首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreceptors in retinitis pigmentosa (RP), a group of inherited retinal degenerative diseases, die through apoptosis. Since melatonin protects against neuronal apoptotic death, we tested its ability to slow photoreceptor degeneration in the rds/rds mouse, an animal model for RP. Shortly after birth, rds/rds mice were given daily i.p. injections of melatonin or vehicle for 11 weeks. Melatonin treatment significantly delayed photoreceptor loss and reduced the number of apoptotic photoreceptors. Further studies should determine if melatonin will have potential for the treatment of certain human retinal degenerations.  相似文献   

2.
Photoreceptors receive paracrine input from dopaminergic interplexiform cells. Rod photoreceptors in the rd mouse degenerate rapidly due to a specific gene defect. We investigated the effects of dopamine on rd mouse photoreceptors in retinal organ culture. Retinas were harvested from rd or wild-type mice at postnatal day 2 and grown in organ culture for 27 days. When antagonists for either D(1)- or D(2)-family dopamine receptors were added to the media, photoreceptor degeneration was blocked. Furthermore, when dopamine was depleted by the addition of 6-hydroxydopamine and pargyline, photoreceptor survival appeared comparable to wild-type retinal cultures. The addition of a dopamine agonist induced photoreceptor degeneration in dopamine-depleted rd organ cultures. In all cases, photoreceptors maintained robust staining of opsin. These results demonstrate that dopamine antagonists or dopamine depletion blocks photoreceptor degeneration and that dopamine is necessary for photoreceptor degeneration in the rd mouse retinal organ culture model, indicating that dopamine antagonists may represent a therapeutic strategy in retinal degenerative disease.  相似文献   

3.
Leber's congenital amaurosis (LCA) is the earliest and most severe form in the world of genetic retinal dystrophy causing blindness. An animal model of LCA was recently created in which the cone-rod homeobox (crx) gene was disrupted using homologous recombination. Crx-/- mice display abnormal development of photoreceptors followed by their degeneration. We analyzed the morphology of inner retinal cells in crx-/- mice in order to evaluate the effects of abnormal photoreceptor development and death upon other retinal neurons. The identification of a time window during which inner retinal cells are still viable could be very important in view of the possibilities that photoreceptor transplantation or gene therapy might be used to restore vision in LCA. We used a combination of immunocytochemical and confocal microscopy techniques to screen the crx-/- inner retina and verify its morphological integrity after photoreceptor degeneration. We found significant morphological alterations in second-order neurons in crx-/- animals. The appearance of mutant retinas after photoreceptor death is indistinguishable from that of the retinal degeneration (rd/rd) mouse, a different genetic model of a retinal disease characterized by photoreceptor degeneration. However, at early stages of photoreceptor degeneration the morphology of retinal cells in the crx-/- mutant is considerably well preserved. It is likely that different genetic mechanisms that cause abnormal photoreceptor development and/or degeneration lead to a common pathway that determines second-order neuron modifications. The severity of modifications is linked to the timing of onset of the degeneration and appears to increase with time.  相似文献   

4.
The rd mouse retina is an animal model for human retinal dystrophy in which the rod photoreceptors undergo apoptosis during the first 4 weeks in vivo or in organ culture. We have examined the effect of different families of trophic factors on the survival of rd mouse photoreceptors in organ culture. Retinas were harvested from rd mice at postnatal day 2 and grown in organ culture for 27 days in vitro (DIV) in DMEM with 10% fetal calf serum. Ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephon were added individually or in combination to the medium at a dose of 50 ng/ml or less. CNTF + BDNF in combination resulted in photoreceptor survival comparable to wild-type retinas after 27 DIV. CNTF + FGF2 or CNTF + GDNF produced a partial prevention of photoreceptor death. Photoreceptor degeneration was not blocked by any of the trophic factors added individually. A significant increase in photoreceptor survival was seen with forskolin added to CNTF, but not to BDNF, FGF2, or GDNF. These results demonstrate that trophic factors promote photoreceptor survival through a synergistic interaction. Increased understanding of receptor interactions and signaling pathways may lead to a potential therapeutic role for combinatorial trophic factors in treatment of photoreceptor dystrophies.  相似文献   

5.
In light of different recent results suggesting that the adult mammalian central nervous system can produce new neurons, possibly as an endogenous repair mechanism, we investigated whether neurogenesis occurs in response to photoreceptor degeneration in the rd1 mouse, a model of human-inherited retinal dystrophy. Bromodeoxy-Uridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression experiments detected cell proliferation in the extreme peripheral retina, in both wt and rd1 retina, independent of degeneration. BrdU incorporation and PCNA expression also occurred in rd1 photoreceptors. Our results strongly suggest that these photoreceptors undergo DNA repair: p53, PCNA, and DNA ligase IV are expressed before photoreceptor death, consistent with a model where photoreceptors expressing the rd1 mutation activate a process of DNA repair but which is overwhelmed by the disease mutation leading to apoptotic death. The existence of such a balance offers potential new targets for neuroprotective approaches.  相似文献   

6.
Calcium (Ca2+) dysregulation has been linked to neuronal cell death, including in hereditary retinal degeneration. Ca2+ dysregulation is thought to cause rod and cone photoreceptor cell death. Spatial and temporal heterogeneities in retinal disease models have hampered validation of this hypothesis. We examined the role of Ca2+ in photoreceptor degeneration, assessing the activation pattern of Ca2+-dependent calpain proteases, generating spatiotemporal maps of the entire retina in the cpfl1 mouse model for primary cone degeneration, and in the rd1 and rd10 models for primary rod degeneration. We used Gaussian process models to distinguish the temporal sequences of degenerative molecular processes from other variability sources.In the rd1 and rd10 models, spatiotemporal pattern of increased calpain activity matched the progression of primary rod degeneration. High calpain activity coincided with activation of the calpain-2 isoform but not with calpain-1, suggesting differential roles for both calpain isoforms. Primary rod loss was linked to upregulation of apoptosis-inducing factor, although only a minute fraction of cells showed activity of the apoptotic marker caspase-3. After primary rod degeneration concluded, caspase-3 activation appeared in cones, suggesting apoptosis as the dominant mechanism for secondary cone loss. Gaussian process models highlighted calpain activity as a key event during primary rod photoreceptor cell death. Our data suggest a causal link between Ca2+ dysregulation and primary, nonapoptotic degeneration of photoreceptors and a role for apoptosis in secondary degeneration of cones, highlighting the importance of the spatial and temporal location of key molecular events, which may guide the evaluation of new therapies.  相似文献   

7.
Pigment epithelium-derived factor (PEDF) is a neurotrophic protein synthesized and secreted by retinal pigment epithelial (RPE) cells in early embryogenesis and has been shown to be present in the extracellular matrix between the RPE cells and the neural retina. It induces neuronal differentiation and promotes survival of neurons of the central nervous system from degeneration caused by serum withdrawal or glutamate cytotoxicity. Because the role of PEDF in the retina is still unknown, we examined its ability to protect cultured retinal neurons against hydrogen peroxide (H(2)O(2))-induced cell death. Retinas of 0-2-day-old Sprague-Dawley rats were isolated and dissociated, and the neurons were maintained for 2 weeks in a synthetic serum-free medium. Immunocytochemical labeling showed that 50-60% of the cultured cells were rod photoreceptors. Treatment with H(2)O(2) induced significant death of retinal neurons in a dose- and time-dependent manner. Pretreatment with PEDF prior to insult greatly attenuated H(2)O(2)-induced cytotoxicity, and its effect was shown to be dose dependent. Cytotoxicity was determined by 3,(4,5-dimethylthiazol-2-yl)2, 5-diphenyl-tetrazolium bromide and lactate dehydrogenase assays, and apoptotic cell death was evaluated by the TdT-mediated digoxigenin-dUTP nick-end labeling assay. The present study also showed that H(2)O(2)-induced retinal neuron death was by apoptosis that could be inhibited by PEDF. Combination of PEDF with basic fibroblast growth factor, brain-derived neurotrophic factor, or ciliary neurotrophic factor improves the protection. These data strongly suggest that PEDF is a potential neuroprotective agent in the treatment of retinal degeneration.  相似文献   

8.
Apoptosis is considered to be the final common pathway of photoreceptor cell death in different inherited retinal diseases. However, apoptosis encompasses diverse pathways of molecular interactions culminating in cellular demise. To begin dissecting these interactions, we have investigated key participants in the rd (retinal degeneration) model of retinal neurodegeneration. By Western blot analysis and immunocytochemistry, we found that cytochrome c release occurs in rd retinas concurrently with the activation of the proapoptotic protein Bid. Active forms of caspase-8 and the mitogen-activated protein kinase p38, both of which are capable of cleaving Bid, were detected in rd retinas at the peak time of photoreceptor death. In addition, the activated form of the cell death effector caspase-3 was detectable particularly at the photoreceptors in parallel with this peak degenerative phase. These data suggest that activation of both major apoptotic pathways occurs during photoreceptor degeneration in the rd mouse model of inherited blindness.  相似文献   

9.
Retinal degeneration 10 (rd10) mice are a model of autosomal recessive retinitis pigmentosa (RP), identified by Chang et al. in 2002 (Vision Res. 42:517-525). These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. The aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyzed the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also studied retinal function with the electroretinogram (ERG), recorded between P18 and P30. We found that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what was previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predicts that rd10 mice might become excellent models for rescue approaches.  相似文献   

10.
We have previously demonstrated that photoreceptors express P2X7 purinoceptors. These excitatory receptors are activated by extracellular adenosine 5′‐triphosphate (ATP) and have been implicated in neurodegeneration in other parts of the central nervous system (CNS). In this study we examined whether extracellular ATP could contribute to photoreceptor degeneration in rodents through excessive activation of P2 purinoceptors. Intravitreal injection of high concentrations of extracellular ATP into normal rat eyes induced extensive and selective apoptosis of photoreceptors within 18 hours of injection. Five days after injection the outer nuclear layer was severely degenerated and electroretinographic responses were impaired. Preinjection of the purinergic antagonist pyridoxal‐phosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS) protected against ATP‐mediated apoptosis. The initial phase of ATP‐induced photoreceptor death did not temporally coincide with retinal pigment epithelium degeneration or microglial activation, suggesting that cell death was due to direct activation of purinergic receptors on photoreceptors. Finally, we demonstrate that intravitreal injection of PPADS results in a 30% increase in photoreceptor survival in the rd1 mouse, a model of human recessive retinitis pigmentosa (RP). These findings highlight the importance of extracellular ATP in retinal neurodegeneration and provide a potential new avenue for therapeutic intervention in RP. J. Comp. Neurol. 513:430–440, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Retinitis pigmentosa is a retinal disease characterized by photoreceptor degeneration.There is currently no effective treatment for retinitis pigmentosa.Although a mixture of lutein and other antioxidant agents has shown promising effects in protecting the retina from degeneration,the role of lutein alone remains unclear.In this study,we administered intragastric lutein to Pde6brd10 model mice,which display degeneration of retinal photoreceptors,on postnatal days 17(P17)to P25,when rod apoptosis reaches peak.Lutein at the optimal protective dose of 200 mg/kg promoted the survival of photoreceptors compared with vehicle control.Lutein increased rhodopsin expression in rod cells and opsin expression in cone cells,in line with an increased survival rate of photoreceptors.Functionally,lutein improved visual behavior,visual acuity,and retinal electroretinogram responses in Pde6brd10 mice.Mechanistically,lutein reduced the expression of glial fibrillary acidic protein in Müller glial cells.The results of this study confirm the ability of lutein to postpone photoreceptor degeneration by reducing reactive gliosis of Müller cells in the retina and exerting anti-inflammatory effects.This study was approved by the Laboratory Animal Ethics Committee of Jinan University(approval No.LACUC-20181217-02)on December 17,2018.  相似文献   

12.
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491  相似文献   

13.
Vascular atrophy in the retinal degenerative rd mouse   总被引:1,自引:0,他引:1  
We have observed that the lectin Ricinus communis agglutinin I (RCA), which binds to terminal galactose moieties, serves as a marker for vasculature in the mouse retina. The binding of fluorescein-isothiocyanate-conjugated RCA was used to study the development of retinal vasculature in normal mice and in rd (retinal degeneration) mutant mice, which exhibit a massive loss of photoreceptor cells during the first month of life. In the normal mouse, retinal capillaries develop in an ordered manner and are concentrated in three major zones between the inner limiting membrane and the outer plexiform layer. In the rd mouse, the vessels appear to form normally but begin to degenerate by the end of the second postnatal week. By the end of the fourth postnatal week there is approximately a 35% reduction in the total number of vascular profiles in the rd retina compared to normal littermate controls. This reduction in vascularity is temporally associated with the photoreceptor degeneration.  相似文献   

14.
We studied the anatomical remodeling and gliosis of retinal Müller cells in the rd/rd mouse model of photoreceptor degeneration. A computational calculation of glutamine synthetase immunoreactivity was developed so we could specifically quantify changes in Müller cell anatomy between control mice (C57Bl/6) and the dystrophic strain. We found no change in the number of Müller cell somata between mice strains, indicating no cell proliferation as a function of development and degeneration. The retinal area occupied by the total Müller cell body (soma and processes) was significantly less in the rd/rd mouse retina compared with control mice. When only the outer retina was considered, we found rd/rd Müller cell processes were dramatically reduced during the cone phase of photoreceptor degeneration. However, at older ages an increase in Müller cell processes was seen. Conversely, glial fibrillary acidic protein (GFAP) expression showed a significant increase during cone degeneration followed by a reduction in older ages. Müller cell electrophysiology, particularly K+ currents and membrane potential, was similar between rd/rd and control Müller cells during cone degeneration. Together, these results show that glial remodeling in the rd/rd retina follows separate phases—an initial conservative glial response involving the loss of Müller cells processes, hyperexpression of GFAP, and preservation of normal electrophysiology followed by an active growth of Müller cell processes, glial seal formation, and attenuation of GFAP expression after complete photoreceptor loss. J. Comp. Neurol. 521:2439–2453, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
CNTF+BDNF treatment and neuroprotective pathways in the rd1 mouse retina   总被引:2,自引:0,他引:2  
The rd1 mouse is a relevant model for studying the mechanisms of photoreceptor degeneration in retinitis pigmentosa. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain derived neurotrophic factor (BDNF) is known to rescue photoreceptors in cultured rd1 retinal explants. To shed light on the underlying mechanisms, we studied the effects of 9 days (starting at postnatal day 2) in vitro CNTF+BDNF treatment on the endogenous production of CNTF, BDNF, fibroblast growth factor 2 (FGF2), or the activation of extracellular signal-regulated kinase (ERK), Akt and cAMP-response-element-binding protein (CREB) in retinal explants. In rd1 explants, CNTF+BDNF decreased the number of TUNEL-positive photoreceptors. The treatment also increased endogenous rd1 levels of CNTF and BDNF, but lowered the level of FGF2 expression in rd1 explants. When wild-type explants were treated, endogenous CNTF was similarly increased, while BDNF and FGF2 levels remained unaffected. In addition, treatment of rd1 retinas strongly increased the phosphorylation of ERK, Akt and CREB. In treated wild-type explants, the same parameters were either unchanged (ERK) or decreased (Akt and CREB). The results suggest a role for Akt, ERK and CREB in conveying the neuroprotective effect of CNTF+BDNF treatment in rd1 retinal explants.  相似文献   

16.
Progenitor and stem cell transplantation represent therapeutic strategies for retinal disorders that are accompanied by photoreceptor degeneration. The transplanted cells may either replace degenerating photoreceptors or secrete beneficial factors that halt the processes of photoreceptor degeneration. The present study analyzes whether rat retinal progenitor cells differentiated into photoreceptor phenotypic cells in neurospheres have a potential to interact with rat retinal explants. Immunocytochemistry for rhodopsin and synaptophysin indicated photoreceptor cell-like differentiation in neurospheres that were stimulated by basic fibroblast growth factor and epidermal growth factor. Differentiation into neural phenotypes including photoreceptor cells was effectively blocked by an addition of leukemia inhibitory factor. Grafting of neurospheres onto retinal explants demonstrated a consistent penetration of glial cell processes into the explanted tissue. On the other hand, the incorporation of donor cells into explants was very low. A general finding was that neurospheres grafting was associated with local decrease in Müller cell activation in the explants. Further characterization of these effect(s) could provide further insight into progenitor cell-based therapies of retinal degenerative disorders.  相似文献   

17.
Joly S  Pernet V  Samardzija M  Grimm C 《Glia》2011,59(7):1033-1046
In lower vertebrates, such as fish, Müller glia plays an essential role in the restoration of visual function after retinal degeneration by transdifferentiating into photoreceptors and other retinal neurons. During this process, Müller cells re-enter the cell cycle, proliferate, and migrate from the inner nuclear layer (INL) to the photoreceptor layer where they express photoreceptor-specific markers. This process of Müller cell transdifferentiation is absent in mammals, and the loss of photoreceptors leads to permanent vision deficits.The mechanisms underlying the failure of mammalian Müller cells to behave as stem cells after photoreceptor degeneration are poorly understood. In the present study, we show that photoreceptor injury induces migration of PAX6-positive Müller cell nuclei toward the outer part of the INL and into the inner part of the outer nuclear layer. These cells express markers of the cell cycle, suggesting an attempt to re-enter the cell cycle similarly to lower vertebrates.However, mouse Müller cells do not proliferate in response to photoreceptor injury implying a blockade of the S-phase transition. Our results suggest that a release of the S-phase blockade may be crucial for Müller cells to successfully transdifferentiate and replace injured photoreceptors in mammals.  相似文献   

18.
Opsin gene regulation, as a function of outer segment structure, was studied in normal and mutant retinal degeneration slow (rds) mice. We investigated the level of expression of the opsin gene in the rds mutant to determine if the reduced opsin content observed in this mutation (around 3% of normal) is a consequence of lowered expression of its gene. Normal BALB/c and rds mice were analyzed for levels of opsin mRNA and opsin content by Northern and immunoblot analysis, respectively. The rate of opsin synthesis in isolated retinas was measured by 35S-methionine incorporation in vitro, followed by analysis of the radiolabeled opsin by SDS-gel electrophoresis and autoradiography. Photoreceptor cell loss at various stages of degeneration was determined by quantitation of surviving photoreceptor nuclei. Opsin was localized in the mutant photoreceptors by immunoelectron microscopy of LR gold-embedded retinas using anti-opsin and antibody gold conjugates. The results indicate that 11- and 30-d-old mutant mice have considerable levels of opsin mRNA (60-70% of normal) and opsin synthetic rates (76-92% of normal), after the data from mutant mice are corrected for photoreceptor cell loss. We conclude, therefore, that the very low level of opsin observed in rds mice (approximately 3%) is not a result of greatly reduced expression of the opsin gene. Rather, continuous turnover of newly synthesized opsin as a result of its failure to become sequestered into an intact outer segment appears to account for the low levels of opsin in the rds mutant.  相似文献   

19.
20.
Age-related macular degeneration is characterized by the formation of drusen containing amyloid-β (Aβ) and the degeneration of photoreceptors. To explore the largely unknown role of Aβ in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aβ(1-42). Subretinal injection of the Aβ peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis. Aβ did not induce cell death in purified photoreceptor cell cultures, but did so in retinal cell cultures, thereby suggesting that the cellular environment plays a role in Aβ-induced photoreceptor apoptosis. Subretinal injection of Aβ was followed by activation and migration of microglial cells and then by photoreceptor apoptosis. Microglial cells phagocytosed rhodopsin-containing debris and Aβ in the subretinal space. Quantitative RT-PCR allowed us to identify a specific gene expression profile associated with the Aβ-induced progression of retinal degeneration and consistent with oxidative stress, inflammation, and an apoptotic program. The gene most highly upregulated in Aβ-injected retinas was that for the chemokine CCL2, and its absence or that of its cognate receptor CCR2 greatly reduced migration of activated microglial cells to the site of retinal injury and profoundly worsened photoreceptor degeneration and disorganization of the retinal pigment epithelium in Aβ-injected retinas. Our study pinpoints the roles of Aβ and of CCL2/CCR2 axis-dependent inflammation in photoreceptor apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号