首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proinflammatory chemokine interleukin-8 (IL-8) is undetectable in androgen-responsive prostate cancer cells (e.g., LNCaP and LAPC-4), but it is highly expressed in androgen-independent metastatic cells, such as PC-3. In this report, we show IL-8 functions in androgen independence, chemoresistance, tumor growth, and angiogenesis. We stably transfected LNCaP and LAPC-4 cells with IL-8 cDNA and selected IL-8-secreting (IL8-S) transfectants. The IL8-S transfectants that secreted IL-8 at levels similar to that secreted by PC-3 cells (100-170 ng/10(6) cells) were characterized. Continuous or transient exposure of LNCaP and LAPC-4 cells to IL-8 reduced their dependence on androgen for growth and decreased sensitivity (>3.5x) to an antiandrogen. IL-8-induced cell proliferation was mediated through CXCR1 and was independent of androgen receptor (AR). Quantitative PCR, immunoblotting, and transfection studies showed that IL8-S cells or IL-8-treated LAPC-4 cells exhibit a 2- to 3-fold reduction in PSA and AR levels, when compared with vector transfectants. IL8-S cells expressed 2- to 3-fold higher levels of phospho-EGFR, src, Akt, and nuclear factor kappaB (NF-kappaB) and showed increased survival when treated with docetaxel. This increase was blocked by NF-kappaB and src inhibitors, but not by an Akt inhibitor. IL8-S transfectants displayed a 3- to 5-fold increased motility, invasion, matrix metalloproteinase-9 and vascular endothelial growth factor production. LNCaP IL8-S cells grew rapidly as tumors, with increased microvessel density and abnormal tumor vasculature when compared with the tumors derived from their vector-transfected counterparts. Therefore, IL-8 is a molecular determinant of androgen-independent prostate cancer growth and progression.  相似文献   

2.
Androgen deprivation therapies for metastatic prostate cancer are useful initially, but progression to androgen independence usually results in relapse within 2 years. The molecular mechanisms underlying the clinically important transition from androgen dependence to androgen independence are poorly described. Several lines of investigation have suggested that insulin-like growth factors (IGFs) are involved in the biology of prostate cancer, but little is known about their relevance to progression to androgen independence. We used three in vivo models of androgen-dependent (AD) human prostate cancer to study this issue. Progression to androgen-independent (AI) growth was associated with a 60-fold increase in expression of IGF-I mRNA in LAPC-9 xenografts and a 28-fold increase in IGF-I expression in LNCAP xenografts, relative to the initial AD neoplasms. IGF type I receptor (IGF-IR) mRNA levels were approximately 2.5-fold and approximately 5-fold higher, respectively, in AI LAPC-9 and LNCaP tumors compared with the original AD neoplasms. AI growth of these xenografts was also associated with significant reductions in IGF binding protein-3 expression. LAPC-4 xenografts, which previously have been shown to exhibit molecular pathology related to HER-2/neu expression with progression to AI, showed relatively minor changes in expression of the genes investigated, but we nevertheless found evidence of increased IGF-IR phosphorylation with progression to androgen independence in this model. Taken together with prior observations, our results suggest that deregulation of expression of genes related to any one of several critical receptor tyrosine kinase regulatory systems, including IGF signaling, may confer androgen independence.  相似文献   

3.
The normal prostate and early-stage prostate cancers depend on androgens for growth and survival, and androgen ablation therapy causes them to regress. Cancers that are not cured by surgery eventually become androgen independent, rendering anti-androgen therapy ineffective. But how does androgen independence arise? We predict that understanding the pathways that lead to the development of androgen-independent prostate cancer will pave the way to effective therapies for these, at present, untreatable cancers.  相似文献   

4.
Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is very common in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstrated that the androgen-independent cell line C4-2, established by inoculation of the androgen-dependent LNCaP cell line into castrated mice, has a greatly reduced amount of normal mitochondrial DNA and an accumulation of large-deletion DNA. Strikingly, the depletion of mitochondrial DNA from androgen-dependent LNCaP resulted in a loss of androgen dependence. Reconstitution of normal mitochondrial DNA to the mitochondrial DNA-depleted clone restored androgen dependence. These results indicate that mitochondrial DNA determines androgen dependence of prostate cancer cell lines. Further, mitochondrial DNA-deficient cells formed tumors in castrated athymic mice, whereas LNCaP did not. The accumulation of large deletion and depletion of mitochondrial DNA may thus play a role in the development of androgen independence, leading to progression of prostate cancers.  相似文献   

5.
Gery S  Sawyers CL  Agus DB  Said JW  Koeffler HP 《Oncogene》2002,21(31):4739-4746
We have identified a gene that is highly expressed in the androgen-dependent prostate cancer cell line, LNCaP. Sequence analysis revealed that it was identical to a recently cloned gene designated TMEFF2, which encodes a transmembrane protein containing an epidermal growth factor (EGF)-like motif and two follistatin domains. This gene was highly expressed only in primary samples of normal prostate and prostate cancer as well as normal brain. Expression of the gene was controlled by androgen as shown by dihydrotestosterone markedly increasing TMEFF2 expression in LNCaP cells. Also, androgen-dependent human prostate cancer xenografts (CWR22) expressed high levels of TMEFF2 and these levels markedly decreased by day 10 after castration of the mice. Furthermore, a large number of androgen-dependent xenografts (CWR22, LuCaP-35, LAPC-4AD, LAPC-9AD) exhibited higher levels of TMEFF2 mRNA than androgen-independent xenografts (CWR22R, LAPC-3AI, LAPC-4AI, LAPC-9AI). Ectopic expression of TMEFF2 in DU145 and PC3 cells resulted in their prominent inhibition of growth. Taken together, the results demonstrate that TMEFF2 is a androgen-regulated gene, which can suppress growth of prostate cancer cells and our xenograft data show that escape of prostate cancer cells from androgen modulation causes them to decrease their expression of this gene, which may result in their more malignant behavior.  相似文献   

6.
Most prostate cancer patients develop androgen-independent recurrent prostate tumors a few years after androgen ablation therapy. No therapy, however, has been shown to substantially extend survival in these patients. Previously, we reported that androgen suppresses the growth of androgen-independent LNCaP prostate tumor cells both in vitro and in vivo. In cell culture, androgen receptor (AR)-rich androgen-independent LNCaP 104-R1 cells adapt to growth suppression by androgen and then their growth is androgen stimulated. Because maintaining androgen dependency of prostate tumor cells should prolong the usefulness of androgen ablation therapy, we determined if androgen-independent prostate tumors would revert to an androgen-stimulated phenotype in vivo upon androgen treatment. Growth of the LNCaP 104-R1 tumors was suppressed by androgen, but tumors then adapted to suppression by androgen and growth became androgen stimulated. Tumor AR and prostate-specific antigen mRNA and protein were initially high in 104-R1 tumors but decreased during adaptation. Subsequent removal of androgen decreased the serum prostate-specific antigen level further and stopped the growth of the adapted tumors. Because androgen caused growth suppression and then reversion of androgen-independent tumors to an androgen-stimulated phenotype and because the growth of androgen-stimulated tumors could be restrained by androgen ablation, these results suggest a novel therapy for AR-positive androgen-independent prostate cancer.  相似文献   

7.
Initially, prostate cancer is androgen dependent. However, most cases progress to an androgen-independent state through unknown mechanisms. Interleukin-6 (IL-6) has been associated with prostate cancer progression including activation of the androgen receptor (AR). To determine if IL-6 plays a role in the conversion of prostate cancer from androgen dependent to androgen independent, we established androgen-dependent LuCaP 35 human prostate cancer xenografts in nude mice, castrated the mice, and blocked IL-6 activity using a neutralizing antibody (CNT0328) for a period of 18 weeks. IL-6 inhibition increased survival of mice and inhibited tumor growth, as reflected by decreased tumor volume and prostate-specific antigen levels, compared with that in mice receiving isotype control antibody. To test the effect of IL-6 inhibition on the conversion from androgen dependent to androgen independent, tumor cells from the treated mice were assessed for their androgen dependence both in vitro and by implanting them into sham-operated or orchiectomized mice. Tumor cells derived from the isotype-treated animals converted to androgen-independent state, whereas tumor cells from the anti-IL-6 antibody-treated mice were still androgen dependent in vitro and in vivo. Although there was no difference in AR levels between the androgen-independent and androgen-dependent tumors, IL-6 inhibition promoted both apoptosis and inhibited cell proliferation in tumors and blocked the orchiectomy-induced expression of histone acetylases, p300 and CBP, which are AR cofactors. These data show that IL-6 contributes to the development of androgen independence in prostate cancer and suggest that it mediates this effect, in part, through modulation of p300 and CBP.  相似文献   

8.
Prostate cancer cells are generally dependent on androgen stimulation mediated by the androgen receptor (AR) for growth and survival, and, therefore, hormonal manipulation, such as castration and/or the use of AR antagonists, results in a regression of the cancer. However, this treatment very rarely leads to the "cure" of advanced disease, and cancers eventually become androgen-independent. A number of genes/pathways have been reported to be activated in prostate cancer, most of which are possibly associated with disease progression. In this article, among them, we focus on Akt (also known as protein kinase B), cyclooxygenase (COX)-2, and matrix metalloproteinase (MMP)-9, whose activities or expressions have been found to be regulated by androgens/AR. Previous studies by us and others, with androgen-sensitive prostate cancer cell lines, have demonstrated that androgen deprivation results in activation/overexpression of Akt, COX-2, and MMP-9 in cells. This suggests that androgen deprivation in clinical settings activates the Akt, COX-2, and MMP-9 pathways in prostate cancer, which may increase cell growth and in turn promote the transition to the androgen-independent state. We hypothesize that androgen deprivation, in combination with inhibition of the Akt, COX-2, and MMP-9 pathways, delays the androgen-independent transition and has more beneficial effects than hormonal therapy alone.  相似文献   

9.
Most prostate cancers are androgen-dependent and essentially respond to androgen ablation therapy. However, these tumors eventually become androgen-independent and progress despite androgen ablation. Since the androgen receptor (AR) sequence was determined, numerous studies have shown that AR plays a critical role in the development of androgen-refractory prostate cancer. Amplification of AR, mutations of AR, and deregulation of growth factors, cytokines and AR co-activators, which could be classified as AR-dependent pathways, are frequently observed in this condition. There are other pathways, AR-independent pathways that bypass AR, which involve neuroendocrine differentiation of prostate cancer cells, deregulation of apoptotic genes and unknown mechanisms related to down-regulation of AR. Androgen-refractory prostate cancers with the AR-dependent pathway could be treated by suppressing AR activity, whereas AR-independent tumors would require alternative management strategies. When more cell survival pathways are defined, improvement of patients' survival could be achieved by developing specific gene-targeting therapies that interfere with those pathways.  相似文献   

10.
The significance of apoptosis in relation to the development and progression of prostate cancer remains largely undefined. bcl-2 is an oncogene that functions by overriding apoptosis. bcl-2 expression was localized to the basal epithelial cells in the normal human prostate with the use of immunohistochemistry. Androgen-dependent and androgen-independent prostate carcinomas were evaluated immunohistochemically for bcl-2 expression. bcl-2 was undetectable in 13 of 19 cases of androgen-dependent cancers. In contrast, androgen-independent cancers displayed diffuse, high levels of bcl-2 staining (P < 0.01). In rats, steady-state levels of bcl-2 mRNA, assessed by S1 assays, reached maximum levels 10 days following castration. Addition of exogenous testosterone with, or without, flutamide demonstrated that the increased bcl-2 mRNA resulted from androgen ablation. Our findings indicate that bcl-2 expression is augmented following androgen ablation and is correlated with the progression of prostate cancer from androgen dependence to androgen independence.  相似文献   

11.
12.
13.
Histone deacetylase inhibitors (HDACi) are promising epigenetic cancer chemotherapeutics rapidly approaching clinical use. In this study, we tested using in vitro and in vivo models the differential biological effects of a novel HDAC inhibitor [belinostat (PXD101)], in a wide panel of androgen-sensitive and androgen-independent tumor cells. Belinostat significantly increased acetylation of histones H3 and H4. Belinostat potently inhibited the growth of prostate cancer cell lines (IC50 range from 0.5 to 2.5 μM) with cytotoxic activity preferentially against tumor cells. This agent induced G2/M arrest and increased significantly the percentage of apoptosis mainly in androgen-sensitive tumor cells confirming its growth-inhibitory effects. The cell death mechanisms were studied in three different prostate cancer cell lines with different androgen dependence and expression of androgen receptor; LAPC-4 and 22rv1 (androgen-dependent and expressing androgen receptor) and PC3 (androgen-independent not expressing androgen receptor). Belinostat induced the expression of p21 and p27, acetylation of p53 and G2/M arrest associated with Bcl2 and Bcl-Xl downmodulation and significant reduction of survivin, IAPs and Akt/pAkt and increased caspase-8 and -9 expression/activity. Belinostat effectiveness was dependent on the androgen receptor (AR), since the stable transfection of AR greatly increased the efficacy of this HDAC inhibitor. These observations were correlated using in vivo models. We demonstrated that belinostat preferentially resulted in antitumor effect in androgen-dependent tumor cells expressing AR. Our findings provide evidence that belinostat may be a promising anticancer drug for prostate cancer expressing AR, supporting its clinical role in prostate cancer.  相似文献   

14.
Prostate cancer is the leading cause for noncutaneous cancer-related deaths among men in the United States. The disease is biologically characterized as being either androgen dependent or androgen independent. Whereas androgen-dependent prostate cancer can be successfully treated with androgen ablative therapy, to date no cure exists for androgen-independent disease. Mechanisms involved in the progression of prostate cancer to androgen independence are not known. Here we present evidence that in addition to growth factor receptor tyrosine kinases, G protein- coupled receptors can mediate survival signals in prostate cancer cells. The G protein- coupled receptors exert their effects by activating multiple intracellular signal transduction networks that promote prostate cancer cell survival, including the activation of c-Jun N-terminal kinase, protein kinase B (Akt) and nuclear factor-kB. Prostate-expressed G protein- coupled receptors and their downstream effectors may prove to be effective targets in the treatment of advanced prostate cancer.  相似文献   

15.
16.
17.
18.
19.
Lee LF  Louie MC  Desai SJ  Yang J  Chen HW  Evans CP  Kung HJ 《Oncogene》2004,23(12):2197-2205
Interleukin-8 (IL-8), a chemokine implicated in the metastasis and angiogenesis of a variety of cancers, has been reported to be overexpressed in prostate cancer. In this study, we ascribe a new role for IL-8 in prostate cancer progression using LNCaP cells. We demonstrate that IL-8 activates the androgen receptor and confers androgen-independent growth, while serving as a potent chemotactic factor. Our evaluation of the possible signal pathways involved in androgen-independence and cell migration shows that the tyrosine kinases Src and FAK (focal adhesion kinase) are involved in IL-8-induced signaling. Pharmacological and genetic inhibitors of Src and FAK interfere with IL-8-induced cell migration, while only the Src inhibitor was able to repress androgen-independent growth. This suggests that both growth and migration depend on the activity of Src, whereas cell migration also requires the activation of FAK. Our evidence that IL-8-induced androgen-independent growth is, at least in part, due to androgen receptor activation includes (1) an inhibitor of androgen receptor activity diminishes cell growth; (2) androgen receptor transactivation potential is augmented by IL-8 and (3) androgen receptor is recruited to the promoter of prostate specific antigen (PSA) upon IL-8 treatment, based on chromatin immunoprecipitation experiments. Taken together, our data suggest that in addition to its role in metastasis and angiogenesis, IL-8 may also serve as a facilitator for androgen-independent transition of prostate cancers. To our knowledge, this is the first report about the tyrosine kinase signals and androgen receptor activation induced by IL-8 in prostate cancer cells. The observation that IL-8 mediates its growth and chemotactic effects via Src and FAK suggests the potential use for tyrosine kinase inhibitors at early stage of prostate cancer development.  相似文献   

20.
Increased expression levels of constitutively active androgen receptor splice variants (AR-Vs) cause alterations in AR signaling, resulting in drug resistance and failed hormone therapy among patients with advanced prostate cancers. Several available compounds targeting the androgen axis and AR signaling have not demonstrated efficacy in preventing prostate cancer recurrence. Here, we investigated whether a new agent, 6-[6-ethoxy-5-ispropoxy-3,4-dihydroisoquinolin-2[1H)-yl]-N-[6-methylpyridin-2-yl]nicotinamide (EIQPN), has the potential for treating advanced prostate cancer. EIQPN interacted with the AR-activation fragment-1 (AF-1) domain and blocked its androgen-independent activity, robustly decreased the protein levels of AR and variants in prostate cancer cells by inducing AR protein degradation, and inhibited the androgen-independent proliferation of various AR-positive prostate cancer cells. In xenograft mouse models, EIQPN blocked the tumor growth of androgen-independent prostate cancer cells. Overall, these findings indicate that EIQPN could serve as a novel therapeutic agent for advanced recurrent prostate cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号