首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009–2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19–0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.  相似文献   

2.
The intestinal microbiota is involved in ulcerative colitis (UC) pathogenesis. Prebiotics are hypothesized to improve health through alterations to gut microbiota composition and/or activity. Our aim was therefore to determine if inulin-type fructans induce clinical benefits in UC, and identify if benefits are linked to compositional and/or functional shifts of the luminal (fecal) and mucosal (biopsy) bacterial communities. Patients (n = 25) with mild/moderately active UC received 7.5 g (n = 12) or 15 g (n = 13) daily oral oligofructose-enriched inulin (Orafti®Synergy1) for 9 weeks. Total Mayo score, endoscopic activity and fecal calprotectin were assessed. Fecal and mucosal bacterial communities were characterized by 16S rRNA tag sequencing, and short chain fatty acids (SCFA) production were measured in fecal samples. Fructans significantly reduced colitis in the high-dose group, with 77% of patients showing a clinical response versus 33% in the low-dose group (= 0.04). Fructans increased colonic butyrate production in the 15 g/d dose, and fecal butyrate levels were negatively correlated with Mayo score (r = ?0.50; P = 0.036). The high fructan dose led to an increased Bifidobacteriaceae and Lachnospiraceae abundance but these shifts were not correlated with improved disease scores. In summary, this pilot study revealed that 15 g/d dose inulin type fructans in UC produced functional but not compositional shifts of the gut microbiota, suggesting that prebiotic-induced alterations of gut microbiota metabolism are more important than compositional changes for the benefits in UC. The findings warrant future well-powered controlled studies for the use of β-fructans as adjunct therapy in patients with active UC.  相似文献   

3.
ABSTRACT

Type 2 diabetes (T2D) is associated with reduced gut microbiome diversity, although the cause is unclear. Metabolites generated by gut microbes also appear to be causative factors in T2D. We therefore searched for serum metabolites predictive of gut microbiome diversity in 1018 females from TwinsUK with concurrent metabolomic profiling and microbiome composition. We generated a Microbial Metabolites Diversity (MMD) score of six circulating metabolites that explained over 18% of the variance in microbiome alpha diversity. Moreover, the MMD score was associated with a significantly lower odds of prevalent (OR[95%CI] = 0.22[0.07;0.70], P = .01) and incident T2D (HR[95%CI] = 0.31[0.11,0.90], P = .03). We replicated our results in 1522 individuals from the ARIC study (prevalent T2D: OR[95%CI] = 0.79[0.64,0.96], P = .02, incident T2D: HR[95%CI] = 0.87[0.79,0.95], P = .003). The MMD score mediated 28%[15%,94%] of the total effect of gut microbiome on T2D after adjusting for confounders. Metabolites predicting higher microbiome diversity included 3-phenylpropionate(hydrocinnamate), indolepropionate, cinnamoylglycine and 5-alpha-pregnan-3beta,20 alpha-diol monosulfate(2) of which indolepropionate and phenylpropionate have already been linked to lower incidence of T2D. Metabolites correlating with lower microbial diversity included glutarate and imidazole propionate, of which the latter has been implicated in insulin resistance. Our results suggest that the effect of gut microbiome diversity on T2D is largely mediated by microbial metabolites, which might be modifiable by diet.  相似文献   

4.
ABSTRACT

Many patients with alcohol use disorder (AUD) consume alcohol chronically and in large amounts that alter intestinal microbiota, damage the gastrointestinal tract, and thereby injure other organs via malabsorption and intestinal inflammation. We hypothesized that alcohol consumption and subsequent abstinence would change the gut microbiome in adults admitted to a treatment program. Stool and oral specimens, diet data, gastrointestinal assessment scores, anxiety, depression measures and drinking amounts were collected longitudinally for up to 4 weeks in 22 newly abstinent inpatients with AUD who were dichotomized as less heavy drinkers (LHD, <10 drinks/d) and very heavy drinkers (VHD, 10 or more drinks/d). Next-generation 16 S rRNA gene sequencing was performed to measure the gut and oral microbiome at up to ten time points/subject and LHD and VHD were compared for change in principal components, Shannon diversity index and specific genera. The first three principal components explained 46.7% of the variance in gut microbiome diversity across time and all study subjects, indicating the change in gut microbiome following abstinence. The first time point was an outlier in three-dimensional principal component space versus all other time points. The gut microbiota in LHD and VHD were significantly dissimilar in change from day 1 to day 5 (p = .03) and from day 1 to week 3 (p = .02). The VHD drinking group displayed greater change from baseline. The Shannon diversity index of the gut microbiome changed significantly during abstinence in five participants. In both groups, the Shannon diversity was lower in the oral microbiome than gut. Ten total genera were shared between oral and stool in the AUD participants. These data were compared with healthy controls from the Human Microbiome Project to investigate the concept of a core microbiome. Rapid changes in gut microbiome following abstinence from alcohol suggest resilience of the gut microbiome in AUD and reflects the benefits of refraining from the highest levels of alcohol and potential benefits of abstinence.  相似文献   

5.
The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother''s milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn’t. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited.  相似文献   

6.
7.
Dietary fiber is a key component in gastrointestinal health maintenance partly due to its fermentation by the gut microbiome. The food-dependent effects of a novel fiber bundle added to hydrolyzed meat (HM) or grain-rich (GR) foods in healthy dogs (n = 16) or those with chronic enteritis/gastroenteritis (n = 16) were examined. Addition of fiber to either food improved stool quality in dogs regardless of health status; microbiome diversity of dogs with chronic enteritis/gastroenteritis became more similar to healthy dogs. The abundance of bacteria mediating beneficial saccharolytic processes (eg, Lachnospiraceae) significantly increased on addition of fiber to the GR food, while those mediating detrimental proteolytic catabolism (eg, Desulfovibrionaceae) significantly decreased. Fiber addition to the HM food led to significant changes in saccharolytic/proteolytic bacteria. Higher levels of free saccharides in feces upon fiber addition to either food indicated increased saccharolysis. Fiber addition to the GR food decreased levels of fecal free amino acids, indicating decreased proteolysis. Addition of fiber decreased fecal pH for both foods but likely by different mechanisms: addition of fiber to the HM food led to increased straight-chain short-chain fatty acids (SCFAs) and no significant change in proteolytic branched-chain SFCAs, while in the GR food, fiber mainly led to decreased proteolytic branched-chain SFCAs. Other postbiotics related to intestinal health were consistently altered when fiber was added to either food. Plant-derived bioactive molecules were enriched in feces from dogs fed either food with added fiber, which could account for the observed modulation of the canine gut microbiome and shifts in metabolic capacity.  相似文献   

8.
We evaluated the ability of circulating T lymphocytes obtained from patients with systemic sclerosis (SSc) to induce the expression of tissue factor (TF) by human umbilical vein endothelial cells (HUVECs), and compared the results with those obtained from healthy controls. Nine patients with SSc and 10 sex- and age-matched healthy subjects were studied. Peripheral T lymphocytes obtained from SSc patients induced TF activity from HUVECs in a dose-dependent manner. A significant induction of endothelial TF was observed when 2×106 lymphocytes per well (TF values, mean ± SD: O.34 ± 0.21U/mg of cell protein vs 0.04 ± 0.03; n= 9, p= 0.001) or 1×106 lymphocytes per well (0.13 ± 0.06 vs 0.04 ± 0.04; n= 8, p <0.001) were added to HUVEC cultures. Lower concentrations of T lymphocytes were ineffective. Similar results were obtained with control lymphocytes. There were no differences in endothelial TF induction between patients and controls at any lymphocyte concentration tested. Within the SSc group, there were no correlations between TF activity and clinical features or disease duration. Received: 10 February 1998 / Accepted: 13 August 1998  相似文献   

9.
ABSTRACT

Gastrointestinal (GI) microbiota play an important role in human health and wellbeing and the first wave of gut microbes arrives mostly through vertical transmission from mother to child. This study has undertaken to understand the microbiota profile of healthy Southeast Asian mother-infant pairs. Here, we examined the fecal, vaginal and breast milk microbiota of Indonesian mothers and the fecal microbiota of their children from less than 1 month to 48 months old. To determine the immune status of children and the effect of diet at different ages, we examined the level of cytokines, bile acids in the fecal water and weaning food frequency. The fecal microbiota of the children before weaning contained mainly Bacteroides and Bifidobacterium, which presented at low abundance in the samples of mothers. After weaning, the fecal microbiome of children was mainly of the Prevotella type, with decreasing levels of Bifidobacterium, thus becoming more like the fecal microbiome of the mother. The abundance of infant fecal commensals generally correlated inversely with potential pathogens before weaning. The fecal Bifidobacterium in children correlated inversely with the consumption of complex carbohydrates and fruits after weaning. The specific cytokines related to the proliferation and maturation of immunity were found to increase after weaning. A decreasing level of primary bile acids and an increase of secondary bile acids were observed after weaning. This study highlights the change in the GI microbiota of infants to adult-type microbiota after weaning and identifies diet as a major contributing factor.  相似文献   

10.
ABSTRACT

Nutrition during pregnancy plays an important role in maternal–neonatal health. However, the impact of specific dietary components during pregnancy on maternal gut microbiota and the potential effects on neonatal microbiota and infant health outcomes in the short term are still limited. A total of 86 mother–neonate pairs were enrolled in this study. Gut microbiota profiling on maternal–neonatal stool samples at birth was carried out by 16S rRNA gene sequencing using Illumina. Maternal dietary information and maternal–neonatal clinical and anthropometric data were recorded during the first 18 months. Longitudinal Body Mass Index (BMI) and Weight-For-Length (WFL) z-score trajectories using the World Health Organization (WHO) curves were obtained. The maternal microbiota was grouped into two distinct microbial clusters characterized by Prevotella (Cluster I) and by the Ruminococcus genus (Cluster II). Higher intakes of total dietary fiber, omega-3 fatty acids, and polyphenols were observed in Cluster II compared to Cluster I. Higher intakes of plant-derived components were associated with a higher presence of the Christensellaceae family, Dehalobacterium and Eubacterium, and lower amounts of the Dialister and Campylobacter species. Maternal microbial clusters were also linked to neonatal microbiota and infant growth in a birth-dependent manner. C-section neonates from Cluster I showed the highest BMI z-score at age 18 months, along with a higher risk of overweight. Longitudinal BMI and WL z-score trajectories from birth to 18 months were shaped by maternal microbial cluster, diet, and birth mode. Diet was an important perinatal factor in early life that may impact maternal microbiota; in particular, fiber, lipids and proteins, and exert a significant effect on the neonatal microbiome and contribute to infant development during the first months of life.  相似文献   

11.
《Gut microbes》2013,4(6):681-687
The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother's milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn’t. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited.  相似文献   

12.
A unique model of formula feeding in the neonatal rat was utilized to investigate the effects of an enterally delivered artificial milk formula on clinically relevant immunological and biological characteristics in the gut, compared to naturally reared pups. Hooded Wistar rat pups were randomly allocated to two treatment groups: formula-fed (FF) or naturally suckled (NS). A flexible silastic intra-gastric cannula was surgically implanted into the FF pups, through which an artificial rat milk supplement was continuously delivered from day 4 to day 10 of life. Rat pups were sacrificed at 10 days of age. Body weight, small intestinal weight, mucosal CD8+ cell numbers, and ileal lactase activity in FF animals were significantly decreased compared to their NS counterparts (P < 0.05). Numbers of eosinophils, mucosal mast cells, CD4+ T-cells, ileal villus height and gastric emptying times were significantly increased in FF pups (P < 0.05). We have developed a new rat model of artificial feeding which possesses important immunological and biological similarities to the premature human infant.  相似文献   

13.

Background and Aims

Despite high potency, a significant proportion of patients treated with entecavir achieve only partial viral suppression. Our goal was to examine the complete viral suppression rate (undetectable HBV DNA PCR levels) with alternative therapies in such patients.

Methods

We retrospectively studied 42 consecutive patients with partial response to entecavir (detectable HBV DNA at ≥12 months of therapy) who were treated at three clinics with rescue therapies: entecavir + adefovir (n = 5), tenofovir (n = 6), and entecavir + tenofovir (n = 31). Antiviral resistance was excluded by negative mutation analysis and/or absence of virologic breakthrough (increase >1 log10IU/mL from nadir).

Results

All patients were Asian and 57 % were male with a median age of 36 (22–64) years. Only a few patients had prior exposure to lamivudine (7 %) or adefovir (7 %). Almost all patients (95 %) had positive HBeAg. Overall, the complete viral suppression rate was 79 %, and the alanine aminotransferase normalization rate was 83 % in entecavir partial responders after 6 months on rescue therapies. Cumulative complete viral suppression rates were significantly different (P = 0.0164) among the entecavir + adefovir, tenofovir, and entecavir + tenofovir treatment groups at 6 months (20 vs. 83 vs. 83 %, respectively) and 12 months (20 vs. 100 vs. 97 %). All three patients without complete viral suppression on entecavir + adefovir became aviremic 6 months after switching to entecavir + tenofovir.

Conclusions

Virologic response to entecavir + tenofovir combination therapy and tenofovir monotherapy appeared to be similar in most patients, but not with the entecavir + adefovir combination.  相似文献   

14.
Background. To evaluate the effect of feeding with milk on the gastrointestinal tract, we studied gastric electrical activity in 27 healthy fullterm newborns (15 formula-fed newborns and 12 breast-fed newborns) during the first 6 months of life. Methods. Three-hour electrogastrography (EGG) recordings were performed, using portable equipment, from the third to fifth day after birth until 6 months, at 3-month intervals. The EGG parameters were calculated as raw and integrated data, the latter as AUC of the whole postprandial period. Results. There was a significant difference in the fasting 3-cpm activity between the two groups (repeated measures analysis of variance [ANOVA] P = 0.02; multiple comparisons: formula milk at birth vs breast milk at birth P < 0.001). In addition, a significant change in the percentage of postprandial bradygastria was found at 6 months, 1 month after weaning (repeated measures ANOVA, P = 0.01; multiple comparisons: formula milk at 6 months vs formula milk at 3 months, P = 0.03, formula milk at 6 months vs formula milk at birth, P = 0.02; breast milk at 6 months vs breast milk at 3 months, P = 0.03, breast milk at 6 months vs breast milk at birth P = 0.02). Conclusions. An adult-like gastric 3-cpm activity can be observed in breast-fed newborns in contrast to formula-fed ones, probably as an effect of colostrum. The high bradygastria percentage recorded at 6 months of life might be the result of an increased low-frequency component of the EGG signal because of the transition to a mixed diet.  相似文献   

15.

Background

Although β blockade (BB) in patients with chronic obstructive pulmonary disease (COPD) does not show signs of worsening pulmonary function or respiratory symptoms, the effects on cardiopulmonary exercise testing (CPET) remain unclear. The aim of this study was to determine whether BB affects exercise capacity, gas exchange, and hemodynamic responses in patients with COPD.

Methods

Twenty-four COPD subjects on BB were matched to 24 COPD subjects without BB according to age, gender, body mass index, and severity of COPD. All subjects underwent resting pulmonary function and symptom-limited CPET.

Results

Comparing COPD patients with and without BB revealed that percent peak oxygen consumption and VE/VCO2 nadir were not significantly different (45 ± 16 vs. 51 ± 23 %, p = 0.30, and 35.1 ± 8.5 vs. 36.2 ± 11.6 %, p = 0.69). Systolic blood pressure and heart rate at peak exercise were significantly decreased in COPD patients with BB (168 ± 16 vs. 185 ± 20 mmHg, and 109 ± 16 vs. 122 ± 14 bpm, respectively, p < 0.05).

Conclusion

Exercise capacity and gas exchange remain unaffected in patients with COPD in the presence of BB, although heart rate and blood pressure are lower. These findings imply that BB does not adversely affect functional capacity in patients with COPD.  相似文献   

16.
ABSTRACT

Bile acid metabolism by the gut microbiome exerts both beneficial and harmful effects on host health. Microbial bile salt hydrolases (BSHs), which initiate bile acid metabolism, exhibit both positive and negative effects on host physiology. In this study, 5,790 BSH homologs were collected and classified into seven clusters based on a sequence similarity network. Next, the abundance and distribution of BSH in 380 metagenomes from healthy participants were analyzed. It was observed that different clusters occupied diverse ecological niches in the human microbiome and that the clusters with signal peptides were relatively abundant in the gut. Then, the association between BSH clusters and 12 human diseases was analyzed by comparing the abundances of BSH genes in patients (n = 1,605) and healthy controls (n = 1,540). The analysis identified a significant association between BSH gene abundance and 10 human diseases, including gastrointestinal diseases, obesity, type 2 diabetes, liver diseases, cardiovascular diseases, and neurological diseases. The associations were further validated by separate cohorts with inflammatory bowel diseases and colorectal cancer. These large-scale studies of enzyme sequences combined with metagenomic data provide a reproducible assessment of the association between gut BSHs and human diseases. This information can contribute to future diagnostic and therapeutic applications of BSH-active bacteria for improving human health.  相似文献   

17.
Background and aimsConsumption of soy foods has been associated with protection against cardiometabolic disease, but the mechanisms are incompletely understood.We hypothesized that habitual soy food consumption associates with gut microbiome composition, metabolite production, and the interaction between diet, microbiota and metabolites.Methods and resultsWe analyzed dietary soy intake, plasma and stool metabolites, and gut microbiome data from two independent cross-sectional samples of healthy US individuals (N = 75 lean or overweight, and N = 29 obese).Habitual soy intake associated with several circulating metabolites. There was a significant interaction between soy intake and gut microbiome composition, as defined by gut enterotype, on metabolites in plasma and stool. Soy consumption associated with reduced systolic blood pressure, but only in a subset of individuals defined by their gut microbiome enterotype, suggesting that responsiveness to soy may be dependent on microbiome composition. Soy intake was associated with differences in specific microbial taxa, including two taxa mapping to genus Dialister and Prevotella which appeared to be suppressed by high soy intake We identified context-dependent effects of these taxa, where presence of Prevotella was associated with higher blood pressure and a worse cardiometabolic profile, but only in the absence of Dialister.ConclusionsThe gut microbiome is an important intermediate in the interplay between dietary soy intake and systemic metabolism. Consumption of soy foods may shape the microbiome by suppressing specific taxa, and may protect against hypertension only in individuals with soy-responsive microbiota.Clinical trials registryNCT02010359 at clinicaltrials.gov.  相似文献   

18.
ABSTRACT

Probiotics are recognized for outcompeting pathogenic bacteria by competitive receptor-mediated colonization and secretion of functional metabolites which are antimicrobial against certain microbes as well as improving host’s gut health and immunity. Recently, we have constructed a bioactive Lactobacillus casei (LC) strain, LC+mcra , by inserting mcra (myosin cross-reactive antigen) gene, which stimulates the conversion of conjugated linoleic acids. In this study, we evaluated the modulation of gut microbiome and protective roles of LC+mcra against pathogenic Salmonella enterica serovar Typhimurium (ST) and enterohemorrhagic E. coli (EHEC) infections in BALB/cJ mice. We observed that LC+mcra colonized efficiently in mice gut intestine and competitively reduced the infection with ST and EHEC in various locations of small and large intestine, specifically cecum, jejunum, and ileum (p < 0.05). Positive modulation of the cecal microbiota, for example, higher relative abundances of Firmicutes, lower relative abundances of Proteobacteria, and increased bacterial species diversity/richness, was detected in ST-challenged mice pretreated with LC+mcra based on 16S metagenomic sequencing. Cytokine gene expression analysis indicated that mice pretreated with LC+mcra associated with attenuated bacterial pathogen-induced gut inflammation. Furthermore, mice fed daily with LC+mcra for one week could protect themselves from the impairments caused by enteric infections with ST or EHEC. These impairments include weight loss, negative hematological changes, intestinal histological alterations, and potential death. This in vivo study suggests that daily consumption of novel conjugated linoleic acids over-producing probiotic effectively improves intestinal microbiota composition and prevents/combats foodborne enteric bacterial infections with pathogenic Salmonella and diarrheagenic E. coli.  相似文献   

19.
ABSTRACT

Bacteria in human milk could directly seed the infant intestinal microbiota, while information about how milk microbiota develops during lactation and how geographic location, gestational hypertensive status, and maternal age influence this process is limited. Here, we collected human milk samples from mothers of term infants at the first day, 2 weeks, and 6 weeks postpartum from 117 longitudinally followed-up mothers (age: 28.7 ± 3.6 y) recruited from three cities in China. We found that milk microbial diversity and richness were the highest in colostrum but gradually decreased over lactation. Microbial composition changed across lactation and exhibited more discrete compositional patterns in 2-week and 6-week milk samples compared with colostrum samples. At phylum level, the abundance of Proteobacteria increased during lactation, while Firmicutes showed the opposite trend. At genus level, Staphylococcus, Streptococcus, Acinetobacter, Pseudomonas, and Lactobacillus were predominant in colostrum samples and showed distinct variations across lactation. Maternal geographic location was significantly associated with the milk microbiota development and the abundance of predominant genus. In addition, milk from mothers with gestational prehypertension had a different and less diverse microbial community at genus level in early lactation times, and contained less Lactobacillus in the 2-week milk samples than those from normotensive mothers. Findings of our study outlined the human milk microbial diversity and community development over lactation, and underscored the importance of maternal geographic locations and gestational hypertensive status on milk microbiota, which might have important implications in the establishment of the infant intestinal microbiota via breastfeeding.  相似文献   

20.
ABSTRACT

Urinary tract infection (UTI) is a common complication in kidney transplant recipients and can lead to significant morbidity and mortality. Recent evidence supports a role for the gut as a source for UTIs but little is known about the relationship between gut commensal bacteria and UTI development. We hypothesized that the abundance of gut commensal bacteria is associated with a lower risk of developing bacteriuria and UTIs. We performed gut microbiome profiling using 16S rRNA gene sequencing of the V4-V5 hypervariable region on 510 fecal specimens in 168 kidney transplant recipients. Fifty-one kidney transplant recipients (30%) developed Enterobacteriaceae bacteriuria within the first 6 months after transplantation (Enterobacteriaceae Bacteriuria Group) and 117 did not (No Enterobacteriaceae Bacteriuria Group). The relative abundances of Faecalibacterium and Romboutsia were significantly higher in the fecal specimens from the No Enterobacteriaceae Bacteriuria Group than those from the Enterobacteriaceae Bacteriuria Group (Adjusted P value<.01). The combined relative abundance of Faecalibacterium and Romboutsia was inversely correlated with the relative abundance of Enterobacteriaceae (r = ?0.13, P = .003). In a multivariable Cox Regression, a top tercile cutoff of the combined relative abundance of Faecalibacterium and Romboutsia of ≥13.7% was independently associated with a decreased risk for Enterobacteriaceae bacteriuria (hazard ratio 0.3, P = .02) and Enterobacteriaceae UTI (hazard ratio 0.4, P = .09). In conclusion, we identify bacterial taxa associated with decreased risk for Enterobacteriaceae bacteriuria and Enterobacteriaceae UTI in kidney transplant recipients, which supports future studies on modulating the gut microbiota as a novel treatment for preventing UTIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号