 0.78) was similar in insulin- and metformin-treated patients stratified by cord metformin concentration tertiles. Maternal glycemic control was similar in metformin concentration tertiles at 36 gw. Maternal weight gain was 223 g greater per week (p = 0.038) in the lowest metformin tertile compared to other tertiles combined. Maternal and fetal exposure to metformin is similar. Maternal or fetal metformin concentrations do not predict maternal glycemic control or neonatal outcome, but low maternal exposure may lead to greater maternal weight gain.  相似文献   

12.

Background/Objectives:

High dietary fibre intakes may protect against obesity by influencing colonic fermentation and the colonic microbiota. Though, recent studies suggest that increased colonic fermentation contributes to adiposity. Diet influences the composition of the gut microbiota. Previous research has not evaluated dietary intakes, body mass index (BMI), faecal microbiota and short chain fatty acid (SCFA) in the same cohort. Our objectives were to compare dietary intakes, faecal SCFA concentrations and gut microbial profiles in healthy lean (LN, BMI⩽25) and overweight or obese (OWOB, BMI>25) participants.

Design:

We collected demographic information, 3-day diet records, physical activity questionnaires and breath and faecal samples from 94 participants of whom 52 were LN and 42 OWOB.

Results:

Dietary intakes and physical activity levels did not differ significantly between groups. OWOB participants had higher faecal acetate (P=0.05), propionate (P=0.03), butyrate (P=0.05), valerate (P=0.03) and total short chain fatty acid (SCFA; P=0.02) concentrations than LN. No significant differences in Firmicutes to Bacteroides/Prevotella (F:B) ratio was observed between groups. However, in the entire cohort, Bacteroides/Prevotella counts were negatively correlated with faecal total SCFA (r=−0.32, P=0.002) and F:B ratio was positively correlated with faecal total SCFA (r=0.42, P<0.0001). Principal component analysis identified distinct gut microbiota and SCFA–F:B ratio components, which together accounted for 59% of the variation. F:B ratio loaded with the SCFA and not with the microbiota suggesting that SCFA and F:B ratio vary together and may be interrelated.

Conclusions:

The results support the hypothesis that colonic fermentation patterns may be altered, leading to different faecal SCFA concentrations in OWOB compared with LN humans. More in-depth studies looking at the metabolic fate of SCFA produced in LN and OWOB participants are needed in order to determine the role of SCFA in obesity.  相似文献   

13.
《Gut microbes》2013,4(4):284-289
Early infant diet has significant impacts on the gut microbiota and developing immune system. We previously showed that breast-fed and formula-fed rhesus macaques develop significantly different gut microbial communities, which in turn are associated with different immune systems in infancy. Breast-fed animals manifested greater T cell activation and proliferation and harbored robust pools of T helper 17 (TH17) cells. These differences were sustained throughout the first year of life. Here we examine groups of juvenile macaques (approximately 3 to 5 y old), which were breast-fed or formula-fed in infancy. We demonstrate that juveniles breast-fed in infancy maintain immunologic differences into the fifth year of life, principally in CD8+ memory T cell activation. Additionally, long-term correlation networks show that breast-fed animals maintain persistent relationships between immune subsets that are not seen in formula-fed animals. These findings demonstrate that infant feeding practices have continued influence on immunity for up to 3 to 5 y after birth and also reveal mechanisms for microbial modulation of the immune system.  相似文献   

14.
ABSTRACT

The significance of maternal appropriate calcium intakes for energy metabolism in the offspring has been recognized. Nonalcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome. So in this study, we proposed that there were long-term effects of maternal calcium status on the progress of NAFLD by altering the intestinal microbiota and lipid metabolism with attention to potential sex differences among the mouse offspring. Thirty-four-week female C57BL/6 J mice were subjected to obtain low, normal and high calcium reproductive diets throughout the gestation and lactation. After weaning, both the male and female mouse offspring were fed with the high-fat diet for 16 weeks, with the normal diet as control. Biochemical indicators in the plasma and hepatic tissue were measured using ELISA or enzymatic methods. The expression of lipid metabolism, inflammatory and fibrosis related genes was determined by RT-PCR. The intestinal microbiota was analyzed by 16S rRNA high-throughput sequencing. Maternal normal and low calcium intake could, respectively, inhibit the progress of high-fat diet induced NAFLD in the male and female mouse offspring, which was characterized by the least lipid droplets, inflammatory infiltration and fibrosis, the lowest concentrations of free fatty acids and triglyceridethe lowest expression of genes involving in de novo lipogenesis and the highest expression of genes related to lipid oxidation and hydrolysis, inflammatory, and fibrosis. Pyrosequencing of 16S rRNA genes revealed that the male mouse offspring with maternal normal calcium intake and the female mouse offspring with maternal low calcium intake, after the high-fat diet feeding, had distinct intestinal microbiota, which was closer to thosein mice with the normal diet feeding. Analysis of the functional features for the different microbiota was compatible with the expression of genes associated with lipogenesis, lipid oxidation and hydrolysis. Thus, there is a sex-specific manner for maternal calcium requirement to inhibit the progress of offspring NAFLD, that might be less for the female offspring and more for the male offspring.  相似文献   

15.

Aims/hypothesis

In an Indian birth cohort, higher maternal homocysteine concentration in pregnancy was associated with lower birthweight of the offspring. Lower maternal vitamin B12 and higher folate concentrations were associated with higher offspring insulin resistance. Disordered one-carbon metabolism during early development may increase later metabolic risk. We explored these associations in another birth cohort in India at three age points.

Methods

We measured plasma vitamin B12, folate and homocysteine concentrations at 30?±?2 weeks’ gestation in 654 women who delivered at one hospital. Neonatal anthropometry was recorded, and the children’s glucose and insulin concentrations were measured at 5, 9.5 and 13.5 years of age. Insulin resistance was estimated using HOMA of insulin resistance (HOMA-IR).

Results

Maternal homocysteine concentrations were inversely associated with all neonatal anthropometric measurements (p?<?0.05), and positively associated with glucose concentrations in the children at 5 (30 min; p?=?0.007) and 9.5 years of age (120 min; p?=?0.02). Higher maternal folate concentrations were associated with higher HOMA-IR in the children at 9.5 (p?=?0.03) and 13.5 years of age (p?=?0.03). Maternal vitamin B12 concentrations were unrelated to offspring outcomes.

Conclusions/interpretation

Maternal vitamin B12 status did not predict insulin resistance in our cohort. However, associations of maternal homocysteine and folate concentrations with birth size, and with childhood insulin resistance and glycaemia in the offspring, suggest a role for nutritionally driven disturbances in one-carbon metabolism in fetal programming of diabetes.  相似文献   

16.
Both maternal microbiota and helminth infection may alter offspring immunity but the relationship between these is underexplored. We hypothesized that maternal helminth exposure prior to pregnancy has lasting consequences on offspring intestinal microbiota and consequent immunity. Female BALB/c adult mice were infected with 500L3 Nippostrongylus brasiliensis (N brasiliensis). Infection was cleared by ivermectin treatment, and mice were mated 3 weeks post-infection (NbM). Control mice were not infected but were exposed to ivermectin (NvM). We analysed maternal gut microbiota during pregnancy, breastmilk microbiota and offspring faecal microbiota and immunity 2 weeks after delivery. During pregnancy, NbM (Mothers previously infected with Nippostrongylus brasiliensis) displayed significantly altered stool bacterial communities (R2 = .242; P = .001), with increased abundance of Enterococcaceae versus NvM (Naive mothers). Similarly, we observed a profound impact on breastmilk microbiota in NbM vs NvM. Moreover, NbM pups showed significantly altered gut microbial communities at 14 days of age versus those born to NvM with increased relative abundance of Coriobacteriaceae and Micrococcaceae. These changes were associated with alterations in pup immunity including increased frequencies and numbers of activated CD4 T cells (CD4 + CD44hi) in NbM offspring spleens. Taken together, we show that preconception helminth infections impact offspring immunity possibly through alteration of maternal and offspring microbiota.  相似文献   

17.
To determine the effect of maternal anaemia on pregnancy outcome and describe its impact on infant haemoglobin level in the first 18 months of life, we conducted a prospective study of 617 pregnant women and their children in Benin. Prevalence of maternal anaemia at delivery was 39.5%, and 61.1% of newborns were anaemic at birth. Maternal anaemia was not associated with low birth weight [OR = 1.2 (0.6-2.2)] or preterm birth [OR = 1.3 (0.7-2.4)], whereas the newborn's anaemia was related to maternal anaemia [OR = 1.8 (1.2-2.5)]. There was no association between an infant's haemoglobin level until 18 months and maternal anaemia. However, malaria attacks during follow-up, male gender and sickle cell trait were all associated with a lower infant haemoglobin level until 18 months, whereas good infant feeding practices and a polygamous family were positively associated with a higher haemoglobin level during the first 18 months of life.  相似文献   

18.
Summary Maternal diabetes mellitus is complicated by fetal macrosomia and predisposes the offspring to diabetes, but recent evidence indicates that a low, not high, birthweight is associated with a higher incidence of Type 2 (non-insulin dependent) diabetes in adult life. To clarify the relationships between maternal glucose and insulin levels and birthweight, we measured oral glucose tolerance and neonatal weight in a large group (n = 529) of women during the 26th week of pregnancy. Women with gestational diabetes (n = 17) had more familial diabetes, higher pre-pregnancy body weight, and tended to have large-for-gestational-age babies. In contrast, women with essential hypertension (n = 10) gave birth to significantly (p <0.01) smaller babies. In the normal group (without gestational diabetes or hypertension, n = 503), maternal body weight before pregnancy and at term, maternal height, week of delivery, gender of the newborn, and parity were all significant, independent predictors of birthweight, together explaining 23% of the variability of neonatal weight. In addition, both fasting (p <0.006) and 2-h post-glucose (p = 0.03) maternal plasma glucose concentrations were positively associated with birthweight independent of the other physiological determinants, accounting, however, for only 10% of the explained variability. In a subgroup of 134 normal mothers with prepregnancy body mass index of less than 25 kg · m–2, in whom plasma insulin measurements were available, the insulin area-under-curve was inversely related to birthweight (p <0.02) after simultaneously adjusting for physiological factors and glucose area. When glucose and insulin measurements were combined in the I/G ratio (ratio of insulin to glucose area), this was still inversely related to birthweight. Furthermore, maternal insulinaemia was directly related to blood pressure levels (p <0.001) independently of body weight. We conclude that in normal pregnancy, whereas physiological factors account for most of the explainable variability of infant weight, the influence of the maternal metabolic milieu is dual, positive for glucose levels but negative for insulin concentrations. Maternal hyperinsulinaemia during pregnancy may be one trait linking low birthweight with predisposition to diabetes in adult life.  相似文献   

19.
The purpose of this prospective cross-sectional cohort pilot study is to explore the initial microbial community of gastric aspirate fluid as collected immediately after birth and its relationships with mode of delivery and preterm birth. Twenty-nine gastric aspirate samples collected immediately after birth from infants born between 24–40 weeks gestation were analyzed for microbial composition. Total microbial content was low in many samples, with a substantial number sharing taxonomic composition with negative controls. qPCR targeting the 16S rRNA gene showed that infants delivered vaginally had a higher microbial load than infants delivered by C-section. Some pre-term samples showed high relative abundance of genus Ureaplasma, consistent with previous literature that has implicated infections with this taxon as a potential cause of pre-term birth. Vaginally born term infant samples, by contrast, had significantly higher levels of genus Lactobacillus with Lactobacillus crispatus the most dominant species. Microbial evaluation showed that vaginally born term infant gastric aspirate samples had higher levels of lactobacilli than pre-terms. Samples from many infants had low microbial load near the edge of the detection limit.  相似文献   

20.
Evaluation of: Barman M, Unold D, Shifl ey K et al. Enteric salmonellosis disrupts the microbialecology of the murine gastrointestinal tract. Infect. Immun. 76(3), 907-915 (2008).

The mammalian GI tract contains a large and diverse ecosystem of microorganisms that play a profound role in our development and physiology. Interestingly, the microbial make-up within the intestine has been found to be altered in many clinically important diseases, including inflammatory bowel disease, irritable bowel syndrome, Types 1 and 2 diabetes, and obesity. Barman et al. used a Salmonella-induced murine model of gastroenteritis to show that the intestinal microbiota are transiently altered during the host inflammatory response to infection. These findings are of interest as understanding how the microbiota are altered during disease states may offer insight into which microbial populations are important in maintaining intestinal homeostasis. Recently, probiotics have been shown to modulate the mucosal immune system and improve intestinal barrier function, validating their potential as therapeutics for gastrointestinal-associated diseases. As we begin to understand the benefits conferred to the intestine by microbiota, the use of probiotics to modify its composition is an attractive option to improve human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号