首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The gut microbiome in newborns may be strongly influenced by their intrinsic host microenvironmental factors (e.g., the gestational age) and has been linked to their short-term growth and potentially future health. It is yet unclear whether early microbiota composition is significantly different in newborns conceived by assisted reproductive technology (ART) when compared with those who were conceived spontaneously. Additionally, little is known about the effect of gut microbiota composition on weight gain in early infancy. We aimed to characterize the features and the determinants of the gut microbiome in ART newborns and to assess the impact of early microbiota composition on their weight gain in early infancy in mother-infant dyads enrolled in the China National Birth Cohort (CNBC). Among 118 neonates born by ART and 91 neonates born following spontaneous conception, we observed significantly reduced gut microbiota α-diversity and declined Bacteroidetes relative abundance in ART neonates. The microbiota composition of ART neonates was largely driven by specific ART treatments, hinting the importance of fetus intrinsic host microenvironment on the early microbial colonization. Following up these neonates for six months after their births, we observed the effects of gut microbiome composition on infant rapid weight gaining. Collectively, we identified features and determinants of the gut microbiota composition in ART neonates, and provided evidence for the importance of microbiota composition in neonatal growth.  相似文献   

2.
The increasing prevalence of allergy in affluent countries may be caused by reduced intensity and diversity of microbial stimulation, resulting in abnormal postnatal immune maturation. Most studies investigating the underlying immunomodulatory mechanisms have focused on postnatal microbial exposure, for example demonstrating that the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, it is also becoming increasingly evident that the maternal microbial environment during pregnancy is important in childhood immune programming, and the first microbial encounters may occur already in utero. During pregnancy, there is a close immunological interaction between the mother and her offspring, which provides important opportunities for the maternal microbial environment to influence the immune development of the child. In support of this theory, combined pre‐ and postnatal supplementations seem to be crucial for the preventive effect of probiotics on infant eczema. Here, the influence of microbial and immune interactions within the mother–offspring dyad on childhood allergy development will be discussed. In addition, how perinatal transmission of microbes and immunomodulatory factors from mother to offspring may shape appropriate immune maturation during infancy and beyond, potentially via epigenetic mechanisms, will be examined. Deeper understanding of these interactions between the maternal and offspring microbiome and immunity is needed to identify efficacious preventive measures to combat the allergy epidemic.  相似文献   

3.
BackgroundAltered intestinal microbiota has been reported in pancreatic disorders, however, it remains unclear whether these changes alter the course of disease in patients with acute (AP) and chronic pancreatitis (CP), or whether these disease states alter the environment to enable pathogenic microbial composition changes to occur. We undertook a systematic review to characterize the gut microbiome in pancreatitis patients.MethodsMEDLINE and EMBASE were searched for studies on microbiota in pancreatitis published from January 1, 2000 to June 5, 2020. Animal studies, reviews, case reports, and non-English articles were excluded. A frequency analysis was performed for outcomes reported in ≥2 studies and studies were analyzed for risk of bias and quality of evidence.Results22 papers met inclusion criteria; 15 included AP, 7 included CP. No studies were appropriately designed to assess whether alterations in the gut microbiome exacerbate pancreatitis or develop as a result of pancreatitis. We did identify several patterns of microbiome changes that are associated with pancreatitis. The gut microbiome demonstrated decreased alpha diversity in 3/3 A P studies and 3/3 C P studies. Beta diversity analysis revealed differences in bacterial community composition in the gut microbiome in 2/2 A P studies and 3/3 C P studies. Functionally, gut microbiome changes were associated with infectious pathways in AP and CP. Several studies suffered from high risk of bias and inadequate quality.ConclusionsDetecting differences in microbial composition associated with AP and CP may represent a diagnostic tool. Appropriately controlled longitudinal studies are needed to determine whether microbiome changes are causative or reactive in pancreatitis.  相似文献   

4.
Background & AimsThe tumor microbiome of patients with pancreas ductal adenocarcinoma (PDAC) includes bacteria normally present in the upper gastrointestinal tract. If the predominant source of intratumoral bacteria in patients with PDAC is retrograde migration from the duodenum, duodenal fluid could be a representative biospecimen for determining microbiome profiles of patients with PDAC or at risk of developing PDAC.MethodsWe performed a case-control study comparing bacterial and fungal (16S and 18S rRNA) profiles of secretin-stimulated duodenal fluid collections from 308 patients undergoing duodenal endoscopy including 134 normal pancreas control subjects, 98 patients with pancreatic cyst(s) and 74 patients with PDAC.ResultsAlterations in duodenal fluid microbiomes with diminished alpha diversity were significantly associated with age >70 and proton pump inhibitor use. Patients with PDAC had significantly decreased duodenal microbial alpha diversity compared with age-matched control subjects with normal pancreata and those with pancreatic cyst(s). There was evidence of enrichment of Bifidobacterium genera in the duodenal fluid of patients with PDAC compared with control subjects and those with pancreatic cyst(s). There were also enrichment of duodenal fluid Fusobacteria and Rothia bacteria among patients with PDAC with short-term survival. Duodenal fluid microbiome profiles were not significantly different between control subjects and patients with pancreatic cyst(s).ConclusionPatients with PDAC have alterations in their duodenal fluid microbiome profiles compared with patients with pancreatic cysts and those with normal pancreata. ClinicalTrials.gov, Number: NCT02000089  相似文献   

5.
ABSTRACT

The challenging conditions encountered during long sea voyages increase the risk of health-threatening physiological and psychological stress for sailors compared with land-based workers. However, how the intestinal microbiota responds to a long sea voyage and whether there is a feasible approach for protecting gut health during sea voyage are still unexplored. Here, we designed a 30-d longitudinal study including a placebo group (n = 42) and a probiotic group (n = 40) and used shotgun metagenomic sequencing to explore the impacts of sea voyage on the intestinal microbiome of sailors. By comparing the intestinal microbiome of subjects in the placebo group at baseline (d 0) and at the end of the sea voyage (d 30), we observed an alteration in the intestinal microbiome during the long sea voyage based on the microbial structure; the results revealed an increase in the species Streptococcus gordonii and Klebsiella pneumoniae as well as a decrease in some functional features. However, the change in the microbial structure of sailors in the probiotic group between d 0 and d 30 was limited, which indicated a maintenance effect of probiotics on intestinal microbiome homeostasis. At the metagenomic strain level, a generally positive correlation was observed between probiotics and the strains belonging to Bifidobacterium longum and Bifidobacterium animalis, whereas a common negative correlation was observed between probiotics and Clostridium leptum; this result revealed the potential mechanism of maintaining intestinal microbiome homeostasis by probiotics. The present study provided a feasible approach for protecting gut health during a long sea voyage.  相似文献   

6.
Introduction: Obesity and diabetes are two of the most prevalent health problems and leading causes of death globally. As research on the intestinal microbiome increases, so does our understanding of its intricate relationship to these diseases, although this has yet to be fully elucidated.

Areas covered: This review evaluates the role of the gut microbiome in obesity and diabetes, including the influences of internal and environmental factors. Literature searches were performed using the keywords ‘diabetes,’ ‘insulin resistance,’ ‘gut microbiome,’ ‘gut microbes,’ ‘obesity,’ and ‘weight gain.’

Expert commentary: Highlights of recent research include new findings regarding the effects of caloric restriction, which expound the importance of diet in shaping the gut microbiome, and studies reinforcing the lasting implications of antibiotic use for diabetes and obesity, particularly repeated doses in early childhood.

Mechanistically, interactions between the microbiome and the host innate immune system, mediated by TLR4-LPS signaling, have been shown to meditate the metabolic benefits of caloric restriction. Further, gut microbes haven now been shown to regulate oxygen availability via butyrate production, thus protecting against the proliferation of pathogens such as E. coli and Salmonella. However, many microbial metabolites remain unidentified and their roles in obesity and diabetes remain to be determined.  相似文献   


7.
ABSTRACT

Infant formula feeding, compared with human milk, has been associated with development of a distinct infant gut microbiome, but no previous study has examined effects of formula with added sugars. This work examined differences in gut microbiota among 91 Hispanic infants who consumed human milk [at breast (BB) vs. pumped in bottle (BP)] and 2 kinds of infant formula [(traditional lactose-based (TF) vs. lactose-reduced with added sugar (ASF)]. At 1 and 6 months, infant stool was collected to characterize gut microbiota. At 6 months, mothers completed 24-hour dietary recalls and questionnaires to determine infant consumption of human milk (BB vs. BP) or formula (TF vs. ASF). Linear regression models were used to determine associations of milk consumption type and microbial features at 6 months. Infants in the formula groups exhibited a significantly more ‘mature’ microbiome than infants in the human milk groups with the most pronounced differences observed between the ASF vs. BB groups. In the ASF group, we observed reduced log-normalized abundance of Bifidobacteriaceae (TF-BB Mean Difference = ?0.71, ASF-BB Mean Difference = ?1.10), and increased abundance of Lachnospiraceae (TF-BB Mean Difference = +0.89, ASF-BB Mean Difference = +1.20). We also observed a higher Community Phenotype Index of propionate, most likely produced by Lachnospiraceae, in the ASF group (TF-BB Mean Difference = +0.27, ASF-BB Mean Difference = +0.36). This study provides the first evidence that consumption of infant formula with added sugar may have a stronger association than birth delivery mode, infant caloric intake, and maternal BMI on the infant’s microbiome at 6 months of age.  相似文献   

8.
Introduction: The incidence of celiac disease (CD) has increased over the last half-century, resulting in rising interest in identifying risk factors for CD. The necessity of duodenal biopsies in the diagnosis of CD has recently been challenged.

Areas covered: This review covers the recent literature regarding the role of infant feeding practices, including breastfeeding and timing of gluten introduction, and the microbiota in the development of CD. Additionally, the application of the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for a non-biopsy approach to the diagnosis of CD is reviewed.

Expert commentary: Recent investigations have not revealed any significant effect of breastfeeding or timing of gluten introduction on the risk of CD in at-risk populations. There are alterations in the microbiota of CD patients. However, the role of the microbiome and whether its manipulation has a clinical effect are unknown. Preliminary data suggests a non-biopsy approach to diagnosis of pediatric CD can be applied to several populations, although additional studies are needed. Prospective investigations are underway to examine the interplay of infant feeding practices and the microbiome and to identify particular CD-specific biomarkers that may aid in the diagnosis and ultimately prevention of CD.  相似文献   

9.
ABSTRACT

Nutrition during pregnancy plays an important role in maternal–neonatal health. However, the impact of specific dietary components during pregnancy on maternal gut microbiota and the potential effects on neonatal microbiota and infant health outcomes in the short term are still limited. A total of 86 mother–neonate pairs were enrolled in this study. Gut microbiota profiling on maternal–neonatal stool samples at birth was carried out by 16S rRNA gene sequencing using Illumina. Maternal dietary information and maternal–neonatal clinical and anthropometric data were recorded during the first 18 months. Longitudinal Body Mass Index (BMI) and Weight-For-Length (WFL) z-score trajectories using the World Health Organization (WHO) curves were obtained. The maternal microbiota was grouped into two distinct microbial clusters characterized by Prevotella (Cluster I) and by the Ruminococcus genus (Cluster II). Higher intakes of total dietary fiber, omega-3 fatty acids, and polyphenols were observed in Cluster II compared to Cluster I. Higher intakes of plant-derived components were associated with a higher presence of the Christensellaceae family, Dehalobacterium and Eubacterium, and lower amounts of the Dialister and Campylobacter species. Maternal microbial clusters were also linked to neonatal microbiota and infant growth in a birth-dependent manner. C-section neonates from Cluster I showed the highest BMI z-score at age 18 months, along with a higher risk of overweight. Longitudinal BMI and WL z-score trajectories from birth to 18 months were shaped by maternal microbial cluster, diet, and birth mode. Diet was an important perinatal factor in early life that may impact maternal microbiota; in particular, fiber, lipids and proteins, and exert a significant effect on the neonatal microbiome and contribute to infant development during the first months of life.  相似文献   

10.
《Gut microbes》2013,4(4):547-552
ABSTRACT

Although the gut microbiome has been linked to colorectal cancer (CRC) development, associations of microbial taxa with CRC status are often inconsistent across studies. We have recently shown that tumor genomics, a factor that is rarely incorporated in analyses of the CRC microbiome, has a strong effect on the composition of the microbiota. Here, we discuss these results in the wider context of studies characterizing interaction between host genetics and the microbiome, and describe the implications of our findings for understanding the role of the microbiome in CRC.  相似文献   

11.
BACKGROUNDIrritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. Dysregulation of the gut–brain axis plays a central role in the pathophysiology of IBS. It is increasingly clear that the microbiome plays a key role in the development and normal functioning of the gut–brain axis.AIMTo facilitate the identification of specific areas of focus that may be of relevance to future research. This study represents a bibliometric analysis of the literature pertaining to the microbiome in IBS to understand the development of this field. METHODSThe data used in our bibliometric analysis were retrieved from the Scopus database. The terms related to IBS and microbiome were searched in titles or abstracts within the period of 2000–2019. VOSviewer software was used for data visualization. RESULTSA total of 13055 documents related to IBS were retrieved at the global level. There were 1872 scientific publications focused on the microbiome in IBS. There was a strong positive correlation between publication productivity related to IBS in all fields and productivity related to the microbiome in IBS (r = 0.951, P < 0.001). The United States was the most prolific country with 449 (24%) publications, followed by the United Kingdom (n = 176, 9.4%), China (n = 154, 8.2%), and Italy (n = 151, 8.1%). The h-index for all retrieved publications related to the microbiome in IBS was 138. The hot topics were stratified into four clusters: (1) The gut–brain axis related to IBS; (2) Clinical trials related to IBS and the microbiome; (3) Drug-mediated manipulation of the gut microbiome; and (4) The role of the altered composition of intestinal microbiota in IBS prevention. CONCLUSIONThis is the first study to evaluate and quantify global research productivity pertaining to the microbiome in IBS. The number of publications regarding the gut microbiota in IBS has continuously grown since 2013. This finding suggests that the future outlook for interventions targeting the gut microbiota in IBS remains promising.  相似文献   

12.
ABSTRACT

Up to 10% of women use selective serotonin reuptake inhibitor (SSRI) antidepressants during pregnancy and postpartum. Recent evidence suggests that SSRIs are capable of altering the gut microbiota. However, the interaction between maternal depression and SSRI use on bacterial community composition and the availability of microbiota-derived metabolites during pregnancy and lactation is not clear.

We studied this using a rat model relevant to depression, where adult females with a genetic vulnerability and stressed as pups show depressive-like behaviors. Throughout pregnancy and lactation, females received the SSRI fluoxetine or vehicle. High-resolution 16S ribosomal RNA marker gene sequencing and targeted metabolomic analysis were used to assess the fecal microbiome and metabolite availability, respectively.

Not surprisingly, we found that pregnancy and lactation segregate in terms of fecal microbiome diversity and composition, accompanied by changes in metabolite availability. However, we also showed that fluoxetine treatment altered important features of this transition from pregnancy to lactation most clearly in previously stressed dams, with lower fecal amino acid concentrations. Amino acid concentrations, in turn, correlated negatively with the relative abundance of bacterial taxa such as Prevotella and Bacteroides.

Our study demonstrates an important relationship between antidepressant use during the perinatal period and maternal fecal metabolite availability in a rat model relevant to depression, possibly through parallel changes in the gut microbiome. Since microbial metabolites contribute to homeostasis and development, insults to the maternal microbiome by SSRIs might have health consequences for mother and offspring.  相似文献   

13.
Background and aimsConsumption of soy foods has been associated with protection against cardiometabolic disease, but the mechanisms are incompletely understood.We hypothesized that habitual soy food consumption associates with gut microbiome composition, metabolite production, and the interaction between diet, microbiota and metabolites.Methods and resultsWe analyzed dietary soy intake, plasma and stool metabolites, and gut microbiome data from two independent cross-sectional samples of healthy US individuals (N = 75 lean or overweight, and N = 29 obese).Habitual soy intake associated with several circulating metabolites. There was a significant interaction between soy intake and gut microbiome composition, as defined by gut enterotype, on metabolites in plasma and stool. Soy consumption associated with reduced systolic blood pressure, but only in a subset of individuals defined by their gut microbiome enterotype, suggesting that responsiveness to soy may be dependent on microbiome composition. Soy intake was associated with differences in specific microbial taxa, including two taxa mapping to genus Dialister and Prevotella which appeared to be suppressed by high soy intake We identified context-dependent effects of these taxa, where presence of Prevotella was associated with higher blood pressure and a worse cardiometabolic profile, but only in the absence of Dialister.ConclusionsThe gut microbiome is an important intermediate in the interplay between dietary soy intake and systemic metabolism. Consumption of soy foods may shape the microbiome by suppressing specific taxa, and may protect against hypertension only in individuals with soy-responsive microbiota.Clinical trials registryNCT02010359 at clinicaltrials.gov.  相似文献   

14.
High-throughput molecular studies are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome we need robust experimental models that allow the systematic manipulation of variables to test the multitude of hypotheses arisen from large-scale ‘meta-omic’ projects. The nematode C. elegans combined with bacterial models offers an avenue to dissect cause and effect in host-microbiome interactions. This combined model allows the genetic manipulation of both host and microbial genetics and the use of a variety of tools, to identify pathways affecting host health. A number of recent high impact studies have used C. elegans to identify microbial pathways affecting ageing and longevity, demonstrating the power of the combined C. elegans-bacterial model. Here I will review the current state of the field, what we have learned from using C. elegans to study gut microbiome and host interactions, and the potential of using this model system in the future.  相似文献   

15.
ABSTRACT

Introduction: Many studies have shown the relationship between autoimmune diseases and the gut microbiome in humans: those with autoimmune conditions display gut microbiome dysbiosis. The big question that needs to be addressed is if restoring eubiosis of the gut microbiota can help suppress the autoimmune condition by activating various immune regulatory mechanisms. Inducing these self-healing mechanisms should prolong good health in affected individuals.

Area covered: Here, we review the available clinical and preclinical studies that have used selective bacteria for modulating gut microbiota for treating autoimmune diseases. The potential bacterial candidates and their mechanism of action in treating autoimmune diseases will be discussed. We searched for genetically modified and potential probiotics for diseases and discuss the most likely candidates.

Expert commentary: To achieve eubiosis, manipulation of the gut microbiota must occur in some form. Several approaches for modulating gut microbiota include prebiotic diets, antimicrobial interventions, fecal microbiota transplants, and selective probiotics. One novel approach showing promising results is the use of selective bacterial candidates to modulate microbial composition. Use of single microbe for treatment has an advantage as compared to multi-species as microbes grow at different rates and if needed, a single microbe is easy to target.  相似文献   

16.
Introduction:Familial chylomicronemia syndrome (FCS) is a rare genetic disease. FCS usually manifests by the age of 10 years, and 25% of cases of FCS occur during infancy. Here we present a case of FCS in a male infant and summarize our experiences on the diagnosis and therapy of this case.Patient concerns:A male infant aged 1 month and 8 days had recurrent hematochezia and hyperchylomicronemia.Diagnosis:FCS based on symptoms and genetic test.Interventions:Plasma exchange therapy.Outcomes:His development was normal with a good spirit and satisfactory weight gain, and no hematochezia occurred again.Conclusion:Genetic test is important for accurate diagnosis of FCS, and we identified a new mutation of lipoprotein lipase gene c.88C>A which conformed to autosomal recessive inheritance. Plasma exchange therapy can be applied to infants with FCS with low risk and good outcomes.  相似文献   

17.
Early infant diet has significant impacts on the gut microbiota and developing immune system. We previously showed that breast-fed and formula-fed rhesus macaques develop significantly different gut microbial communities, which in turn are associated with different immune systems in infancy. Breast-fed animals manifested greater T cell activation and proliferation and harbored robust pools of T helper 17 (TH17) cells. These differences were sustained throughout the first year of life. Here we examine groups of juvenile macaques (approximately 3 to 5 y old), which were breast-fed or formula-fed in infancy. We demonstrate that juveniles breast-fed in infancy maintain immunologic differences into the fifth year of life, principally in CD8+ memory T cell activation. Additionally, long-term correlation networks show that breast-fed animals maintain persistent relationships between immune subsets that are not seen in formula-fed animals. These findings demonstrate that infant feeding practices have continued influence on immunity for up to 3 to 5 y after birth and also reveal mechanisms for microbial modulation of the immune system.  相似文献   

18.
ABSTRACT

Crohn’s disease (CD) is a chronic immune-mediated inflammatory condition caused by the loss of mucosal tolerance toward the commensal microbiota. On average, 29.5% and 42.7% CD patients experience perianal complications at 10 and 20 y after diagnosis, respectively. Perianal CD (pCD) result in high disease burden, diminished quality of life, and elevated health-care costs. Overall pCD are predictors of poor long-term outcomes. Animal models of gut inflammation have failed to fully recapitulate the human manifestations of fistulizing CD. Here, we evaluated dogs with spontaneous canine anal furunculosis (CAF), a disease with clinical similarities to pCD, as a surrogate model for understanding the microbial contribution of human pCD pathophysiology.

By comparing the gut microbiomes between dogs suffering from CAF (CAF dogs) and healthy dogs, we show CAF-dog microbiomes are either very dissimilar (dysbiotic) or similar (healthy-like), yet unique, to healthy dog’s microbiomes. Compared to healthy or healthy-like CAF microbiomes, dysbiotic CAF microbiomes showed an increased abundance of Bacteroides vulgatus and Escherichia coli and a decreased abundance of Megamonas species and Prevotella copri.

Our results mirror what have been reported in previous microbiome studies of patients with CD; particularly, CAF dogs exhibited two distinct microbiome composition: dysbiotic and healthy-like, with determinant bacterial taxa such as E. coli and P. copri that overlap what it has been found on their human counterpart. Thus, our results support the use of CAF dogs as a surrogate model to advance our understanding of microbial dynamics in pCD.  相似文献   

19.
Introduction: Over the last decade, remarkable progress has been made in the understanding of disease pathophysiology. Many new theories expound on the importance of emerging factors such as microbiome influences, genomics/omics, stem cells, innate intestinal immunity or mucosal barrier complexities. This has introduced a further dimension of uncertainty into clinical decision-making, but equally, may shed some light on less well-understood and difficult to manage conditions.

Areas covered: Comprehensive review of the literature on gut barrier and microbiome relevant to small bowel pathology. A PubMed/Medline search from 1990 to April 2017 was undertaken and papers from this range were included.

Expert commentary: The scenario of clinical uncertainty is well-illustrated by functional gastrointestinal disorders (FGIDs). The movement towards achieving a better understanding of FGIDs is expressed in the Rome IV guidelines. Novel diagnostic and therapeutic protocols focused on the GB and SB microbiome can facilitate diagnosis, management and improve our understanding of the underlying pathological mechanisms in FGIDs.  相似文献   

20.
《Gut microbes》2013,4(4):284-289
Early infant diet has significant impacts on the gut microbiota and developing immune system. We previously showed that breast-fed and formula-fed rhesus macaques develop significantly different gut microbial communities, which in turn are associated with different immune systems in infancy. Breast-fed animals manifested greater T cell activation and proliferation and harbored robust pools of T helper 17 (TH17) cells. These differences were sustained throughout the first year of life. Here we examine groups of juvenile macaques (approximately 3 to 5 y old), which were breast-fed or formula-fed in infancy. We demonstrate that juveniles breast-fed in infancy maintain immunologic differences into the fifth year of life, principally in CD8+ memory T cell activation. Additionally, long-term correlation networks show that breast-fed animals maintain persistent relationships between immune subsets that are not seen in formula-fed animals. These findings demonstrate that infant feeding practices have continued influence on immunity for up to 3 to 5 y after birth and also reveal mechanisms for microbial modulation of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号